搜档网
当前位置:搜档网 › 2010-26-EU-欧盟新排放指令

2010-26-EU-欧盟新排放指令

2010-26-EU-欧盟新排放指令
2010-26-EU-欧盟新排放指令

DIRECTIVES

COMMISSION DIRECTIVE 2010/26/EU

of 31 March 2010

amending Directive 97/68/EC of the European Parliament and of the Council on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery

(Text with EEA relevance)

THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union,

Having regard to Directive 97/68/EC of 16 December 1997 of the European Parliament and of the Council on the approxi -mation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road mobile machinery ( 1 ), and in particular Articles 14 and 14a thereof, Whereas:

(1) Article 14a of Directive 97/68/EC sets out the criteria and the procedure for extending the period referred to in Article 9a(7) of that Directive. Studies carried out in accordance with Article 14a of Directive 97/68/EC show that there are substantial technical difficulties to comply with stage II requirements for professional use, multi- positional, hand-held mobile machinery in which engines of classes SH:2 and SH:3 are installed. It is therefore necessary to extend the period referred to in Article 9a(7) until 31 July 2013. (2) Since the amendment of Directive 97/68/EC in 2004, technical progress has been made in the design of diesel engines with a view to make them compliant with the exhaust emission limits for stages IIIB and IV. Electronically controlled engines, largely replacing me- chanically controlled fuel injection and control systems, have been developed. Therefore, the current general type- approval requirements in Annex I to Directive 97/68/EC should be adapted accordingly and general type-approval requirements for stages IIIB and IV should be introduced. (3) Annex II to Directive 97/68/EC specifies the technical details of the information documents that need to be submitted by the manufacturer to the type-approval authority with the application for engine type-approval. The details specified regarding the additional anti- pollution devices are generic and should be adapted to the specific after-treatment systems that need to be used to ensure that engines comply with exhaust emission limit stages IIIB and IV. More detailed information on the after-treatment devices installed on the engines should be submitted to enable type-approval authorities to assess the engine’s capability to comply with stages IIIB and IV.

(4) Annex III to Directive 97/68/EC sets out the method

testing the engines and determining their level of emissions of gaseous and particulate pollutants. The type-approval testing procedure of engines to demon -strate compliance with the exhaust emission limits of stage IIIB and IV should ensure that the simultaneous compliance with the gaseous (carbon monoxide, hydro -carbons, oxides of nitrogen) and the particulate emission limits is demonstrated. The non-road steady cycle (NRSC) and non-road transient cycle (NRTC) should be adapted accordingly. (5) Point 1.3.2 of Annex III to Directive 97/68/EC foresees

the modification of the symbols (section 2.18 of Annex I), the test sequence (Annex III) and calculation equations (Appendix III to Annex III), prior to the introduction of the cold/hot composite test sequence. The type approval procedure to demonstrate compliance with the exhaust emission limits of stage IIIB and IV requires the intro -duction of a detailed description of the cold start cycle. (6) Section 3.7.1 of Annex III to Directive 97/68/EC sets out the test cycle for the different equipment specifications. The test cycle under point 3.7.1.1 (specification A) needs to be adapted to clarify which engine speed needs to be used in the type approval calculation method. It is also necessary to adapt the reference to the updated version

of the international testing standard ISO 8178-4:2007.Journal of the European Union L 86/29

( 1 ) OJ L 59, 27.2.1998, p. 1.

(7) Section 4.5 of Annex III to Directive 97/68/EC outlines the emissions test run. This section needs to be adapted to take account of the cold start cycle. (8) Appendix 3 of Annex III to Directive 97/68/EC sets out the criteria for the data evaluation and calculation of the gaseous emissions and the particulate emissions, for both the NRSC test and the NRTC test set out in Annex III. The type approval of engines in accordance with stage IIIB and IV requires the adaptation of the calculation method for the NRTC test. (9) Annex XIII to Directive 97/68/EC sets out the provisions for engines placed on the market under a ‘flexible scheme’. To ensure a smooth implementation of stage IIIB, an increased use of this flexibility scheme may be needed. Therefore, the adaptation to technical progress to enable the introduction of stage IIIB compliant engines needs to be accompanied by measures to avoid that the use of the flexibility scheme may be hampered by notifi -cation requirements which are no longer adapted to the introduction of such engines. The measures should aim at simplifying the notification requirements and the reporting obligations, and at making them more focused and tailored to the need for market surveillance authorities to respond to the increased use of the flexi -bility scheme that will result from the introduction of stage IIIB. (10) Since Directive 97/68/EC provides for the type-approval of stage IIIB engines (category L) as from 1 January 2010 it is necessary to provide for the possibility to grant type approval from that date. (11) For reasons of legal certainty this Directive should enter into force as a matter of urgency. (12) The measures provided for in this Directive are in accordance with the opinion of the Committee estab -lished in Article 15(1) of Directive 97/68/EC, HAS ADOPTED THIS DIRECTIVE: Article 1 Amendments to Directive 97/68/EC Directive 97/68/EC is amended as follows: 1. in Article 9a(7), the following subparagraph is added:

‘Notwithstanding the first subparagraph, an extension of the derogation period is granted until 31 July 2013, within the category of top handle machines, for professional use, multi- positional, hand-held hedge trimmers and top handle tree service chainsaws in which engines of classes SH:2 and SH:3 are installed.’;

2. Annex I is amended in accordance with Annex I to this Directive;

3. Annex II is amended in accordance with Annex II to this Directive;

4. Annex III is amended in accordance with Annex III to this Directive;

5. Annex V is amended in accordance to Annex IV to this Directive;

6. Annex XIII is amended in accordance with Annex V to this Directive.

Article 2

Transitional provision

With effect from the day following the publication of this Directive in the Official Journal, Member States may grant type-approval in respect of electronically controlled engines which comply with the requirements laid down in Annexes I, II, III, V and XIII to Directive 97/68/EC, as amended by this Directive.

Article 3

Transposition

1. Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with the Directive within 12 months after the publication of the Directive. They shall forthwith communicate to the Commission the text of those provisions.

They shall apply those provisions from 31 March 2011.

When Member States adopt those provisions, they shall contain a reference to this Directive or be accompanied by such a reference on the occasion of their official publication. Member States shall determine how such reference is to be made.

2. Member States shall communicate to the Commission the text of the main provisions of national law which they adopt in the field covered by this Directive.

Article 4

Entry into force

This Directive shall enter into force on the day following its publication in the Official Journal of the European Union .

Article 5

Addressees

This Directive is addressed to the Member States. Done at Brussels, 31 March 2010. For the Commission The President José Manuel BARROSO

Journal of the European Union 1.4.2010

ANNEX I

The following section 8 is added to Annex I to Directive 97/68/EC:

‘8. TYPE APPROVAL REQUIREMENTS FOR STAGES IIIB AND IV

8.1. This section shall apply to the type-approval of electronically controlled engines, which uses electronic control to determine both the quantity and timing of injecting fuel (hereafter “engine”). This section shall apply irrespective of the technology applied to such engines to comply with the emission limit values set out in sections 4.1.2.5 and 4.1.2.6 of this Annex.

8.2. Definitions

For the purpose of this section, the following definitions shall apply:

8.2.1. “emission control strategy ” means a combination of an emission control system with one base emission control strategy and with one set of auxiliary emission control strategies, incorporated into the overall design of an engine or non-road mobile machinery into which the engine is installed.

8.2.2. “reagent ” means any consumable or non-recoverable medium required and used for the effective operation of the exhaust after-treatment system.

8.3. General requirements

8.3.1. Requirements for base emission control strategy

8.3.1.1. The base emission control strategy, activated throughout the speed and torque operating range of the engine, shall be designed as to enable the engine to comply with the provisions of this Directive

8.3.1.2. Any base emission control strategy that can distinguish engine operation between a standardised type approval test and other operating conditions and subsequently reduce the level of emission control when not operating under conditions substantially included in the type approval procedure is prohibited.

8.3.2. Requirements for auxiliary emission control strategy

8.3.2.1. An auxiliary emission control strategy may be used by an engine or a non-road mobile machine, provided that the auxiliary emission control strategy, when activated, modifies the base emission control strategy in response to a specific set of ambient and/or operating conditions but does not permanently reduce the effectiveness of the emission control system:

(a) where the auxiliary emission control strategy is activated during the type approval test, sections 8.3.2.2 and 8.3.2.3 shall not apply;

(b) where the auxiliary emission control strategy is not activated during the type approval test, it must be demonstrated that the auxiliary emission control strategy is active only for as long as required for the purposes identified in section 8.3.2.3.

8.3.2.2. The control conditions applicable to this section are all of the following:

(a) an altitude not exceeding 1 000 metres (or equivalent atmospheric pressure of 90 kPa);

(b) an ambient temperature within the range 275 K to 303 K (2 °C to 30 °C);

(c) the engine coolant temperature above 343 K (70 °C).

Where the auxiliary emission control strategy is activated when the engine is operating within the control conditions set out in points (a), (b) and (c), the strategy shall only be activated exceptionally.

8.3.2.3. An auxiliary emission control strategy may be activated in particular for the following purposes:

(a) by onboard signals, for protecting the engine (including air-handling device protection) and/or non-road mobile machine into which the engine is installed from damage;

(b) for operational safety and strategies;

(c) for prevention of excessive emissions, during cold start or warming-up, during

shut-down;

Journal of the European Union L 86/31

(d) if used to trade-off the control of one regulated pollutant under specific ambient or operating conditions, for maintaining control of all other regulated pollutants, within the emission limit values that are appropriate for the engine concerned. The purpose is to compensate for naturally occurring phenomena in a manner that provides acceptable control of all emission constituents.

8.3.2.4. The manufacturer shall demonstrate to the technical service at the time of the type-approval test that the operation of any auxiliary emission strategy complies with the provisions of section 8.3.2. The demonstration shall consist of an evaluation of the documentation referred to in section 8.3.3.

8.3.2.5. Any operation of an auxiliary emission control strategy not compliant with section 8.3.2 is prohibited.

8.3.3. Documentation requirements

8.3.3.1. The manufacturer shall provide an information folder accompanying the application for type-approval at the time of submission to the technical service, which ensures access to any element of design and emission control strategy and the means by which the auxiliary strategy directly or indirectly controls the output variables. The information folder shall be made available in two parts:

(a) the documentation package, annexed to the application for type-approval, shall include a full overview of the emission control strategy. Evidence shall be provided that all outputs permitted by a matrix, obtained from the range of control of the individual unit inputs, have been identified. This evidence shall be attached to the information folder as referred to in Annex II;

(b) the additional material, presented to the technical service but not annexed to the application for type- approval, shall include all the modified parameters by any auxiliary emission control strategy and the boundary conditions under which this strategy operates and in particular:

(i) a description of the control logic and of timing strategies and switch points, during all modes of operation for the fuel and other essential systems, resulting in effective emissions control (such as exhaust gas recirculation system (EGR) or reagent dosing);

(ii) a justification for the use of any auxiliary emission control strategy applied to the engine, accompanied by material and test data, demonstrating the effect on exhaust emissions. This justification may be based on test data, sound engineering analysis, or a combination of both;

(iii) a detailed description of algorithms or sensors (where applicable) used for identifying, analysing, or diagnosing incorrect operation of the NO x control system;

(iv) the tolerance used to satisfy the requirements in section 8.4.7.2, regardless of the used means.

