搜档网
当前位置:搜档网 › 向量代数的基本运算解读

向量代数的基本运算解读

向量代数的基本运算解读
向量代数的基本运算解读

向量代数的基本运算

为了便于学习,我们把有关知识结合图形计算器做一简要总结。 向量代数的基本运算包括:

1.向量的表示:向量有两种表示方法,即和AB 。如果A(a1,a2,a3)(二维情形时A(a1,a2),我们一般都指的是三维情形),B(b1,b2,b3),那么AB =[b1-a1,b2-a2,b3-a3]。在TI ?92中代数和几何都可以给出向量的表示。(参阅案例二中的图6.1.

2.1和6.1.2.2)

2.向量的加法和减法:有关这方面的基本知识不再重复。主要掌握平行四边形法则和三角形法则。TI -92图形计算器能够在代数运算和几何直观上双重实现。但要注意的是,在图形计算器中,向量被看成是特殊的矩阵,也就是行阵或列阵。

3.向量的数乘:设=[a1,a2,a3],λ是一个实数,那么λ与的乘积λa 等于[λa1,λa2,λa3]。其几何意义是把向量a 沿同向(当)0时>λ放大λ倍,或把向量a 沿反向(当)0时<λ放大λ倍。

4.向量的数量积(点积,内积):向量a 与向量的点积是一个数量,其值等于向量的长度(模)与向量的长度(模)的乘积再乘以它们夹角θ的余弦,即

θb a =?,其中θ是向量与b 的交角。 向量点积的坐标表示为332211b a b a b a b a ++=?,其中=[a1,a2,a3],=[b1,b2,b3]。

两个向量垂直的充分必要条件是它们的点积等于零。

b a b a ⊥?=?0即。

在计算器中键入dotp(a,b)可以计算向量的点积。

由两个向量的点积可以计算出在两个向量的夹角,也就是

=θcos

运算符为,然后输入dotp(a,b)/(norm(a)*norm(b)),具体和6.1.3.2。

(图6.1.3.1)

6.1.3.2)

为了便于计算,可以通过按

),(b a θa 和b 就

可以了。如图6.1.3.3所示。 (图6.1.3.3)

5.向量的叉积(向量积,外积):向量与向量的叉积是一个向量,记成?。其模等于向量模与向量模的乘积再乘以两个向量夹角θ的正弦,即θb a =?。其方向如下决定:?垂直与,并且a ,,b a ?成右手系。

向量叉积的坐标表示为

3

21321b b b a a a k

j i b a =?,其中a =[a1,

a2,a3],b =[b1,b2,b3]。

两个向量的叉积等于零的充分必要条件是它们相互平行。

//?=?即

图形计算器里实现向量叉积的运算符为。

6.向量的混合积:三个向量a 、、的混合积是一个数量,记成()(c b ,它等于??)(。

其坐标表示为3

213213

21c c c b b b a a a ,其中=[a1,a2,a3],=[b1,b2,

b3],c =[c1,c2,c3]。

混合积的运算符为dotP(crossP(a,b),c)。通过定义新的函数,比如mp(abc)=dotP(crossP(a,b),c),就可以得到混合积的直接输入方式。参见图示6.1.3.4。

(图6.1.3.4)

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

50Mathematica线性代数运算命令与例题

50Mathematica线性代数运算命令与例题

第五章 线性代数运算命令与例题 线性代数中常用的工具是矩阵(向量)和行列式。用这些工具可以表示工程技术,经济工作中一些需要用若干个数量从整体上反映其数量关系的问题。用这些工具可以简明凝练而准确地把所要研究的问题描述出来,以提高研究的效率。在线性代数课程中我们看到了用这些工具研究齐次和非齐次线性方程组解的理论和解的结构,矩阵的对角化,二次型化标准形等问题的有力,便捷. 5.1向量与矩阵的定义 数学上矩阵是这样定义的: 由n m ?个数排成m 行n 列的数表 mn m m n n a a a a a a a a a Λ M M M Λ Λ21 2222111211 称为m 行n 列矩阵,特别,当m=1时就是线性代数中的向量。

