搜档网
当前位置:搜档网 › 初等数论模拟试题四套(附答案)

初等数论模拟试题四套(附答案)

初等数论模拟试题四套(附答案)
初等数论模拟试题四套(附答案)

初等数论练习题及答案

初等数论练习题一 一、填空题 1、τ(2420)=27;?(2420)=_880_ 2、设a ,n 是大于1的整数,若a n -1是质数,则a=_2. 3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}. 4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。 5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。. 6、分母是正整数m 的既约真分数的个数为_?(m )_。 7 8、??? ??10365 =-1。 9、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为二、计算题 1、解同余方程:3x 2+11x -20≡0 (mod 105)。 解:因105 = 3?5?7, 同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3), 同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5), 同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7), 故原同余方程有4解。 作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7), 其中b 1 = 1,b 2 = 0,3,b 3 = 2,6, 由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。 2、判断同余方程x 2≡42(mod 107)是否有解? 11074217 271071107713231071107311072107 710731072107732107422110721721107213)(=∴-=-=-==-=-=-==??≡-?--?-)()()()(),()()()(),()())()(( )(解: 故同余方程x 2≡42(mod 107)有解。 3、求(127156+34)28除以111的最小非负余数。

4月浙江自考初等数论试题及答案解析试卷及答案解析真题

1 浙江省2018年4月高等教育自学考试 初等数论试题 课程代码:10021 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.20被-30除的余数是( ) A .-20 B .-10 C .10 D .20 2.176至545的正整数中,13的倍数的个数是( ) A .27 B .28 C .29 D .30 3.200!中末尾相继的0的个数是( ) A .49 B .50 C .51 D .52 4.从以下满足规定要求的整数中,能选取出模20的简化剩余系的是( ) A .2的倍数 B .3的倍数 C .4的倍数 D .5的倍数 5.设n 是正整数,下列选项为既约分数的是( ) A . 3144 21++n n B . 121 -+n n C .2 512+-n n D .1 31++n n 二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。错填、不填均无分。 1.d(120)=___________。 2.314162被163除的余数是___________。 3.欧拉定理是___________。 4.同余方程3x ≡5(mod13)的解是___________。 5.不定方程10x-8y=12的通解是___________。

2 6.ο ___________)1847 365 ( = 7.[-π]=___________。 8.为使n-1与3n 的最大公因数达到最大的可能值,则整数n 应满足条件___________。 9.如果一个正整数具有21个正因数,问这个正整数最小是___________。 10.同余方程x 3+x 2-x-1≡0(mod 3)的解是___________。 三、计算题(本大题共4小题,每小题10分,共40分) 1.解同余方程组 ???? ?? ?≡≡≡≡) 9(mod 4)7(mod 32)4(mod 23) 25(mod 1x x x x 2.解不定方程15x+10y+6z=19。 3.试求出所有正整数n ,使得2n -1能被7整除。 4.判断同余方程 x 2≡-1457(mod 2389) 是否有解? 四、证明题(本大题共2小题,每小题10分,共20分) 1.证明形如4n+3的素数有无穷多个。 2.证明不定方程 x 2+y 2+z 2=x 2y 2 没有正整数解。

2013年春_西南大学《初等数论》作业及答案(共4次_已整理)

2013年春西南大学《初等数论》作业及答案(共4次,已整理) 第一次作业 1、设n,m为整数,如果3整除n,3整除m,则9()mn。 A:整除 B:不整除 C:等于 D:小于 正确答案:A 得分:10 2、整数6的正约数的个数是()。 A:1 B:2 C:3 D:4 正确答案:D 得分:10 3、如果5|n ,7|n,则35()n 。 A:不整除 B:等于 C:不一定 D:整除 正确答案:D 得分:10 4、如果a|b,b|a ,则()。 A:a=b B:a=-b C:a=b或a=-b D:a,b的关系无法确定 正确答案:C 得分:10 5、360与200的最大公约数是()。 A:10 B:20 C:30 D:40 正确答案:D 得分:10 6、如果a|b,b|c,则()。 A:a=c B:a=-c C:a|c D:c|a

正确答案:C 得分:10 7、1到20之间的素数是()。 A:1,2,3,5,7,11,13,17,19 B:2,3,5,7,11,13,17,19 C:1,2,4,5,10,20 D:2,3,5,7,12,13,15,17 正确答案:B 得分:10 8、若a,b均为偶数,则a + b为()。 A:偶数 B:奇数 C:正整数 D:负整数 正确答案:A 得分:10 9、下面的()是模12的一个简化剩余系。 A:0,1,5,11 B:25,27,13,-1 C:1,5,7,11 D:1,-1,2,-2 正确答案:C 得分:10 10、下面的()是模4的一个完全剩余系。 A:9,17,-5,-1 B:25,27,13,-1 C:0,1,6,7 D:1,-1,2,-2 正确答案:C 得分:10 11、下面的()是不定方程3x + 7y = 20的一个整数解。 A:x=0,y=3 B:x=2,y=1 C:x=4,y=2 D:x=2,y=2 正确答案:D 得分:10 12、设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。 A:0 B:1 C:2 D:3 正确答案:A 得分:10 13、使3的n次方对模7同余于1的最小的正整数n等于()。 A:6 B:2