8.3.3.2. The additional material referred to in point (b) of section 8.3.3.1 shall be treated as strictly confidential. It shall be made available to the type-approval authority on request. The type-approval authority shall treat this material as confidential.

8.4. Requirements to ensure correct operation of NO x control measures

8.4.1. The manufacturer shall provide information that fully describes the functional operational characteristics of the NO x control measures using the documents set out in section 2 of Appendix 1 to Annex II and in section 2 of Appendix 3 to Annex II.

8.4.2. If the emission control system requires a reagent, the characteristics of that reagent, including the type of reagent, information on concentration when the reagent is in solution, operational temperature conditions and reference to international standards for composition and quality must be specified by the manufacturer, in section 2.2.1.13 of Appendix 1 and in section 2.2.1.13 of Appendix 3 to Annex II.

8.4.3. The engine emission control strategy shall be operational under all environmental conditions regularly pertaining in the territory of the Community, especially at low ambient temperatures.

8.4.4. The manufacturer shall demonstrate that the emission of ammonia during the applicable emission test cycle of the type approval procedure, when a reagent is used, does not exceed a mean value of 25 ppm.

8.4.5. If separate reagent containers are installed on or connected to a non-road mobile machine, means for taking a sample of the reagent inside the containers must be included. The sampling point must be easily accessible

without requiring the use of any specialised tool or device.

L 86/32 Official Journal of the European Union 1.4.2010

8.4.6. Use and maintenance requirements

8.4.6.1. The type approval shall be made conditional, in accordance with Article 4(3), upon providing to each operator of non-road mobile machinery written instructions comprising the following:

(a) detailed warnings, explaining possible malfunctions generated by incorrect operation, use or maintenance of the installed engine, accompanied by respective rectification measures;

(b) detailed warnings on the incorrect use of the machine resulting in possible malfunctions of the engine, accompanied by respective rectification measures;

(c) information on the correct use of the reagent, accompanied by an instruction on refilling the reagent between normal maintenance intervals;

(d) a clear warning, that the type-approval certificate, issued for the type of engine concerned, is valid only when all of the following conditions are met:

(i) the engine is operated, used and maintained in accordance with the instructions provided;

(ii) prompt action has been taken for rectifying incorrect operation, use or maintenance in accordance with the rectification measures indicated by the warnings referred to in point (a) and (b);

(iii) no deliberate misuse of the engine has taken place, in particular deactivating or not maintaining an EGR or reagent dosing system.

The instructions shall be written in a clear and non-technical manner using the same language as is used in the operator’s manual on non-road mobile machinery or engine.

8.4.7. Reagent control (where applicable)

8.4.7.1. The type approval shall be made conditional, in accordance with the provisions of section 3 of Article 4, upon providing indicators or other appropriate means, according to the configuration of the non-road mobile machinery, informing the operator on:

(a) the amount of reagent remaining in the reagent storage container and by an additional specific signal, when the remaining reagent is less than 10 % of the full container’s capacity;

(b) when the reagent container becomes empty, or almost empty;

(c) when the reagent in the storage tank does not comply with the characteristics declared and recorded in section 2.2.1.13 of Appendix 1 and section 2.2.1.13 of Appendix 3 to Annex II, according to the installed means of assessment.

(d) when the dosing activity of the reagent is interrupted, in cases other than those executed by the engine ECU or the dosing controller, reacting to engine operating conditions where the dosing is not required, provided that these operating conditions are made available to the type approval authority.

8.4.7.2. By the choice of the manufacturer the requirements of reagent compliance with the declared characteristics and the associated NO x emission tolerance shall be satisfied by one of the following means:

(a) direct means, such as the use of a reagent quality sensor.

(b) indirect means, such as the use of a NO x sensor in the exhaust to evaluate reagent effectiveness.

(c) any other means, provided that its efficacy is at least equal to the one resulting by the use of the means of

points (a) or (b) and the main requirements of this section are maintained.’

Journal of the European Union L 86/33

ANNEX II

Annex II to Directive 97/68/EC is amended as follows:

1. Section 2 of Appendix 1 is replaced by the following:

‘2. MEASURES TAKEN AGAINST AIR POLLUTION

2.1. Device for recycling crankcase gases: yes/no (*) ............................................................................................................

2.2. Additional anti-pollution devices (if any, and if not covered by another heading)

2.2.1. Catalytic converter: yes/no (*)

2.2.1.1. Make(s): .......................................................................................................................................................................................

2.2.1.2. Type(s): ........................................................................................................................................................................................

2.2.1.

3. Number of catalytic converters and elements ................................................................................................................

2.2.1.4. Dimensions- and volume of the catalytic converter(s): ...............................................................................................

2.2.1.5. Type of catalytic action: ........................................................................................................................................................

2.2.1.6. Total charge of precious metals: ........................................................................................................................................

2.2.1.7. Relative concentration: ...........................................................................................................................................................

2.2.1.8. Substrate (structure and material): .....................................................................................................................................

2.2.1.9. Cell density: ...............................................................................................................................................................................

2.2.1.10. Type of casing for the catalytic converter(s): .................................................................................................................

2.2.1.11. Location of the catalytic converter(s) (place(s) and maximum/minimum distance(s) from engine): ............

2.2.1.12. Normal operating range (K): ................................................................................................................................................

2.2.1.1

3. Consumable reagent (where appropriate): .......................................................................................................................

2.2.1.1

3.1. Type and concentration of reagent needed for catalytic action: .............................................................................

2.2.1.1

3.2. Normal operational temperature range of reagent: ......................................................................................................

2.2.1.1

3.3. International standard (where appropriate): ....................................................................................................................

2.2.1.14. NO x sensor: yes/no (*)

2.2.2. Oxygen sensor: yes/no (*)

2.2.2.1. Make(s): .......................................................................................................................................................................................

2.2.2.2. Type: ............................................................................................................................................................................................

2.2.2.

3. Location: .....................................................................................................................................................................................

2.2.

3. Air injection: yes/no (*)

2.2.

3.1. Type (pulse air, air pump, etc.): .........................................................................................................................................

2.2.4. EGR: yes/no (*)

2.2.4.1. Characteristics (cooled/uncooled, high pressure/low pressure, etc.): ........................................................................

2.2.5. Particulate trap: yes/no (*)

2.2.5.1. Dimensions and capacity of the particulate trap: .........................................................................................................

2.2.5.2. Type and design of the particulate trap: .........................................................................................................................

2.2.5.

3. Location (place(s) and maximum/minimum distance(s) from engine): ..................................................................

2.2.5.4. Method or system of regeneration, description and/or drawing: ............................................................................

2.2.5.5. Normal operating temperature (K) and pressure (kPa) range: ..................................................................................

2.2.6. Other systems: yes/no (*)

2.2.6.1. Description and operation: ...................................................................................................................................................

___________

(*) Strike out what

does not apply.’

L 86/34 Official Journal of the European Union 1.4.2010

2. Section 2 of Appendix 3 is replaced by the following:

‘2. MEASURES TAKEN AGAINST AIR POLLUTION

2.1. Device for recycling crankcase gases: yes/no (*) ............................................................................................................

2.2. Additional anti-pollution devices (if any, and if not covered by another heading)

2.2.1. Catalytic converter: yes/no (*)

2.2.1.1. Make(s): .......................................................................................................................................................................................

2.2.1.2. Type(s): ........................................................................................................................................................................................

2.2.1.

3. Number of catalytic converters and elements ................................................................................................................

2.2.1.4. Dimensions- and volume of the catalytic converter(s): ...............................................................................................

2.2.1.5. Type of catalytic action: ........................................................................................................................................................

2.2.1.6. Total charge of precious metals: ........................................................................................................................................

2.2.1.7. Relative concentration: ...........................................................................................................................................................

2.2.1.8. Substrate (structure and material): .....................................................................................................................................

2.2.1.9. Cell density: ...............................................................................................................................................................................

2.2.1.10. Type of casing for the catalytic converter(s): .................................................................................................................

2.2.1.11. Location of the catalytic converter(s) (place(s) and maximum/minimum distance(s) from engine): ............

2.2.1.12. Normal operating range (K) .................................................................................................................................................

2.2.1.1

3. Consumable reagent (where appropriate): .......................................................................................................................

2.2.1.1

3.1. Type and concentration of reagent needed for catalytic action: .............................................................................

2.2.1.1

3.2. Normal operational temperature range of reagent: ......................................................................................................

2.2.1.1

3.3. International standard (where appropriate): ....................................................................................................................

2.2.1.14. NO x sensor: yes/no (*)

2.2.2. Oxygen sensor: yes/no (*)

2.2.2.1. Make(s): .......................................................................................................................................................................................

2.2.2.2. Type: ............................................................................................................................................................................................

2.2.2.

3. Location: .....................................................................................................................................................................................

2.2.

3. Air injection: yes/no (*)

2.2.

3.1. Type (pulse air, air pump, etc.): .........................................................................................................................................

2.2.4. EGR: yes/no (*)

2.2.4.1. Characteristics (cooled/uncooled, high pressure/low pressure, etc.): ........................................................................

2.2.5. Particulate trap: yes/no (*)

2.2.5.1. Dimensions and capacity of the particulate trap: .........................................................................................................

2.2.5.2. Type and design of the particulate trap: .........................................................................................................................

2.2.5.

3. Location (place(s) and maximum/minimum distance(s) from engine): ..................................................................

2.2.5.4. Method or system of regeneration, description and/or drawing: ............................................................................

2.2.5.5. Normal operating temperature (K) and pressure (kPa) range: ..................................................................................

2.2.6. Other systems: yes/no (*)

2.2.6.1. Description and operation: ...................................................................................................................................................

___________

(*) Strike out what

does not apply.’

Journal of the European Union L 86/35

ANNEX III

Annex III to Directive 97/68/EC is amended as follows:

1. Section 1.1 is replaced by the following:

‘1.1. This Annex describes the method of determining emissions of gaseous and particulate pollutants from the engine to be tested.

The following test cycles shall apply:

— the NRSC (non-road steady cycle) appropriate for the equipment specification which shall be used for the measurement of the emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and particulates for stages I, II, IIIA, IIIB and IV of engines described in points (i) and (ii) of section 1.A of Annex I, and

— the NRTC (non-road transient cycle) which shall be used for the measurement of the emissions of carbon monoxide, hydrocarbons, oxides of nitrogen and particulates for stages IIIB and IV of engines described in point (i) of section 1.A of Annex I,

— for engines intended to be used in inland waterway vessels the ISO test procedure as specified by ISO 8178- 4:2002 and IMO ( 1 ) MARPOL ( 2 ) 73/78, Annex VI (NO x Code) shall be used,

— for engines intended for propulsion of railcars an NRSC shall be used for the measurement of gaseous and particulate pollutants for stage IIIA and for stage IIIB,

— for engines intended for propulsion of locomotives an NRSC shall be used for the measurement of gaseous and particulate pollutants for stage IIIA and for stage IIIB.

___________

( 1 ) IMO: International Maritime Organisation. ( 2 ) MARPOL: International Convention for the Prevention of Pollution from Ships.’

2. Section 1.

3.2 is replaced by the following:

‘1.3.2. NRTC test

The prescribed transient test cycle, based closely on the operating conditions of diesel engines installed in non- road machinery, is run twice:

— the first time (cold start) after the engine has soaked to room temperature and the engine coolant and oil temperatures, after treatment systems and all auxiliary engine control devices are stabilised between 20 and 30 °C,

— the second time (hot start) after a twenty-minute hot soak that commences immediately after the completion of the cold start cycle.