记作: ????? ?? ?????=mn m m n n a a a a a a a a a A ΛM M M ΛΛ2122221 11211 两个n m ?矩阵称为同型矩阵。 线性代数中的运算对象是向量和矩阵,因此首先介绍向量和矩阵的输入。 5.1.1输入一个矩阵 命令形式1:Table[f[i,j],{i ,m},{j ,n}] 功能: 输入n m ?矩阵,其中f 是关于i 和j 的函数,给出[i , j]项的值. 命令形式2:直接用表的形式来输入 功能:用于矩阵元素表达式规律不易找到的矩阵的输入。 注意: 1.Mathematica 是采用一个二重表的形式来表示矩阵的,即用 {{…},{…},…,{…}} 其中表中的每个表元素都是等长的一维表,第一

个表元素是矩阵的第一行,第二个表元素是矩阵的第二行,一般,第n 个表元素是矩阵的第n 行。要看通常的矩阵形式可以用命令: MatrixForm[%] 2. 对应上述命令形式,输入一个向量的命令为 Table[f[j],{j,n}]或直接输入一个一维表{a1,a2,…,an},这里a1,a2,…,an 是数或字母。 例题 例 1.输入矩阵A=???? ??????---41381639121458561203 12、向量 b={1,4,7,-3}。 解:Mathematica 命令 In[1]:= a={{12,-3,0,2,1},{56,-8,-45,21,91},{3,6,81,13,4}} Out[1]:= {{12,-3,0,2,1},{56,-8,-45,21,91},{3,6,81,13,4}} In[2]:=b={1, 4, 7, -3} Out[2]:= {1, 4, 7, -3}

(完整版)运用向量法证明几个数学公式

运用向量法证明几个数学 向量法是几何问题代数化的一种重要方法,运用向量法可以证明一些三角或者几何公式,下面仅举几例予以说明。 例1、用向量证明和差化积公式 cos cos 2cos cos 22αβ αβ αβ+-+= sin sin 2sin cos 22αβαβ αβ+-+= 如图,作单位圆,并任作两个向量 (cos ,sin )OP αα=u u u r ,(cos ,sin )OQ ββ=u u u r 取 ?PQ 的中点M ,则 (cos ,sin )2 2 M αβαβ ++ 连接PQ 、OM ,设它们相交于点N ,则点N 为线段PQ 的中点,且ON PQ ⊥,∠Mo x 和∠MOQ 分别为,22αβαβ +-,所以||||cos cos 22 ON OM αβαβ --==u u u r u u u u r ,所以点N 的坐标为(||cos ,||sin ) 22 ON ON αβαβ ++u u u r u u u r ,即(cos cos ,cos sin )2222N αβαβαβαβ-+-+ 又11 ()(cos cos ,sin sin )22ON OP OQ αβαβ=+=++u u u r u u u r u u u r 所以(cos cos ,cos sin )2222αβαβαβαβ-+-+1 (cos cos ,sin sin )2 αβαβ=++ 即cos cos 2cos cos 22 αβαβ αβ+-+= sin sin 2sin cos 22 αβαβαβ+-+= 在上面的基础上,还可以证明另外两个和差化积公式:

sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 2 2 αβ αβ αβ+--=- 如图,过P 点作y 轴的平行线,过Q 作x 轴的平行线相交于点F ,那么||sin sin PF αβ=-u u u r ,||cos cos FQ βα=-u u u r , ∠ QPF = ∠ QNE = ∠ Mox = 2 αβ +, ||2||2||sin 2sin 22 PQ NQ OQ αβαβ --===u u u r u u u r u u u r 所以||||cos ,||||sin PF PQ QPF FQ PQ QPF =∠=∠u u u r u u u r u u u r u u u r 即sin sin 2cos sin 22αβ αβ αβ+--= cos cos 2sin sin 22 αβαβ αβ+--=- 例2、用向量解决平行四边形与三角形面积的计算公式 如图,在直角坐标系中,已知12(,)OA a a a ==u u u r r ,12(,)OB b b b ==u u u r r ,以线段OA 、OB 为邻边作平行四边形OACB ,那么平行四边形的面积1221||S a b a b =-,三角形OAB 的面积 12211 ||2 OAB S a b a b ?= - 证明:设,a b α<>=r r ,那么可以得出 ||||sin OACB S a b α=r r ,由于cos ||||a b a b α?=r r r r 所以222sin 1cos 1()|||| a b a b αα?=-=-r r r r 222222 1122122111221221222222222 222121212121212()2()1()()()()()()a b a b a b a b a b a b a b a b a a b b a a b b a a b b ++--=-==++++++ 所以sin α=