During this test sequence the above pollutants shall be examined. The test sequence consists of a cold start cycle following natural or forced cool-down of the engine, a hot soak period and a hot start cycle, resulting in a composite emissions calculation. Using the engine torque and speed feedback signals of the engine dyna -mometer, the power shall be integrated with respect to the time of the cycle, resulting in the work produced by the engine over the cycle. The concentrations of the gaseous components shall be determined over the cycle, either in the raw exhaust gas by integration of the analyser signal in accordance with Appendix 3 to this Annex, or in the diluted exhaust gas of a CVS full-flow dilution system by integration or by bag sampling in accordance with Appendix 3 to this Annex. For particulates, a proportional sample shall be collected from the diluted exhaust gas on a specified filter by either partial flow dilution or full-flow dilution. Depending on the method used, the diluted or undiluted exhaust gas flow rate shall be determined over the cycle to calculate the mass emission values of the pollutants. The mass emission values shall be related to the engine work to give

the grams of each pollutant emitted per kilowatt-hour.

L 86/36 Official Journal of the European Union 1.4.2010

Emissions (g/kWh) shall be measured during both the cold and hot start cycles. Composite weighted emissions shall be computed by weighting the cold start results 10 % and the hot start results 90 %. Weighted composite results shall meet the limits.’

3. Section 3.7.1 is replaced by the following:

‘3.7.1. Equipment specification according to section 1.A of Annex I:

3.7.1.1. S p e c i f i c a t i o n A

For engines covered by points (i) and (iv) of section 1.A of Annex I, the following 8-mode cycle ( 1 ) shall be followed in dynamometer operation on the test engine:

(*) Reference speed is defined in section 4.3.1 of Annex III. 3.7.1.2. S p e c i f i c a t i o n B

For engines covered by point (ii) of section 1.A of Annex I, the following 5-mode cycle ( 2 ) shall be followed in dynamometer operation on the test engine:

The load figures are percentage values of the torque corresponding to the prime power rating defined as the maximum power available during a variable power sequence, which may be run for an unlimited number of hours per year, between stated maintenance intervals and under the stated ambient conditions, the main -tenance being carried out as prescribed by the manufacturer.

3.7.1.3. S p e c i f i c a t i o n C

For propulsion engines ( 3 ) intended to be used in inland waterway vessels the ISO test procedure as specified by ISO 8178-4:2002 and IMO MARPOL 73/78, Annex VI (NO x

Code) shall be used.

Journal of the European Union L 86/37

Propulsion engines that operate on a fixed-pitch propeller curve shall be tested on a dynamometer using the following 4-mode steady-state cycle ( 4 ) developed to represent in-use operation of commercial marine diesel engines.

Fixed speed inland waterway propulsion engines with variable pitch or electrically coupled propellers shall be tested on a dynamometer using the following 4-mode steady-state cycle ( 5 ) characterised by the same load and weighting factors as the above cycle, but with engine operated in each mode at rated speed:

3.7.1.

4. S p e c i f i c a t i o n D

For engines covered by point (v) of section 1.A of Annex I, the following 3-mode cycle ( 6 ) shall be followed in dynamometer operation on the test engine:

( 1 ) Identical with C1 cycle as described in paragraph 8.3.1.1 of ISO 8178-4:2007 standard (corrected version 2008-07-01). ( 2 ) Identical with D2 cycle as described in paragraph 8.4.1 of the ISO 8178-4: 2002(E) standard. ( 3 ) Constant-speed auxiliary engines must be certified to the ISO D2 duty cycle, i.e. the 5-mode steady-state cycle specified in section 3.7.1.2, while variable-speed auxiliary engines must be certified to the ISO C1 duty cycle, i.e. the 8-mode steady-state cycle specified in section 3.7.1.1. ( 4 ) Identical with E3 cycle as described in Sections 8.5.1, 8.5.2 and 8.5.3 of the ISO 8178-4: 2002(E) standard. The four modes lie on an average propeller curve based on in-use measurements. ( 5 ) Identical with E2 cycle as described in Sections 8.5.1, 8.5.2 and 8.5.3 of the ISO 8178-4: 2002(E) standard. ( 6

) Identical with F cycle of ISO 8178-4: 2002(E) standard.’

L 86/38 Official Journal of the European Union 1.4.2010

4. Section 4.3.1 is replaced by the following:

‘4.3.1. Reference speed

The reference speed (n ref ) corresponds to the 100 % normalised speed values specified in the engine dyna -mometer schedule of Appendix 4 of Annex III. The actual engine cycle resulting from denormalisation to the reference speed depends largely on selection of the proper reference speed. The reference speed shall be determined by the following formula:

n ref = low speed + 0,95 x (high speed – low speed)

(the high speed is the highest engine speed where 70 % of the rated power is delivered, while the low speed is the lowest engine speed where 50 % of the rated power is delivered).

If the measured reference speed is within +/– 3 % of the reference speed as declared by the manufacturer, the declared reference speed may be used for the emissions test. If the tolerance is exceeded, the measured reference speed shall be used for the emissions test ( 1 ).

___________

( 1 ) This is consistent with the ISO 8178-11:2006 standard.’

5. Section 4.5 is replaced by the following:

‘4.5. Emissions test run

The following flow chart outlines the test sequence:

One or more practice cycles may be run as necessary to check engine, test cell and emissions systems before

the measurement cycle.

Journal of the European Union L 86/39

4.5.1. Preparation of the sampling filters

At least one hour before the test, each filter shall be placed in a petri dish, which is protected against dust contamination and allows air exchange, and placed in a weighing chamber for stabilisation. At the end of the stabilisation period, each filter shall be weighed and the weight shall be recorded. The filter shall then be stored in a closed petri dish or sealed filter holder until needed for testing. The filter shall be used within eight hours of its removal from the weighing chamber. The tare weight shall be recorded.

4.5.2. Installation of the measuring equipment

The instrumentation and sample probes shall be installed as required. The tailpipe shall be connected to the full-flow dilution system, if used.

4.5.3. Starting the dilution system

The dilution system shall be started. The total diluted exhaust gas flow of a full-flow dilution system or the diluted exhaust gas flow through a partial flow dilution system shall be set to eliminate water condensation in the system, and to obtain a filter face temperature between 315 K (42 °C) and 325 K (52 °C).

4.5.4. Starting the particulate sampling system

The particulate sampling system shall be started and run on by-pass. The particulate background level of the dilution air may be determined by sampling the dilution air prior to entrance of the exhaust into the dilution tunnel. It is preferred that background particulate sample be collected during the transient cycle if another PM sampling system is available. Otherwise, the PM sampling system used to collect transient cycle PM can be used. If filtered dilution air is used, one measurement may be done prior to or after the test. If the dilution air is not filtered, measurements should be carried out prior to the beginning and after the end of the cycle and the values averaged.

4.5.5. Checking the analysers

The emission analysers shall be set at zero and spanned. If sample bags are used, they shall be evacuated.

4.5.6. Cool-down requirements

A natural or forced cool-down procedure may be applied. For forced cool-down, good engineering judgement shall be used to set up systems to send cooling air across the engine, to send cool oil through the engine lubrication system, to remove heat from the coolant through the engine cooling system, and to remove heat from an exhaust after-treatment system. In the case of a forced after-treatment cool down, cooling air shall not be applied until the after-treatment system has cooled below its catalytic activation temperature. Any cooling procedure that results in unrepresentative emissions is not permitted.

The cold start cycle exhaust emission test may begin after a cool-down only when the engine oil, coolant and after-treatment temperatures are stabilised between 20 °C and 30 °C for a minimum of 15 minutes.

4.5.7. Cycle run

4.5.7.1. C o l d s t a r t c y c l e

The test sequence shall commence with the cold start cycle at the completion of the cool-down when all the requirements specified in section 4.5.6 are met.

The engine shall be started according to the starting procedure recommended by the manufacturer in the owner's manual, using either a production starter motor or the dynamometer.

As soon as it is determined that the engine is started, start a “free idle” timer. Allow the engine to idle freely with no-load for 23 ± 1 s. Begin the transient engine cycle such that the first non-idle record of the cycle occurs at 23 ± 1 s. The free idle time is included in the 23 ± 1 s.

The test shall be performed according to the reference cycle as set out in Annex III, Appendix 4. Engine speed and torque command set points shall be issued at 5 Hz (10 Hz recommended) or greater. The set points shall be calculated by linear interpolation between the 1 Hz set points of the reference cycle. Feedback engine speed and torque shall be recorded at least once every second during the test cycle, and the signals may be

electronically filtered.

L 86/40 Official Journal of the European Union 1.4.2010

4.5.7.2. A n a l y s e r r e s p o n s e

At the start of the engine the measuring equipment shall be started, simultaneously:

— start collecting or analysing dilution air, if a full flow dilution system is used,

— start collecting or analysing raw or diluted exhaust gas, depending on the method used,

— start measuring the amount of diluted exhaust gas and the required temperatures and pressures,

— start recording the exhaust gas mass flow rate, if raw exhaust gas analysis is used,

— start recording the feedback data of speed and torque of the dynamometer.

If raw exhaust measurement is used, the emission concentrations (HC, CO and NO x ) and the exhaust gas mass flow rate shall be measured continuously and stored with at least 2 Hz on a computer system. All other data may be recorded with a sample rate of at least 1 Hz. For analogue analysers the response shall be recorded, and the calibration data may be applied online or offline during the data evaluation.

If a full flow dilution system is used, HC and NO x shall be measured continuously in the dilution tunnel with a frequency of at least 2 Hz. The average concentrations shall be determined by integrating the analyser signals over the test cycle. The system response time shall be no greater than 20 s, and shall be coordinated with CVS flow fluctuations and sampling time/test cycle offsets, if necessary. CO and CO 2 shall be determined by integration or by analysing the concentrations in the sample bag collected over the cycle. The concen -trations of the gaseous pollutants in the dilution air shall be determined by integration or by collection in the background bag. All other parameters that need to be measured shall be recorded with a minimum of one measurement per second (1 Hz).

4.5.7.3. P a r t i c u l a t e s a m p l i n g

At the start of the engine the particulate sampling system shall be switched from by-pass to collecting particulates.

If a partial flow dilution system is used, the sample pump(s) shall be adjusted so that the flow rate through the particulate sample probe or transfer tube is maintained proportional to the exhaust mass flow rate.

If a full flow dilution system is used, the sample pump(s) shall be adjusted so that the flow rate through the particulate sample probe or transfer tube is maintained at a value within ± 5 % of the set flow rate. If flow compensation (i.e. proportional control of sample flow) is used, it must be demonstrated that the ratio of main tunnel flow to particulate sample flow does not change by more than ± 5 % of its set value (except for the first 10 seconds of sampling).

NOTE: For double dilution operation, sample flow is the net difference between the flow rate through the sample filters and the secondary dilution airflow rate.

The average temperature and pressure at the gas meter(s) or flow instrumentation inlet shall be recorded. If the set flow rate cannot be maintained over the complete cycle (within ± 5 %) because of high particulate loading on the filter, the test shall be voided. The test shall be rerun using a lower flow rate and/or a larger diameter filter.

4.5.7.4. E n g i n e s t a l l i n g d u r i n g t h e c o l d s t a r t t e s t c y c l e

If the engine stalls anywhere during the cold start test cycle, the engine shall be preconditioned, then the cool- down procedure repeated; finally the engine shall be restarted, and the test repeated. If a malfunction occurs in any of the required test equipment during the test cycle, the test shall be voided.

4.5.7.5. O p e r a t i o n s a f t e r c o l d s t a r t c y c l e

At the completion of the cold start cycle of the test, the measurement of the exhaust gas mass flow rate, the diluted exhaust gas volume, the gas flow into the collecting bags and the particulate sample pump shall be stopped. For an integrating analyser system, sampling shall continue until system response times have elapsed.

The concentrations of the collecting bags, if used, shall be analysed as soon as possible and in any case not

later than 20 minutes after the end of the test cycle.

Journal of the European Union L 86/41

After the emission test, a zero gas and the same span gas shall be used for re-checking the analysers. The test will be considered acceptable if the difference between the pre-test and post-test results is less than 2 % of the span gas value.

The particulate filters shall be returned to the weighing chamber no later than one hour after completion of the test. They shall be conditioned in a petri dish, which is protected against dust contamination and allows air exchange, for at least one hour, and then weighed. The gross weight of the filters shall be recorded.

4.5.7.6. H o t s o a k

Immediately after the engine is turned off, the engine cooling fan(s) shall be turned off if used, as well as the CVS blower (or disconnect the exhaust system from the CVS), if used.

Allow the engine to soak for 20 ± 1 minutes. Prepare the engine and dynamometer for the hot start test. Connect evacuated sample collection bags to the dilute exhaust and dilution air sample collection systems. Start the CVS (if used or not already on) or connect the exhaust system to the CVS (if disconnected). Start the sample pumps (except the particulate sample pump(s), the engine cooling fan(s) and the data collection system.

The heat exchanger of the constant volume sampler (if used) and the heated components of any continuous sampling system(s) (if applicable) shall be preheated to their designated operating temperatures before the test begins.

Adjust the sample flow rates to the desired flow rate and set the CVS gas flow measuring devices to zero. Carefully install a clean particulate filter in each of the filter holders and install assembled filter holders in the sample flow line.

4.5.7.7. H o t s t a r t c y c l e

As soon as it is determined that the engine is started, start a “free idle” timer. Allow the engine to idle freely with no-load for 23 ± 1 s. Begin the transient engine cycle such that the first non-idle record of the cycle occurs at 23 ± 1 s. The free idle time is included in the 23 ± 1 s.

The test shall be performed according to the reference cycle as set out in Appendix 4 to Annex III. Engine speed and torque command set points shall be issued at 5 Hz (10 Hz recommended) or greater. The set points shall be calculated by linear interpolation between the 1 Hz set points of the reference cycle. Feedback engine speed and torque shall be recorded at least once every second during the test cycle, and the signals may be electronically filtered.

The procedure described in previous sections 4.5.7.2 and 4.5.7.3 shall then be repeated.

4.5.7.8. E n g i n e s t a l l i n g d u r i n g t h e h o t s t a r t c y c l e

If the engine stalls anywhere during the hot start cycle, the engine may be shut off and re-soaked for 20 minutes. The hot start cycle may then be rerun. Only one hot re-soak and hot start cycle restart is permitted.

4.5.7.9. O p e r a t i o n s a f t e r h o t s t a r t c y c l e

At the completion of the hot start cycle, the measurement of the exhaust gas mass flow rate, the diluted exhaust gas volume, the gas flow into the collecting bags and the particulate sample pump shall be stopped. For an integrating analyser system, sampling shall continue until system response times have elapsed.

The concentrations of the collecting bags, if used, shall be analysed as soon as possible and in any case not later than 20 minutes after the end of the test cycle.

After the emission test, a zero gas and the same span gas shall be used for re-checking the analysers. The test will be considered acceptable if the difference between the pre-test and post-test results is less than 2 % of the span gas value.

The particulate filters shall be returned to the weighing chamber no later than one hour after completion of the test. They shall be conditioned in a petri dish, which is protected against dust contamination and allows

air exchange, for at least one hour, and then weighed. The gross weight of the filters shall be recorded.’

L 86/42 Official Journal of the European Union 1.4.2010

6. Appendix 3 is amended as follows:

(a) Section 2.1.2.4 is replaced by the following:

‘2.1.2.4. C a l c u l a t i o n o f t h e s p e c i f i c e m i s s i o n s

The specific emissions (g/kWh) shall be calculated for each individual component in the following way:

Individual gas ? e1=10TM gas ;cold t e9=10TM gas ;hot e1=10TW act ;cold t e9=10TW act ;hot

where:

M gas,cold = total mass of gaseous pollutant over the cold start cycle (g)

M gas,hot = total mass of gaseous pollutant over the hot start cycle (g)

W act,cold actual cycle work over the cold start cycle as determined in Annex III section 4.6.2 (kWh)

W act,hot actual cycle work over the hot start cycle as determined in Annex III section 4.6.2 (kWh)’ (b) Section 2.1.3.1 is replaced by the following:

‘2.1.3.1. C a l c u l a t i o n o f m a s s e m i s s i o n

The particulate masses M PT,cold and M PT,hot (g/test) shall be calculated by either of the following methods:

(a) M PT ? M f M SAM ü M EDFW 1 000

where

M PT

M PT,cold for the cold start cycle M PT

M PT,hot for the hot start cycle M f

particulate mass sampled over the cycle (mg) M EDFW

mass of equivalent diluted exhaust gas over the cycle (kg) M SAM mass of diluted exhaust gas passing the particulate collection filters (kg)

The total mass of equivalent diluted exhaust gas mass over the cycle shall be determined as follows:

M EDFW ? X 1?n i ?1

G EDFW ;i ü 1 f G EDFW ;i ? G EXHW ;i ü q i

q i ?

G TOTW ;i TOTW ;i – G DILW ;i where

G EDFW,i = instantaneous equivalent diluted exhaust mass flow rate (kg/s)

G EXHW,i

instantaneous exhaust mass flow rate (kg/s) q i instantaneous dilution ratio G TOTW,i = instantaneous diluted exhaust mass flow rate through dilution tunnel (kg/s)

G DILW,i instantaneous dilution air mass flow rate (kg/s)

f =

data sampling rate (Hz)

n =

number of

measurements

Journal of the European Union L 86/43

(b) M PT ? M f r s ü1 000

where

M PT

M PT,cold for the cold start cycle M PT M PT,hot for the hot start cycle

M f

particulate mass sampled over the cycle (mg) r s

average sample ratio over the test cycle where r s ? M SE M EXHW ü M SAM M TOTW M SE

sampled exhaust mass over the cycle (kg) M EXHW

total exhaust mass flow over the cycle (kg) M SAM

mass of diluted exhaust gas passing the particulate collection filters (kg) M TOTW mass of diluted exhaust gas passing the dilution tunnel (kg)

NOTE : In case of the total sampling type system, M SAM and M TOTW are identical’

(c) Section 2.1.3.3 is replaced by the following:

‘2.1.3.3. C a l c u l a t i o n o f t h e s p e c i f i c e m i s s i o n s

The specific emissions (g/kWh) shall be calculated for in the following way:

PT ? e1=10TK p ;cold ü M PT ;cold t e9=10TK p ;hot ü M PT ;hot e1=10TW act ;cold t e9=10TW act ;hot

where

M PT,cold

particulate mass over the cold start cycle (g/test) M PT,hot

particulate mass over the hot start cycle (g/test) K p, cold

humidity correction factor for particulate over the cold start cycle K p, hot humidity correction factor for particulate over the hot start cycle

W act, cold actual cycle work over the cold start cycle as determined in section 4.6.2. of Annex III, (kWh)

W act, hot = actual cycle work over the hot start cycle as determined in section 4.6.2. of Annex III, (kWh)’

(d) Section 2.2.4 is replaced by the following:

‘2.2.4. Calculation of the specific emissions

The specific emissions (g/kWh) shall be calculated for each individual component in the following way:

Individual gas ? e1=10TM gas ;cold t e9=10TM gas ;hot e1=10TW act ;cold

t e9=10TW act ;hot where

M gas,cold

total mass of gaseous pollutant over the cold start cycle (g) M gas,hot total mass of gaseous pollutant over the hot start cycle (g)

W act,cold = actual cycle work over the cold start cycle as determined in section 4.6.2. of Annex III (kWh)

W act,hot =

actual cycle work over the hot start cycle as determined in section 4.6.2. of Annex III. (kWh)’

L 86/44 Official Journal of the European Union 1.4.2010

(e) Section 2.2.5.1 is replaced by the following:

‘2.2.5.1. C a l c u l a t i o n o f t h e m a s s f l o w

The particulate masses M PT,cold and M PT,hot (g/test) shall be calculated as follows:

M PT ? M f M SAM ü M TOTW 1 000

where

M PT

M PT,cold for the cold start cycle M PT

M PT,hot for the hot start cycle M f particulate mass sampled over the cycle (mg)

M TOTW

= total mass of diluted exhaust gas over the cycle as determined in section 2.2.1. (kg) M SAM = mass of diluted exhaust gas taken from the dilution tunnel for collecting particulates (kg)

and,

M f M f,p + M f,b

, if weighed separately (mg) M f,p particulate

mass collected on the primary filter (mg) M f,b particulate mass collected on the back-up filter (mg)

If a double dilution system is used, the mass of the secondary dilution air shall be subtracted from the total mass of the double diluted exhaust gas sampled through the particulate filters.

M SAM = M TOT – M SEC

where,

M TOT

mass of double diluted exhaust gas through particulate filter (kg) M SEC mass of secondary dilution air (kg) If the particulate background level of the dilution air is determined in accordance with section 4.4.4 of Annex III, the particulate mass may be background corrected. In this case, the particulate masses M PT,cold and M PT,hot

(g/test) shall be calculated as follows:

M PT

M PT,cold for the cold start cycle M PT M PT,hot for the hot start cycle

M f , M SAM , M TOTW see

above M DIL

mass of primary dilution air sampled by background particulate sampler (kg) M d = mass of the collected background particulates of the primary dilution air (mg)

DF = dilution factor as determined in section 2.2.3.1.1’

(f) Section 2.2.5.3 is replaced by the following:

‘2.2.5.3. C a l c u l a t i o n o f t h e s p e c i f i c e m i s s i o n s

The specific emissions (g/kWh) shall be calculated for in the following way:

PT ? e1=10TK p ;cold ü M PT ;cold t e9=10TK p ;hot ü M PT ;hot e1=10TW act ;cold t e9=10TW act ;

hot

Journal of the European Union L 86/45

where

M PT,cold

particulate mass over the cold start cycle of NRTC, (g/test) M PT,hot

particulate mass over the hot start cycle of NRTC, (g/test) K p, cold

humidity correction factor for particulate over the cold start cycle K p, hot humidity correction factor for particulate over the hot start cycle

W act, cold actual cycle work over the cold start cycle as determined in section 4.6.2. of Annex III, (kWh)

W act, hot = actual cycle work over the hot start cycle as determined in section 4.6.2 of Annex III,

(kWh)’

L 86/46 Official Journal of the European Union 1.4.2010

ANNEX IV

Annex V is amended as follows:

The second row of the table of the Annex, entitled ‘NON-ROAD MOBILE MACHINERY REFERENCE FUEL FOR CI ENGINES TYPE APPROVED TO MEET STAGE IIIB AND IV LIMIT VALUES’, is amended to read:

ANNEX V

Annex XIII is amended as follows:

1. Sections 1.5 and 1.6 are replaced by the following:

‘1.5. The OEM shall provide the approval authority with any information connected with the implementation of the flexibility scheme that the approval authority may request as necessary for the decision.