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

用向量法证明海伦公式

用向量法证明海伦公式 杜云 (六盘水师范学院数学系;贵州六盘水553004) 摘要:从数与形的角度对向量进行再认识,通过应用向量方法证明海伦公式,更进一步阐明了向量是沟通代数与几何的天然桥梁,是一个重要的数学模型,它能为解决问题提供新的方法和视角。 关键词:向量;几何;海伦公式;数形结合 中图分类号:G421文献标识码:A 文章编号:1671-055X (2009)03-0063-03 To prove Heron's Formula with the Vector DU Yun (Mathematics Department of Liupanshui Nornal College;Liupanshui,553004,China) Abstract:Recognized the vector from algebra and geometry and by proving Heron's Formula further expounds ,If shows thar the vector is a natural bridge between algebra and geometry,and it is an important mathematics style,and also provides the new method and view to solve the problems. Key words :vector ;geometry;Heron's Formula;combination between algebra and geometry 收稿日期:2009-03-03 作者简介:杜云(1982-),男,贵州盘县人,助教,研究方向:高等代数与解析几何。 第21卷第3期 2009年6月六盘水师范高等专科学校学报Journal of Liupanshui Teachers College Vol.21NO.3June 2009 63--

矢量的基本代数运算

矢量的基本代数运算

《微分几何简介》笔记 Ch.1 矢量代数及其在解析几何中的简单应用 §1 矢量代数 定义:矢量即既有大小,又有方向的量(数学量、物理量等)。 1.1 直角坐标系-点的坐标与矢的分量 在三维空间中,取任意一点O 和任意彼此垂直的三个右旋的(即构成右手系的)单位矢量 1 e ,2 e ,3 e ,构成一个直角坐标系(或标架)。用 ] ,,;[321e e e O =σ表示;O 称为σ的原点,1 e ,2 e ,3 e 称为σ 的基矢(或底矢)。 若P 为空间任意一点,以O 为始点,P 为终点的矢量OP =r 称为P 点在标架σ里的径矢。P 点在σ里的坐标1 x ,2 x ,3 x 就是r 径矢在σ里的分量: 3 32 211e e e r x x x ++= 若P 、Q 为空间两点,它们在σ里的径矢依次为 3 32211e e e r x x x ++=,3 3221 1e e e s y y y ++= 则矢量 3 33222111)()()(e e e r s x y x y x y OP OQ PQ -+-+-=-=-=

其中) 3,2,1(=-i x y i i 就是该矢量在σ里的分量。各分量 均为0的矢量称为零矢。 在同一标架里,两个矢量相等的充要条件是它们的分量依次相等。 矢量3 3221 1e e e αa a a ++=的长为 23 2 2 21a a a ++=α 若1=α,α为单位矢量(幺矢)。0≠α,则 α/i a 叫做α在σ里的方向余弦,它们是α和1 e 间的角] ,0[π之间的余弦。零矢没有方向余弦。 1.2 矢量的基本代数运算 现有矢量3 3221 1e e e αa a a ++=和3 3221 1e e e βb b b ++=,则 1) 矢量和:矢量加法按照平行四边形(或三角形)法则。 3 33222111)()()(e e e βαb a b a b a +++++=+ 2) 矢量差:矢量减法同样按照平行四边形(或三角形)法则,为加法的逆运算。 3 3 3 2 2 2 1 1 1 )()()(e e e βαb a b a b a -+-+-=- 3) 纯量(或数量)乘矢量:若λ为纯量,则 3 32 21 1e e e αa a a λλλλ++= 4) 数积(点乘):矢量α,β的数积是纯量 θcos 3 32 21 1βαβα=++=?b a b a b a