1.6. The OEM shall provide any requesting type approval authority in the Member States, with any information that the type approval authority requires in order to confirm that any engine claimed to be, or labelled as being, placed on the market under a flexibility scheme is properly so claimed or labelled.’

2. Section 1.7 is deleted.Journal of the European Union L 86/47

欧盟航空碳税之合法性质疑及我国法律的规制措施_1

欧盟航空碳税之合法性质疑及我国法律的规制措施 一、欧盟航空碳税的法律性质解读 欧盟征收的所谓航空碳税是与其碳排放交易机制共同发挥作用的致力于航空减排的经济手段,但欧盟所采用的总量控制下的碳交易机制与碳税共举的混合手段显示出了当今在应对气候变化方面运用经济手段的一种趋势,即“在应对气候变化的政策方面,应当更加重视价格法而不是仅依靠量化法,如总量控制与交易制度”。总量控制与税收的混合方法能够将价格法(例如碳税)和量化法(总量控制与交易制度)的优点结合在一起,因此,就当前国际社会应对气候变化的手段而言,“也许最可信的方法是补充一种带有碳税支持的量化系统一个‘总量控制与税收’(cap-and-tax)系统”。气候问题的全球性和公共性的特点要求,一个有效益的政策应当使区域之间以及国家之间减排的边际成本相等,欧盟航空碳税的征收在一定程度上能够使各航空公司的减排成本相对趋于一致,从这一点上来说其对于国际航空业的减排起到了重要的推动作用,因此可以说欧盟对于航空领域的征税存在一定合理性。但其合理性依然不能掩盖其不完全税收性质。欧盟碳税是建立在其碳排放权交易机制基础上的,目前欧盟所征收的航空碳税只是向免费配额以外的碳排放进行征税,而并不是对航空业的所有碳排放进行征税,这是否符合环境税收“双重红利”的思想还值得商榷。欧盟征收航空碳税的直接后果是航空公司运营成本的增加,而航空公司是否会将这个成本体现在机票价格中,还不得而知,“如果生

产者用涨价的办法将这个额外的成本转嫁给消费者,‘双重红利’将大部分流失”,这就使得欧盟征收航空碳税虽然有其合理性,但同时也存在弊端。 二、欧盟征收航空碳税的合法性质疑 (一)欧盟征收航空碳税违反《气候变化框架公约》 根据《气候变化框架公约》中共同但有区别责任原则的规定,发达国家缔约方应当率先对付气候变化及其不利影响。航空运输业的减排亦应根据共同但有区别责任原则制定相应的框架,即航空领域的减排亦应当从发达国家开始实施,而欧盟航空碳税并未根据这一原则区分发达国家与发展中国家的航空运输情况,而是将所有在欧盟区域内起飞和降落的飞机一视同仁都纳入其碳排放交易机制,这一做法显然是“共同”而未“区别”的。 为了履行共同但有区别责任原则,《气候变化框架公约》第四条第3款和第5款明确提出了发达国家缔约方应向发展中国家缔约方提供资金和技术,根据上述规定,欧盟致力于国际航空领域的减排,对于发展中国家其应当首先通过合作向发展中国家提供有关航空领域的减排资金和减排技术,而不是将发展中国家直接纳入其减排体系之中。欧盟航空碳税既是对履行《气候变化框架公约》承诺的否定,也忽略了发展中国家在履行《气候变化框架公约》中所应承担的主要义务。 (二)欧盟征收航空碳税违反《京都议定书》 首先,欧盟航空碳税不符合《京都议定书》解决国际民用航空温

美国玩具最新指令

美国玩具最新指令(EN71)对应欧盟(RoHS) 利用XRF快速分析检测 美国玩具最新指令(EN71)对应欧盟(RoHS) 利用XRF快速分析检 由於铅在水中非常不易溶解,具有高度防水、经久耐用、可擦洗的特性,常使在油漆涂层。碳酸铅还可以中和油漆涂层中某些油类的酸分解产品,使油漆涂层坚硬,但又有韧性、防断裂。铅可以添加到某些塑胶材料中,增加强度,甚至可以添加到黄铜当中,增加耐用性。 但铅是一种危害身体健康的有毒物质,铅对儿童及青少年来说危害更大,因儿童对铅的吸收力是成人的4到8倍,当儿童营养不良时,例如缺乏铁和钙,铅就更容易被吸收,随著血液到达脑部肾脏、骨骼,产生毒害。由於慢性铅中毒的症状和其他常见病症有许多相似处,例如肠胃不适、精神不佳、四肢无力、反应迟钝,所以很容易被忽视。但是此时,儿童100毫升血液中铅浓度,可能已经超过10微克的中毒标准。由於铅几乎是只进不出,所以它的危害可能造成儿童的智力和生长迟缓,生育能力也受影响。 下表为美国部分州最近通过的铅限制法令,此外还有许多州的类似法案仍在等待审核当中。 表1∶美国儿童产品铅限制指令整理 州 时间 指令 要求总铅限值 限制范围 Vermont (VT) 佛蒙特州 2008年10月1日 G/TBT/N/USA/339 ≤600ppm 12岁以下儿童产品的表面涂层或任何部件 2009年7月1日 ≤300ppm 2010年1月1日 ≤100ppm Connecticut (CT) 康乃狄克州 2009年7月1日 G/TBT/N/USA/372 SB 343 ≤90ppm

12岁以下儿童产品的油漆涂层 Maryland (MD) 马里兰州 2008年5月13日 G/TBT/N/USA/347 ≤600ppm 6岁以下儿童产品的表面涂层 Maine (ME) 缅因州 2009年7月1日 LD 2053 ≤90ppm 12岁以下儿童产品的任何部件 ≤600ppm 12岁以下儿童产品的油漆涂层 Indiana (IN) 印第安那州 2009年5月1日 G/TBT/N/USA/369 符合16 CFR 1303.2 任何消费品、表面涂层或包装 Washington (WA) 华盛顿州 2009年7月1日 G/TBT/N/USA/370 WAC 173-334 ≤90ppm 12岁以下儿童产品的表面涂层或任何部件 注∶CFR = 美国联邦法规汇编,ppm=百万分之一 现行玩具安全指令 其主要内容包括∶

消费者权益保护法机考在线练习标准答案

消费者权益保护法机考在线练习答案

————————————————————————————————作者:————————————————————————————————日期:

消费者权益保护法 判断题 1.在消费者权益保护理论与实践中,“消费”一词包括生产消费和生活消费()。错 2.《消费者权益保护法》明确规定,农民购买、使用用于农业生产的生产资料,参照本法执行()。错 3.我国有的地方性法规已经率先改革,将医患关系中的患者列入了消费者的行列()。对 4.在我国,单位也应纳入消费者保护的对象()。对 5.自有人类社会以来,就有生产和消费,就有现代意义上的消费者问题()。错 6.1962 年3 月15 日,美国总统罗斯福在其向国会提出的《关于保护消费利益的国情咨文》中,正式采用了“消费者权利”一词()。错 7.保护消费者权益没有地域限制()。对 8.民商法强调主体之间的平等,而消费者保护法则侧重于保护消费者,对生产经营者给以一定的限制()。对9.公平是消费者保护法最基本的价值追求()。错 10.世界上最早采用立法形式保护消费者权益的国家是法国()。对 11.第一个消费者协会是1891年在英国成立的()。错 12.美国是世界上第一个制定反垄断法的国家,典型的立法如1890年的《谢尔曼法》()。对 13.1987年法国制定《消费者利益保护法》,该法是一部消费者权益保护的基本法()。错 14.为了给各国保护消费者利益提供指导原则和示范性,联合国通过了《保护消费者准则》()。对 15.为了保护消费者利益,联合国发布了《消费者保护宪章》()。错 16.消费者权利是与消费者的特定身份相联系的,是法律赋予消费者的特权()。错 17.消费者权利是法定权利,任何人不得加以限制与剥夺,但消费者与经营者协商一致的情况除外()。错18.消费者在购买、使用商品和接受服务时享有人身、财产安全不受损害的权利。消费者有权要求经营者提供的商品和服务符合保障人身、财产安全的要求()。对 19.李某到菜市场买菜,菜农在李某挑了7棵小白菜后,称了称,说:"添两棵,凑够3斤。"菜农不顾李某反对,硬在塑料袋里塞进两棵白菜。该行为侵犯了消费者的公平交易权()。对 20.小李借用小王的电视机,结果因电视机质量不合格引起爆炸而致伤,小李不可直接请求电视机生产者或销售者赔偿()。错 21.消费者受教育的内容包括消费知识教育和消费者权益保护知识教育()。对 22.小王到商场买衣服,左挑右拣后,小王还是嫌价格太贵,转身要走。听见服务员嘀咕了一句: 没见过这般穷酸相,服务员的行为侵犯了小王的公平交易权()。错 23.消费者行使监督权的对象只能是国家机关及其工作人员()。错 24.经营者只要遵守《消费者权益保护法》中的义务即可()。错 25.经营者可以与消费者约定义务,但约定义务不得违背法律、行政法规的规定()。错 26.消费者组织是伴随着消费者运动的发展而产生、发展的()。对 27.标志着德国消费者运动开始的是1956“排除劣质火柴大会”的成立()。错 28.消费者组织既不是国家机构的一部分,也与各种党派无必然联系()。对 29.消费者合作社不是一种消费者组织()。错 30.消费者团体对消费者利益的保护作用始终是根本的、第一位的和最重要的()。对 31.中国消费者协会是我国目前唯一的一个全国性的、消费者自己的组织()。对 32.非民间化是我国消费者组织今后发展的一个方向()。对 33.电子商务的一个重要特点就是实现了信息化和无纸化()。对 34.《电子商务示范法》是目前欧盟组织第一部关于电子商务的法律()。错 35.个人信息安全问题是电子商务中所涉及到消费者权益的一个突出法律问题()。对 36.对未经他人同意,擅自公布他人隐私致人名誉受到损害的,应认定为侵害他人名誉权()。对 37.消费争议的一个重要特点就是消费争议的主体为特殊主体,这是因为受害方是消费者()。错 38.协商和解在性质上属于当事人自力救济的一种形式()。对 39.仲裁解决消费争议的特点是当事人之间必须达成有效的仲裁协议()。对

最新欧盟玩具安全指令2009-48-EC

欧盟最新玩具安全指令2009/48/EC 2009年6月30日,欧盟在官方刊物上正式发布了最新的玩具安全指令2009/48/EC,这个新指令将逐步取代旧版的88/378/EEC指令,成为管控欧盟玩具安全的主要指令。 比较旧指令,新指令2009/48/EC在以下五个方面作出了更新: 新指令针对工厂的新要求: 1.工厂应该对产品可能存在的化学、物理、机械、电、阻燃性能、卫生以及放射方面的危险 进行分析。 2.通过CE符合性声明,工厂应该承担玩具符合各项要求的责任。(CE符合性声明应该声明 符合所有相关安全要求) 3.技术文件: ●设计及加工的详细描述,包括组件及所用材料清单,及所使用的化学物质的安全数据 表; ●执行过的安全评估; ●符合性评估程序的描述; ●CE符合性声明的复印件; ●生产及储存的地址; ●CE证书以及工厂递交给通报机构(NB)文件的复印件(如果工厂进行过CE认证) ●测试报告以及有关工厂确保产品符合相关协调标准的方法的描述; 新指令针对玩具物理及机械性能的新要求: 1.食品中的玩具或者跟食品混合在一起的玩具必须要独立包装。 2.在享用食物时跟食物紧紧相连的玩具是被禁止的。(即为了要得到玩具而需首先吃掉上面的 食物,这种设计是被禁止的。) 新指令针对玩具化学性能的新要求: 1.致癌物质、诱导有机体突变的物质或者对生殖有害的物质不允许被用于玩具、玩具部件和 玩具微观机构中。 2.亚硝胺以及亚硝胺化合物被禁止用于三岁以下儿童的玩具中以及倾向被放到嘴里的其它玩 具。 3.玩具不应含有如右表中的过敏性香料: List A

4.在玩具或部件中以下过敏性香料浓度超过100ppm,其名字应标注在玩具、标签、包装或附 带的宣传单上。 List B

欧盟强征航空航海碳税背后的绿色贸易壁垒_徐岭

欧盟强征航空航海碳税背后的绿色贸易壁垒 徐 岭周珂 摘 要:目前,欧盟虽然承诺将“有条件暂停”部分法规,并愿意通过谈判就征收航空碳税修改此前推出的一 揽子规定,但同时又提出今年6月将新增“航海碳税” ,制定全球航空和航海运输行业碳排放的征收价目表。欧盟做法的本质是环保外衣包裹的绿色贸易壁垒,推行符合自身利益和发展的碳排放交易体系。对此,我国一方面要加强国际社会磋商,积极参与构建公平、公正、合理的全球性气候变化解决机制;另一方面,要实施绿色经济低碳发展,提升企业行业自身素质;因此要加强碳交易市场的研究、试点和总结,为构建我国自身的碳交易体系做实践和立法的储备。 一、欧盟强征航空航海碳税行为的合法性分析 关于欧盟强征碳税是否合法,目前存在两种意见。反对者认为,这种单边行为是违反国际法的。其一,违反了《国际民用航空公约》(芝加哥公约)的序言(…并使国际航空业务建立在机会均等的基础上,健康和经济的经营)和第一条(各缔约国承认每一国家对其领土之上的空域具有完全的和排他的主权);其二,违反了《京都议定书》第2条第2款(附件一所列缔约方应分别通过国际民用航空组织和国际海事组织作出努力,谋求限制或减少航空和航海舱载燃料产生的《蒙特利尔议定书》未予管制的温室气体的排放);其三,违反了《联合国气候变化框架公约》和《京都议定书》规定的“共同但有区别的责任原则” 。支持者,如欧洲法院,于2011年12月宣布欧盟相关条例并不违反国际法。原因是该条例只涉及到在欧盟领域降落和起飞的航班,而起飞和降落本身就构成欧盟管辖权的基础。此外,相关的国际公约也并不禁止此类市场化的措施。 针对“共同但有区别的责任”原则,欧洲法院并未作出回应,原因是美国本身是附件1国家, 并不涉及这个问题。从这个角度讲,如果发展中国家的行业协会和企业诉欧盟违法,欧洲法院想要维护欧盟并不会这样轻松。因此,众多发展中国家的行业协会和相关企业也应积极行动起来,拿起法律武器维护自身权益。由于发展中国家和发达国家的诉求并不完全一致,所以美国败诉并不意味着其他国家必然败诉。另外 ,“起飞和降落本身构成欧盟管辖权的基础”这一说辞看似合理,事实上是做了技术处理的文字游戏。表现在,欧洲法院根本就没能针对欧盟据全程碳排放收费做出合理解释。据此可以判定,欧盟针对民航强征碳税,尤其是在遭到广大国家反对的情况下,不仅不积极对话谈判,还变本加厉,进而拟将国际海航在2012年6月份也纳入其碳管制范围,是违反国际法的一厢情愿的单边行径。 二、欧盟强征航空航海碳税行为分析 既然强征航空航海碳税的主要原因是由于国际气候谈判推进艰难,曾被寄予厚望的国际减排机制《京都议定书》命运多厄。在美国、加拿大相继退出《京都议定书》 ,日本、俄罗斯先后宣布不再参加《京都议定书》第二承诺期减排的时代背景下,尚留在《京都议定书》框架内的欧盟的

国外网络消费者权益保护相关立法经验及启示

国外网络消费者权益保护相关立法经验及启示 摘要:电子商务的发展开始于美国及欧洲等国家和地区,而这些国家和地区也 比较早地对电子商务发展立法和制度进行设计。因此研究国外的有关立法状况, 对我国网络交易过程中相关制度的设立具有很强的借鉴作用。 关键词:网络消费;消费者;权益保护 一、国外网络消费者权益保护相关立法经验 电子商务的发展开始于美国及欧洲等国家和地区,而这些国家和地区也比 较早地对电子商务发展立法和制度进行设计。因此研究国外的有关立法状况,对 我国网络交易过程中相关制度的设立具有很强的借鉴作用。 1.美国的相关立法 在电子商务发展过程中,无论是电子商务交易总额还是在全球电子商务中 的占比,美国毫无疑问走在了全世界的前列,也相应催生了美国在电子商务方面 的立法。美国的电子商务立法,各州的立法行动成为美国立法的先导,1995年犹他州颁布的《电子签名法》成为全世界范围内第一部电子商务行业的法律文件; 美国在1991年9月1日发布了《高性能计算机法规网络案》,奠定了美国电子 商务发展的基础,1997年7月,又出台了《全球电子商务纲要》,主导制定相关的电子商务法。美国积极参与国际电子商务立法,在1998年5月,向联合国贸 法会提交了《国际电子交易公约(建议草案)》;1999年7月,美国非官方三百域名法学专家组成的“全美通用州立法委员会”研究通过了《统一电子交易法》。 由于在美国商法的制定权属于各州,各州对是否适用《统一计算机信息交易法》 需要表决,所以美国五十余各州按照立法历程统一适用该法,需要历经很长时间。 该法适用于创制、生成、发送、传播、接收或存储的电子记录或电子签名;同时此法令禁止在合同中存在隐藏或含糊不清的条款,并禁止强迫消费者进行电 子商务交易。针对消费者个人数据信息的保护,该法案也有涉及,电子商务经营 者通过交易收集到的消费者个人的姓名、地址、通讯方式、消费内容等隐私信息 要严格进行保密;该法明确了消费者信息一旦被泄露,可供选择的投诉机构和渠道。不过此法从适用中看,对网络经营组织的利益保护较大,但是此法案的颁布 对美国电子商务的立法推动了一大步,亦成为美国调整电子商务的基本法。之后 在2000年6月30日,美国联邦政府和国会以此为基础研究并颁布了《全球及国 家商务电子签名法》,建立了在电子商务活动中使用电子文件和电子签名的法律 依据。 2.欧盟的相关立法或政策 在全球电子商务的发展浪潮中欧盟紧随美国之后,自1997年以来颁布了有 关电子商务的一系列法律文。1997年4月欧盟委员会提出了著名的《欧洲电子商务行动方案》,该方案规定了信息基础设施、管理框架及电子商务等方面的活动 原则,从宏观的角度看待电子商务的发展,为规范欧洲电商活动制定了框架。2000年3月欧盟委员会提起了一项“电子欧洲”(e—Europe)的行动方案,成为一个 增加欧洲公民网络介入及获得信息社会服务机会的策略,其目的是保证欧盟所有 成员国可以从信息社会变化过程中得到受益。2000年5月4日欧洲议会通过了《电子商务指令》,该指令全面规范了关于发展电子商务的市场、电子交易和电 子商务服务提供者的相关责任等问题,是欧盟电子商务发展的核心内容,它指明

2009-48-EC欧盟玩具新指令解读

2009/48/EC解读 欧盟玩具安全新指令2009/48/EC于2009年6月30日发布,2009年7月20日生效,2011年7月20日开始部分作废现行的指令88/378/EEC,而且新的化学要求将于2013年7月开始生效。 新指令出台的背景 旧版欧盟玩具安全指令88/378/EEC,自1988年颁布以来,在保证欧盟市场玩具安全和消除成员国之间贸易壁垒方面取得了巨大成就。然而,随着时代的变迁,该指令的不足之处日渐暴露,如安全性要求需进一步提高、指令实施的效率不高、范围和概念不够清晰等。并且市场上的玩具使用了越来越多的新材料。于是2003年,欧盟开始考虑对其进行修订,并广泛征集公众意见。2008年1月25日欧盟发布了指令修改提案COM(2008)9。2008年12 月18日欧洲议会通过了该提案,2009年6月18日正式文本通过,最终于2009年6月30日在欧盟《官方公报》上刊登,新指令的编号为2009/48/EC。 新指令发布之后,各成员国于18个月之内,即2011年1月20日之前将其转换为本国法律。此外,新指令还设定了2年的过渡期,即符合旧指令要求的产品于2011年7月20日之前可以继续投放市场;而其中化学要求条款的过渡期则是4年,即符合旧指令中化学要求、而不符合新指令中化学要求的产品,可以于2013年7月20日之前继续投放市场。 新指令的改变: “玩具”范围及定义:设计为或用于为14岁以下儿童玩耍使用的产品,无论是否专门用于玩耍的产品,原文如下: This Directive shall apply to products designed or intended, whether or not exclusively, for use in play by children under 14 years of age. 对各个经济运作实体的要求: 1、制造商: A、保证玩具设计符合欧盟规定的玩具基本安全要求和特别安全要求 B、制定产品档案(Product File/Technical Document)和实施符合性评估程序(即进行符合性评估/安全评估)。当产品评估结果合格时,制定EC符合性声明