逻辑代数的基本公式和常用公式

逻辑代数的基本公式和常用公式 一.基本定义与运算 代数是以字母代替数,称因变量为自变量的函数,函数有定义域和值域。——这些都是大家耳熟能详的概念。如 或; 当自变量的取值(定义域)只有0和1(非0即1)函数的取值也只有0和1(非0即1)两个数——这种代数就是逻辑代数,这种变量就是逻辑变量,这种函数就是逻辑函数。 逻辑代数,亦称布尔代数,是英国数学家乔治布尔(George Boole)于1849年创立的。在当时,这种代数纯粹是一种数学游戏,自然没有物理意义,也没有现实意义。在其诞生100多年后才发现其应用和价值。其规定: 1.所有可能出现的数只有0和1两个。 2.基本运算只有“与”、“或”、“非”三种。 与运算(逻辑与、逻辑乘)定义为(为与运算符,后用代替) 00=0 01=0 10=0 11=1 或 00=0 01=0 10=0 11=1 或运算(逻辑或、逻辑加)定义为(为或运算符,后用+代替) 00=0 01=1 10=1 11=1 或 0+0=0 0+1=1 1+0=1 1+1=1 非运算(取反)定义为:

至此布尔代数宣告诞生。 二、基本公式 如果用字母来代替数(字母的取值非0即1),根据布尔定义的三种基本运算,我们马上可推出下列基本公式: A A=A A+A=A A0=0 A+0=A A1=A A+1=1 =+= 上述公式的证明可用穷举法。如果对字母变量所有可能的取值,等式两边始终相等,该公 式即告成立。现以=+为例进行证明。对A、B两个逻辑变量,其所有可能的取值为00、01、10、11四种(不可能有第五种情况)列表如下:

由此可知: =+ 成立。 用上述方法读者很容易证明: 三、常用公式 1. 左边==右边 2. 左边==右边 例题:将下列函数化为最简与或表达式。 (公式1:) = (公式2:) ()

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

线性代数常用公式

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 (),n T A r A n A A Ax x Ax A Ax A A A E οοοββ==??≠≠≠??∈=?可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 , 0总有唯一解 是正定矩阵 R 12,s i A p p p p n B AB E AB E ?? ??? ????? ?? ??=????==?? 是初等阵 存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合n R 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=?==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的?? ?? ?????特征向量 ○注 ()()a b r aE bA n aE bA aE bA x οολ+

海伦公式的证明(精选多篇)

经典合同 海伦公式的证明 姓名:XXX 日期:XX年X月X日

海伦公式的证明 与海伦在他的著作"metrica"(《度量论》)中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为a、b、c,则余弦定理为cosc = (a^2+b^2-c^2)/2abs=1/2*ab*sinc=1/2*ab*√(1-cos^2 c)=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]=1/4*√[4a^2*b^2-(a^2 +b^2-c^2)^2]=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]=1/4* √[(a+b)^2-c^2][c^2-(a-b)^2]=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+ b+c)]设p=(a+b+c)/2则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,上式 =√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]=√[p(p-a)(p-b)(p-c)]所以,三角形abc面积s=√[p(p-a)(p-b)(p-c)] 第二篇:海伦公式的几种证明与推广 海伦公式的几种证明与推广 古镇高级中学付增德 高中数学必修⑤第一章在阅读与思考栏目向学生介绍一个非常重 要且优美的公式——海伦公式〔heron's formula〕:假设有一个三角形,边长分别为a,b,c,,三角形的面积s可由以下公式求得: s? (p?a)(p?b)(p?c),而公式里的p? 12 (a?b?c),称为半周长。 图1 第 2 页共 32 页