欧盟碳排放交易体系的核心制度分析

一、前言 工业革命以来,人类生产生活处在对化石能源高度依赖的状态,温室气体排放量骤增,对全球气候造成了严重的负面影响。减少温室气体排放,共同应对气候变化已成为全球共识。目前,控制温室气体排放的手段大致可以分为直接管制、碳税和碳排放权交易三种,各有优劣。管制手段简单直接,但实施阻力大,监管困难,管理成本高昂;碳税实施较为简单,但最优税率难以确定,增加税种存在立法障碍;碳排放交易则最大程度上利用了市场机制,为企业减排提供了一定的灵活性和可持续的激励,可以以最低的成本实现社会总体减排目标,有利于提高资源的配置效率,且对调整产业结构、促进地区经济低碳化发展具有明显促进作用。欧盟的碳排放交易体系是世界上启动最早、覆盖范围最广的跨国性碳排放交易体系,也是欧盟实现温室气体减排目标的最重要政策工具,在欧盟气候政策中占据核心地位。2005年1月1日起正式成功运行实施,将排污权交易制度成功的转化成跨国性的应用实践,在全球范围内引起了高度关注,具有全球性的研究价值。 二、欧盟碳排放交易体系的核心制度研究 欧盟碳排放交易体系的核心是对温室气体的排放实施总量控制量控制规定了体系内所涵盖的设施可排放的温室气体最高限度,创造了碳排放配额的稀缺性,从而建立起了碳排放权交易市场。在总量控制之下,欧盟为所覆盖的市场主体分配碳排放配额,市场主体可以根据需要出售和购买配额。截止目前,欧盟碳排放交易体系共经历了三个实施阶段,在具体的实践过程中,欧盟的碳排放交易体系得到不断完善,形成了以监测、报告与核查,总量控制的配额分配,交易机制与市场监管,履约与处罚为核心交易体制。 (一)监测、报告与核查制度 基于设施的温室气体排放数据是欧盟碳排放交易体系的核心与关键基础数据的可获取性和质量将直接影响交易的运行效果及减排目标的实现。为了获取精准的基于设施的排放统计数据,欧盟颁布了2003/87/EC号指令明确了实施排放监测、报告与核查的制度,并于2004年1月会发布了第一阶段温室气体排放监测与报告指南,规定了化石燃料燃烧以及炼油、烧焦、矿石缎烧、钢铁、水泥、石灰、玻璃、陶瓷及造纸共9种生产活动的核算方法及报告规则,为欧盟碳排放交易第一阶段的成功实施奠定了数据基础。结合第一阶段的实施效果和运行经验,欧盟委员会对原有排放监测与报告指南进行了修改完善,发布了第二阶段的监测与报告指南。在第二阶段的实施过程中,对其进行了两次修正,分别加人了氮氧化物以及航空排放的监测和报告方法。在第二阶段的实践和探索基础上,欧盟进一步加强对该制度的重视程度,将原先实施的法律依据由指南上升为法规,新法规对数据的等级做出了更清晰的要求,制度所采取的方法更为科学,增加了受监测的温室气体种类,强调了监测计划作为企业核算、报告与第三方核查主要依据的重要性。 从检测、报告与核查流程来看,设施运营者定期提交监测计划和年度排放报告。其中,监测计划涵盖的主要内容有:实体的基本信息、排放的计算方法描述或者测量方法描述、数据源等信息,主管部门负责核准并监测提交的监测计划,确保监测计划如期执行;提交的年度排放报告经过第三方核查机构的核查后进行公开,第三方核查的内容包括活动水平数据、排放因子的选择、计算排放总量的方法、测量方法的选择和实施等,所有信息和数据需具有高度的可靠性、可信度、准确度才能被核准,若报告没有核准,配额将不能用于交易。

国际消费者保护法:一个新的特殊国际法部门

摘要:20世纪以来不断增强的全球化促使跨国经济和消费交往成为一种普遍现象,推动各国消费者保护立法的国际统一化运动蓬勃发展,以国际消费关系为调整对象的国际消费者保护法应运而生。国际消费者保护法以国际消费者保护条约为主要渊源、以国际消费者组织联盟与区域性消费者保护组织等国际组织为国际协调与合作的法律形式,构建了一种新的国际法律秩序。国际消费者保护法作为国际法的一个新的特殊部门,既有一般国际法的共性,又有特殊的构成要素,是国际法发展的必然结果,并为现代国际法增添了新的“成员”。 关键词:国际消费者保护法;国际消费关系;国际法新部门 从资本主义自由竞争到垄断产生了系列性的消费者保护问题,并引发对传统法律制度的冲击与思考,由此产生了消费者权益保护的各种理论和各国声势浩大的消费者保护运动。“二战”后不断增强的全球化趋势促进了世界经济的一体化和世界共同市场的形成,并导致纷繁复杂的国际消费纠纷。这就为各国消费者保护法提供了系统发展的机会,直接推动了消费者保护法在全世界的蓬勃发展。许多国家通过不同形式制定了消费者保护法,大部分国际性组织也将促进消费者保护作为自己的任务之一。从此各国消费者运动越过边境,并发展成波澜壮阔的国际消费者保护统一化运动。各国为公正合理地解决国际消费纠纷不得不寻求国际合作,一系列的国际条约、国际性准则和区域性条约以及双边协定应运而生。这一切都为国际消费者保护法的产生提供了理论依据和实践基础。一、国际消费者保护法形成与发展的标志历史表明,凡是在人类建立了政治或社会组织

的地方,他们都力图防止出现不可控制的混乱现象,也曾试图确立某种适于生存的秩序形式。这种要求确立社会生活有序模式的倾向,绝不是人类所作的一种任意专断的或者“违背自然”的努力。“二战”后不断增强的各国消费者保护法律规范的趋同化走势,推动了消费者保护法律制度的国际统一化运动,经过近70年的发展,现今已经形成消费者保护领域的一种国际法律秩序,我们可以把这种国际法律秩序称之为“国际消费者保护法”。每个社会甚至每个集团,需要某种方法来解决争端和执行基本准则,更需要某种机制来更改准则使其适应新的发展变化。国际消费者保护法作为现代国际法中新的特殊国际法部门之一已经形成。(一)以全球性或区域性消费者保护条约为主要渊源的国际消费者保护法律体系已经形成截止2019年12月31日的统计,全球性或区域性的消费者保护条约已经达到60多个,这些条约中有保护航空旅行消费者权益的1929年《统一国际航空运输某些规则的公约》(《华沙公约》、1955年《海牙议定书》、1961年《瓜达拉哈拉公约》、1999年《蒙特利尔公约》,有规定跨国消费纠纷案件的法律适用规则,侧重保护消费者权益的1973年海牙《产品责任法律适用公约》, 有关注国际旅游业发展及其经济和社会作用,着重解决损害旅游消费者权益问题,保护国际旅游消费者正当权益的1970年《国际旅行合同公约》, 有督促各国政府履行其消费者保护义务,规定了一套国际性组织的基本目标,特别是为发展中国家或新独立国家的政府设计加强消费者保护的政策和立法,很大程度上影响了统一国际消费者保护立法的1985年《联合国消费者保护准则》, 有大力推动国际消费者保护立法的统一化进程,制定可持续消费的原则、规则和政策,强化国际消费者保护的1998年《联合国消费者保护和可持续消费准则》, 还有反映科学技术发展最新水平和当代国际社会现实,强调电子商务中消费者有关数据电文

欧洲玩具安全标准EN71有关标志的要求

欧洲玩具安全标准EN71有关标志的要求 CE标识用符号图示 EN71第七部分指出了到欧洲的玩具,要求制造商或其授权代表或欧共体进口商应以显眼、易读易懂和不易擦去的方式将其名称和/或商标和/或标记和地址加贴在玩具或其包装上,同时加贴 CE标记作为推测其产品符合上述指令的基本安全要求的声明。 (1)字母的垂直高度不少于5mm; (2)CE字母呈半圆形; (3)"C"字母的内圆与"E"字母的外圆相切; (4)"C"字母的外圆与"E"字母的内圆相切。 EN71-1998 指出了对不适合3岁以下儿童使用但可能对3岁以下儿童有危险的玩具应加贴年龄警告标识。警告标识可用文字说明或图示符号,如果使用警告说明,它必须符合EN71 Part 1的要求,无论是用英文或是用其他国家的语言文字都必须清晰地显示警示语。警告说明例如:"

不适合36个月以下儿童"或"不适合3岁以下儿童"应同时附有简要的说明,指出需要限制的特定危险,如:由于含有小部件。而且它应该清晰地显示在玩具本身、包装或玩具说明书上。 年龄警告无论是符号还是文字,均应出现在玩具上或其零售包装上。年龄警告在产品出售处必须清楚易读。为了使消费者熟悉标准中指定符号,年龄警告图示符号和文字内容应一致。EN71-1998第六部分对符号的设计指出具体要求如下: (1)圆圈及中间的一斜线为红色; (2)背景为白色; (3)年龄范围和面部轮廓颜色为黑色; (4)符号直径至少为10mm,或按包装大小比例扩大,如图所示; (5)玩具不适合的年龄范围用年为单位表示,如0-3。

[资料]玩具包装上的标识 ·CE标识 这可能是我们最经常见到一个标识了。这个标识称为“CE安全合格标识”,简称“CE标识”(英文作:CE Marking),是欧洲经济共同体(简称欧共体)——如今成为欧洲联盟(简称欧盟)——最早发起实施对产品实行的一种标识,用它证明产品符合欧盟发布的相关指令的安全要求。CE 标识的“安全”范畴包涵4个方面的内容,即是:对使用者(人),宠物(家畜家禽),财产(物业),及环境(自然环境)的安全。 CE标识是是一个28个欧洲国家强制性地要求产品必须携带的安全标志,这28个国家分别是:2004年5月1日前已有的15个欧盟成员国:Austria 奥地利, Belgium 比利时, Denmark 丹麦, Finland 芬兰, France 法国, Germany 德国, Greece 希腊, Ireland 爱尔兰, Italy 意大利, Luxemburg 卢森堡, the Netherlands 荷兰, Portugal 葡萄牙, Spain 西班牙, Sweden 瑞典, United Kingdom (Great Britain) 英国; 2004年5月1日加入欧盟的10个新成员国:Estonia 爱沙尼亚, Latvia 拉脱维亚, Lithuania 立陶宛, Poland 波兰, Czech Republic 捷克, Slovakia 斯洛伐克, Hungary 匈牙利, Slovenia 斯 洛文尼亚, Malta 马耳他, Cyprus 塞浦路斯; 欧洲自由贸易协会EFTA 的共4个成员国中除瑞士以外的其它3个成员国: Iceland 冰岛, Liechtenstein 列支敦士登, Norway 挪威。 CE标识的英文曾使用“EC(European Conformity)Mark”,但在1993年7月22日发表的欧盟产品指令Product Directive 第93/68/EEC号中正式使用“CE Marking”取代“EC Mark”。至今,“CE Marking”一直是欧盟文件中使用的官方术语。CE标识是欧盟特有的一个强制性的产品标记。

欧盟“航空碳税”之争与应对检讨

欧盟“航空碳税”之争与应对检讨 [摘要]欧盟“航空碳税”是国际贸易法领域中的一个重大事件,围绕其所引发的争议,不会因该法案暂缓实施而停止。各国因欧盟“航空碳税”展开争议的实质,表面上是合法性和正当性之争,其实是围绕环境保护与贸易政策如何协调以及机制构建的争辩。从日益强烈的国际环境保护呼声和逐渐严格的国际环境保护制度的发展趋势来看,中国应当顺势而为,谨慎采用诉讼方式,积极参与多边国际协调,理性动用贸易报复手段,平心对待航空碳税政策,以切实树立负责任大国的形象。 [关键词]欧盟;航空碳税;应对检讨;建议 一、绪论 2008年11月,欧洲议会和欧盟委员会通过了将国际航空业纳入欧盟碳排放交易体系(European Union Emis-sions Trading Scheme,简称EUETS或ETS)的法案,规定从2012年1月1日起,全球任何一家航空公司在欧盟境内机场起降,其航线全程排放的二氧化碳都将被纳入EU-ETS。所有进出欧盟的航班必须将温室气体排放比2004-2006年的水平降低3%,到2013年降低5%,否则就需要通过购买碳额度来弥补差距,违者会被给予罚款、禁运等处罚p 欧盟“航空碳税”是国际贸易法领域中的一个重大事件,它标志着区域性的碳排放贸易政策在国际范围内普遍适用的可能性,这一贸易政策对既有的多边贸易体制、国际减排规则以及国际贸易本身都将产生实质性的影响。因此,从国际法层面对欧盟“航空碳税”进行梳理和剖析,并藉此提出政策建议,显得十分必要和有价值。 二、欧盟“航空碳税”争议的焦点 当前,非欧盟国家及其国际航空公司反对欧盟实施“航空碳税”的理由,可以归结为如下三点: 第一,“航空碳税”是否违反了“共同但有区别的责任”的气候谈判国际规则。欧盟在实施该管制措施时是否应当将发达国家与发展中国家的航空公司区别对待,不加区别地要求他们接受同等的减排要求违反了该原则,构成了对发展中国家航空公司的歧视和不公。 第二,“航空碳税”是否违反了国际航空规则。欧盟决定将对在欧盟境内机场起降的国际航空公司全程航线排放的二氧化碳纳入EUETS,实际上是将在欧盟境内机场起降的外国国际航空公司在其本国、飞经的其他国家以及国际公海空域内的飞行也纳入了欧盟的管辖范围,这是否就侵犯了《芝加哥协议》规定的每个缔约国仅对本国领土之上的空气空间享有排他管辖权的国际航空规则。 第三,“航空碳税”是否违反了世界贸易组织规则。欧盟“航空碳税”是否违反

2017年消费者权益保护法知识竞赛试题及参考答案

2017年消费者权益保护法知识竞赛试题及参考答案 一、单项选择题(在A、B、C、D四个选项中只有一个是正确答案,选出正确答案填在括号里) 1、消费者为( )消费需要购买,使用商品或接受服务,其权益受《消费者权益保护法》保护。 A 生产B生活C生产和生活D个人 答案:B 2、经营者提供商品或服务,应向消费者出具购货凭证或服务单据;消费者索要购货凭证或服务单据的,经营者()出具。 A必须B不一定C可以D视具体情况 答案:A 3、《消法》是()实施的 A1993年10月31日B1993年1月1日 C1994年10月31日D1994年1月1日 答案:D 4、《消法》中,消费者的消费客体是()。 A生活消费B商品C服务D商品和服务 答案:D 5、经营者对行政处罚决定不服的,可以自收到处罚决定书之日起()内向上一级机关申请复议。 A15日B30日C60日D90日 答案:C 6、经营者对商品或者服务作引人误解的虚假宣传的,处以非法所得()的罚款。 A一倍以上三倍以下B一倍以上五倍以下 C一们以上十倍以下D一倍以上三十倍以下 答案:B

7、经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或者接受服务的费用的() A一倍B二倍C三倍D五倍 答案:A 8、对国家规定或者经营者与消费者约定包修、包换、包退的商品,经营者应当负责修理,更换或者退货,保修期内()修理仍不能正常使用的,经营者应当负责更换或者退货。 A一次B二次C三次D四次 答案:B 9、经营者以邮购方式提供商品,应当按照约定提供。未按照约定提供的,应当按照消费者的要求履行约定或者()。 A退回货款B承担消费者支付的所有费用 C赔礼道歉D依法追究刑事责任 答案:A 10、依法经()认定为不合格的商品,消费者要求退货的,经营者应当负责退货。 A消费者协会B 法院C行业协会D有关行政部门 答案:D 11、消费者购买法律禁止购买、使用的商品引起纠纷的()《消法》调整范围。 A不属于B属于C部分属于D部分不属于 答案:A 12、消费者协会是对商品和服务进行社会监督的保护消费者合法权益的()。 A行政机关B行业协会C社会团体D群众组织 答案:C 13、《消法》赋予消费者协会()项职能。 A七项B五项C九项D十项 答案:A 14、消费者因经营者利用虚假广告提供商品或者服务,其合法权益受到损害,可以向()要求赔偿。

2021年消费者权益保护试题含答案五

一、单选题 1.英国于国际金融危机后对金融监管框架做了大幅度调整,成立了三个新监管主体。以下哪一个不属于新监管主体?( C ) A.金融政策委员会,B审慎监管局,C金融服务监管局,D金融行为监管局。 第18页 2.银行办理假币收缴业务的工作人员应当取得( C ) A.《假币收缴资格证书》 B 《假币真伪鉴定资格证书》 C 《反假货币上岗资格证书》 D《反假币岗位从业资格证书》 第41页 3.在个人贷款业务中,银行应按( C )约定,向消费者发放借款。 A 贷款合同 B融资合同 C借款合同 D租赁合同。 第81页 4.对于委托单位指令错误造成的收付错漏,银行有权要求(A )联系纠正,消除影响并承担相关经济及法律责任。 A委托单位 B客户 C受托方 D委托单位和受托方。 第100页 5.在办理代收代付业务时,消费者要提高风险防范意识,不要相信陌生电话,短信,遇有疑问,应向(D )进行咨询 A委托单位 B监管部门 C受托方D银行或委托收付单位。 第100页 6按银行经营模式不同,贵金属业务可分为( C )两大类 A单位和捆绑销售 B自发行和联名发行C自营和代理 D实物销售和衍生品第164页 7银行有义务提示消费者金融产品蕴含的风险,对于外汇产品,相关风险包括( D ) A汇率风险 B信用风险 C国家风险D以上全部 第174页 8.改进银行业服务质量,提高金融稳定能力,提升公众金融素质,支持行业发展,赢得社会尊重是银行业消费者权益保护的(D ) A工作准则 B最高目标 C工作纲领D工作目标 第24页 9在消费者投诉处置过程中,中国银监会( D )负责消费者投诉的接诉工作。 A纪检部门 B派出机构 C消费者权益保护部门D办公厅信访部第26页 10.银行业金融机构应当加强产品和服务信息的披露,在产品和服务推介过程中合理(B ),以便银行业消费者根据相关信息做出合理判断。 A安排营销人员B揭示产品风险 C设计营销话术 D印刷宣传品 11.银行如果在其产品合同中制定规避义务和违反公平的条款,将会损害银行消费者的(C ) A 知情权 B选择权 C公平交易权 D监督权 12.20世纪60年代以来,美国信用交易规模迅速扩大,( D )日益成为美国消费者的主要消费模式。 A现金消费 B刷卡消费 C投资消费 D信贷消费。

欧盟碳市场进展分析及对我国的启示

欧盟碳市场进展分析及对我国的启示 作者:张敏思、范迪、窦勇时间:2014-02-12 10:36:43 欧盟碳排放交易体系(EU ETS)是当今全球最大、运行时间最长的碳排放交易市场。自2013年开始,EU ETS进入第三阶段,但目前由于种种主客观存在的因素,导致该体系在运行上出现了一系列问题。本文将对这些问题进行分析,并为我国开展碳排放权交易工作提出相关建议。 一、背景 欧盟碳排放交易体系(EU ETS)涵盖了欧盟以及挪威、冰岛、列支敦士登共31个国家超过1.1万个重点用能设施,涉及行业包括电力和热力生产、炼油、炼焦、钢铁、水泥、玻璃、陶瓷、造纸、化工、石化、合成氨、有色金属和炼铝等能源密集型行业以及航空业,其温室气体排放约占欧盟温室气体排放总量的45%。 EU ETS自2005年实施以来已运行9年,2013年进入第三阶段。近几年,欧盟排放配额(EUA)交易量总体保持了稳步增长态势,从2005年的9400万吨二氧化碳当量增长到2012年的79亿吨二氧化碳当量(见图1)1[1],2013年达到87亿吨二氧化碳当量2[2],约占全球的86%。在交易额方面,2005 -2011年保持了较快的增长趋势,2011年达到780亿欧元,之后开始下滑,2012年和2013年分别约为560亿欧元和360亿欧元3[3]。在价格方面,2008-2012年期间,EUA年平均价格分别约为22、12、13、12和7欧元,呈下降趋势,2013年更是跌至5欧元以下。 1[1]数据来源:http://ec.europa.eu/clima/publications/docs/factsheet_ets_en.pdf 2[2]彭博新能源财经(BNEF),“V alue of the World’s Carbon Markets to Rise Again in 2014”,2014年1月。3[3] 2013年交易额数据来自Point carbon统计,“Global carbon market contracts 38% as prices and volumes drop”,2014年1月。

欧盟经济法概论基本内容

欧盟经济法概论基本内容 目录 欧盟经济法概论基本内容 (1) 第一章 导论 (2) 第一节 欧盟经济法的重要性 (2) 第二节 欧盟经济法的概念 (2) 第二章 欧盟经济法的法律渊源 (4) 第一节 欧盟发展历史上的主要条约 (5) 第二节 欧洲内部市场法 (6) 第三节 内部市场的对外法律(欧洲对外经济法) (10) 第四节 国际内部市场法 (12) 第五节 课程相关法律文件查询 (14) 第三章 欧盟经济法的参与人 (15) 第一节 立法和执法机构 (15) 第二节 欧盟经济法的适用对象(Adressaten) (19) 第四章 欧盟经济宪法性质的法律依据 (21) 第一节 欧盟的经济模式 (21) 第二节 竞争、调控和补贴 (22) 第三节 实体法上的原则(市场自由) (24) 第五章 欧盟反垄断法 (30) 第一节 概论 (30) 第二节 Art. 101 TFEU (33) 第三节 《欧盟运行方式条约》第 102条 (37) 第四节 欧盟并购监管 (43) 第六章 欧盟反倾销法 (45) 第一节 相关法律规定 (45) 第二节 构成要件 (46) 第三节 一般程序 (48) 第四节 反倾销措施的审查 (50)

第一章 导论 第一节 欧盟经济法的重要性 一、 中欧贸易和人员交流的繁荣 欧盟是中国的第一大贸易伙伴、第一大出口市场、第一大技术引进来源地和第二大进口市场。中国则保持欧盟第二大贸易伙伴、第一大进口来源地和第二大出口市场地位。2011年1-6月,我国与欧盟的进出口累计额达到2658.9亿美元,据海关总署7月10日发布的数据,中国2011年上半年外贸进出口总额达17036.7亿美元,即与欧盟贸易占我国对外贸易的15.6%。中国在欧留学生达20万人,欧盟在华留学生也将近2万人。每年欧盟赴华游客约150万人次,赴欧中国公民也达100万人次。 二、 中欧经济摩擦时有发生 贸易:商务部驻意大利经商处的预警信息表明,欧盟正准备通过高关税的方式对抗来自“中国的廉价商品”。搜狐资讯:《欧盟拟用高关税抵制中国商品》。知识产权:根据2010年7月欧委会发布的2009年海关知识产权执法报告,中国仍是侵权产品的主要来源地,在所查获的侵权产品中所占比重为64%。在欧洲委员会2007年的《欧中贸易和投资政策》工作报告中,中国已被指是侵权产品的主要来源地 三、 借鉴 最成功的区域性合作组织。欧盟已从1957年建立时,6个成员国并主要是经济领域合作的欧洲经济共同体,发展为今天拥有27个成员国,合作领域包括政治、经济、外交等区域性超国家组织。利用各种法律手段保护欧盟内部市场,如欧盟反垄断法等。 第二节 欧盟经济法的概念 欧盟经济法是指与欧盟共同市场运行有关的公司、私人、组织和程序法的统称。内容上欧盟经济法包含了所有为促进欧盟共同市场效率增长或与成员国之间的经济案件有关的法律规定。形式上,欧盟经济法包含为统一和协调成员国内及制定欧盟法,通过立法和判决形成的、外部和内部的欧盟共同市场法。《欧洲原子能公约》也包含了相关特殊领域的欧盟经济法。基于欧盟条例和指令而“被欧盟化的”成员国国内法,既是欧盟也是国内经济法的一部分。因此,欧盟经济法不仅包括原生的欧盟法,还包括被转化的欧盟法。 和公法上有关“欧盟法”的阐述不同,“欧盟经济法”的概念的重点不在于组织和干预法,而在于市场经济条件下的、借助私法工具而进行的物资、服务和信息的交换。它是有关市场的框架性条件,在此(市场)通过交易参加人(国家、公司、雇员、商业代理人、消费

相关主题