线性代数知识点总结

《线性代数》复习提纲第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

向量及向量的基本运算

向量及向量的基本运算 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

向量及向量的基本运算 一、教学目标:1.理解向量的有关概念,掌握向量的加法与减法、实数与向量 的积、向量的数量积及其运算法则,理解向量共线的充要条件. 2.会用向量的代数运算法则、三角形法则、平行四边形法则解决有关问题.不断培养并深化用数形结合的思想方法解题的自觉意识. 二、教学重点:向量的概念和向量的加法和减法法则. 三、教学过程: (一)主要知识: 1)向量的有关概念 ①向量:既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段 的起点与终点的大写字母表示,如:AB 。向量的大小即向量的模(长度),记作|AB |。 ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行。< 注意与0的区别> ③单位向量:模为1个单位长度的向量。 ④平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都 可以移到同一直线上。相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 ⑤相等向量:长度相等且方向相同的向量。相等向量经过平移后总可以重合, 记为b a =。 2)向量加法 ①求两个向量和的运算叫做向量的加法。设b BC a AB ==,,则 a +b =BC AB +=AC 。向量加法有“三角形法则”与“平行四边形法则”。 说 明:(1)a a a =+=+00; (2)向量加法满足交换律与结合律;

3)向量的减法 ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量。记作a -, 零向量的相反向量仍是零向量。关于相反向量有: (i ))(a --=a ; (ii) a +(a -)=(a -)+a =0 ; (iii)若a 、b 是互为相反向量,则a =b -,b =a -,a +b =0 。 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,记作:)(b a b a -+=-。求两个向量差的运算,叫做向量的减法。 b a -的作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有 共同起点)。 注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。 4)实数与向量的积 ①实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ?=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的 方向相反;当0=λ时,0 =a λ,方向是任意的。 ②数乘向量满足交换律、结合律与分配律。实数与向量的积的运算律:设λ、μ为实数,则

线性代数的基本运算

111 第5章 线性代数的基本运算 本章学习的主要目的: 1 复习线性代数中有关行列式、矩阵、矩阵初等变换、向量的线性相关性、线性方程组的求解、相似矩阵及二次型的相关知识. 2学会用MatLab 软件进行行列式的计算、矩阵的基本运算、矩阵初等变换、向量的线性相关性的判别、线性方程组的求解、二次型化标准形的运算. 5.1 行列式 5.1.1 n 阶行列式定义 由2n 个元素),,2,1,(n j i a ij 组成的记号 D=nn n n n n a a a a a a a a a 212222111211 称为n 阶行列式.其值是所有取自不同行不同列的n 个元素的乘积n np 2p 21p 1a a a 的代数和,各项的符号由n 级排列n p p p 21决定,即

112 D= ∑ -n p p p n p p p 21n np 2 p 21 p 1) 21( a a a )1(τ, 其中 ∑n p p p 21表示对所有n 级排列求和, ) ,,,(21n p p p τ是排列 n p p p 21的逆序数. 5.1.2 行列式的性质 (1) 行列式与它的转置行列式相等. (2) 互换行列式的两行(列),行列式变号. (3) 若行列式有两行(列)完全相同,则此行列式为零. (4) 行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k 乘此行列式. (5) 若行列式有两行(列)元素成比例,则此行列式为零. (6) 若行列式的某一列(行)的元素是两数的和,则此行列式等 于对应两个行列式之和.即 nn n n ni n n i i nn n n ni n n i i nn n n ni ni n n i i i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a 21'2 1 '22221 '11211212 1 22221 112 1121'2 1 '222221'111211+ =+++ (7) 若行列式的某一行(列)的各元素乘以同一数加到另一行(列)对应的元素上去,行列式不变.

线性代数---特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1221222,1 1,21,1 1,11 2 ,1 (1)2 12,11 000000 00 000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------== =- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算 ——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 00010002000199900 02000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!0199900 02000 000D ?---=-=--= 解法三:分块法 00010002000199900 02000000 002001 D = 利用分块行列式的结果可以得到

向量法证明几何命题

毕业论文 论文题目向量法证明初等几何命题 学院数学与统计学院 专业数学与应用数学 年级 2011级 学号 4 学生平 指导教师峰 完成时间 2015 年 4 月 学院教务处制

向量法证明初等几何命题 平 摘 要 本文使用向量的数量积,向量积,混合积证明一些初等几何的命题.例如,勾股定理,余弦定理,海伦公式. 关键词 初等几何;数量积;向量积;混合积 1引言 向量这个名词对于大家来说并不陌生,在高中的教材中已经接触了不少向量的容.在力学、物理学已及日常生活中,咱们常常遇到很多的量,譬如像温度、时间、质量、密度、功、长度、面积与体积等,这些量在规定的单位下,都可以由一个数来完全确定,这种只有大小的量叫做数量.其余又有一些比较复杂的量,比方像位移、力、速度、加速度等,他们不仅有大小,而且还有方向,这类量便是向量. 向量最初被应用于物理学.不少物理量如力,速度,位移一集电场强度,磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个了的组合作用可用著名的平行四边形则来得到.“向量”一词来自力学、解析几何中的有想线段.最早使用有向线段表示向量的是英国大科学家牛顿. 从数学发展历史来看,历史上很长一段时间,空间的向量结构并未被数学家们所了解,直到19世纪未20世纪初,人们才把空间的性质与向量运算关联起来,使向量成为具备一套优良运算通性的数学体制. 向量可以进入数学并得到发展,最初使用于复数的几何表示谈起.18世纪末期,挪威测量学家威塞尔初次使用坐标平面上的点来表示复数a bi +(a 、b 为有理数,且不同时等于0),把坐标平面上的点用向量表示出来,并使用拥有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并用向量的几何表示用于研究几何问题与三角问题.人们逐渐接受了复数,也学会了利用复数来表述和研究平面中的向量,向量就这样平静地投入了数学中. 因为向量法证明许多几何命题都是比较简化,所以许多命题都有向量法去证明,许多学生因为学习了向量,从而激发他们的兴趣,在许多熟悉的问题上都想向量法去证明,但他们不清楚不了解向量法的基本思路和证明技巧,不仅仅学生,甚至老师也有时候还是用比较繁琐的方法去证明初等几何命题. 本论文主要介绍向量的基本运算法则,还有对几个经典的问题进行证明,分别用一般的方法和向量法对一些初等的几何命题进行证明,然后作对比,比较一下向量法和一般的方法有什么不一样,看看哪一种方法更加简捷和实用. 2结果与讨论 2.1向量的基本运算[1] 向量的加法运算: AB BC AC +=,a b b a +=+,0a a +=,()0a a +-=,()()a b c a b c ++=++.

线性代数知识点总结

第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在;

海伦公式几种证明方法

已知三角形的三个边c b a 、、求它的面积S ,有公式))()((c p b p a p p S ---=, 其中)(21 c b a p ++=。这就是大家所熟知的“海伦公式”,在中学几何课本上一般都有介紹。人们认为这 个公式一定是海伦所首先发现,其实并不然。在一些有关数学史著作中,对此早有不同提法。海伦是古希腊的数学家,同时他还是一位优秀的测绘工程师及亚历山大学派的科学家,他对于物理学和机械学很有研究,发明了不少很有价值的机械和仪器。对于他的准确生活时代我们还不知道,大概在公元1-3世纪期间。 为何会出现海伦公式?由于当时数学的应用性得到了很大的发展,其突出的一点就是三角术的发展,三角术是由于人们想建立定量的天文学,以使用来预报天体的运行路线和位置以帮助报时,计算日历、航海和研究地理而产生的。而在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边c b a 、、直接求出三角形的面积,据说这个问题最早是由古希腊的数学家阿基米德解决的,于是他得到了海伦公式。 而本文的重点归纳研究海伦公式几种证明方式,希望这些方法对其它有关解三角形问题有一定的启发作用。 一种方法是用解三角形基本的知识解决。 已知三角形的三边为c b a 、、,设)(2 1 c b a p ++=, 求证:三角形的面积))()((c p b p a p p S ---=. 证明:由正弦定理C ab S sin 21= 可得)(C b a C b a S 2222222cos 14 1sin 41-==, 又由余弦定理2 2222222222 4)(2cos b a c b a ab c b a C -+=-+=)(,从而有 )((222222222 4141b a c b a b a S -+-=16412 22222)(c b a b a -+-= ]4[1612 22222)(c b a b a -+-= ]2(2[(161222222))c b a ab c b a ab +---++= )])(()[((1612222b a c c b a ---+=)))()()((16 1b a c b a c c b a c b a +--+-+++= 2 ) (2)(2)(2)(b a c b a c c b a c b a +-?-+?-+?++= 2 )2(2)2(2)2(2)(a b a c b b a c c c b a c b a -++?-++?-++?++=

相关主题