初等数论试卷模拟试题和答案

初等数论试卷一 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,, ,n a a a 的公倍数中最小的称为最小公倍数 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d =- =+ =±± B.00,,0,1,2, ;a b x x t y y t t d d =+= -=±± C.00,,0,1,2, ;b a x x t y y t t d d =+= -=±± D.00,,0,1,2, ;b a x x t y y t t d d =-= -=±± 4.下列各组数中不构成勾股数的是( ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡ D.()()112 2 11mod mod .a b m a b m ≡?≡ 6.模10的一个简化剩余系是( ) A.0,1,2, ,9; B.1,2,3,,10;

初等数论第2版习题答案

第一章 §1 1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n )1()1()2)(1(/6+-+++∴n n n n n n 从而可知 )12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则 S b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r by ax by ax ++∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ).,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 00/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

初等数论 第三章 同余

第三章 同 余 §1 同余的概念及其基本性质 。,所有奇数;所有偶数,例如,。 不同余,记作:对模则称;若所得的余数不同,同余,记作:对模则称所得的余数相同,与去除两个整数,称之为模。若用设)2(mod 1)2(mod 0)7(mod 18)(mod ,)(mod ,≡≡≡≡/≡∈+a a m b a m b a m b a m b a b a m m Z 定义1。 故同余关系是等价关系;(传递性),则,、若;(对称性) ,则、若;(反身性) 、:关系,它具有下列性质同余是整数之间的一种)(mod )(mod )(mod 3)(mod )(mod 2)(mod 1m c a m c b m b a m a b m b a m a a ≡≡≡≡≡≡ 。 则,,,设。 ,,即同余的充分必要条件是对模整数)(|)()(mod ,0)(|,2121212211b a m q q m b a r r m b a m r r r mq b r mq a t mt b a b a m m b a -?-=-?=?≡<≤+=+=∈+=-证明定理1Z 。 ,则若; ,则,若)(mod )(mod )2()(mod )(mod )(mod )1(21212211m b c a m c b a m b b a a m b a m b a -≡≡++≡+≡≡性质1 。 ,则特别地,若; ,则,若)(mod )(mod )(mod )(mod )(mod 21212211m kb ka m b a m b b a a m b a m b a ≡≡≡≡≡性质2 。 ,则, ;特别地,若则 ,,,若)(mod ,,2,1,0)(mod )(mod ,,2,1)(mod )(mod 0110111111 111 111m b x b x b a x a x a n i m b a m y y B x x A k i m y x m B A n n n n n n n n i i k k i i k k k k k k k k +++≡+++=≡≡ =≡≡----∑∑ΛΛΛΛΛΛΛΛΛΛΛΛαααααααααααααααα定理2。,则,,,若)(mod )(mod 1),(1111m b a m b a m d d b b d a a ≡≡===性质3

(完整word版)初等数论练习题一(含答案)

《初等数论》期末练习二 一、单项选择题 1、=),0(b ( ). A b B b - C b D 0 2、如果1),(=b a ,则),(b a ab +=( ). A a B b C 1 D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 7 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C (mod )ac bc m ≡/ D b a ≠ 5、不定方程210231525=+y x ( ). A 有解 B 无解 C 有正数解 D 有负数解 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 7、如果a b ,b a ,则( ). A b a = B b a -= C b a ≥ D b a ±= 8、公因数是最大公因数的( ). A 因数 B 倍数 C 相等 D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 10、模7的最小非负完全剩余系是( ). A -3,-2,-1,0,1,2,3 B -6,-5,-4,-3,-2,-1 C 1,2,3,4,5,6 D 0,1,2,3,4,5,6 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15] 12、同余式)593(mod 4382≡x ( ). A 有解 B 无解 C 无法确定 D 有无限个解 二、填空题 1、有理数 b a ,0,(,)1a b a b <<=,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ). 3、不大于545而为13的倍数的正整数的个数为( ). 4、设n 是一正整数,Euler 函数)(n ?表示所有( )n ,而且与n ( )的正整数的个数. 5、设b a ,整数,则),(b a ( )=ab . 6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除. 7、+=][x x ( ). 8、同余式)321(mod 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.

初等数论 第五章 同余方程

第五章同余方程 本章主要介绍同余方程的基础知识,并介绍几类特殊的同余方程的解法。 第一节同余方程的基本概念 本节要介绍同余方程的基本概念及一次同余方程。 在本章中,总假定m是正整数。 定义1设f(x) = a n x n a1x a0是整系数多项式,称 f(x) 0 (mod m) (1)是关于未知数x的模m的同余方程,简称为模m的同余方程。 若a n≡/0 (mod m),则称为n次同余方程。 定义2设x0是整数,当x= x0时式(1)成立,则称x0是同余方程(1)的解。凡对于模m同余的解,被视为同一个解。同余方程(1)的解数是指它的关于模m互不同余的所有解的个数,也即在模m的一个完全剩余系中的解的个数。 由定义2,同余方程(1)的解数不超过m。 定理1下面的结论成立: (ⅰ) 设b(x)是整系数多项式,则同余方程(1)与 f(x) b(x) b(x) (mod m) 等价; (ⅱ) 设b是整数,(b, m) = 1,则同余方程(1)与 bf(x) 0 (mod m) 等价; (ⅲ) 设m是素数,f(x) = g(x)h(x),g(x)与h(x)都是整系数多项式,又设x0是同余方程(1)的解,则x0必是同余方程 g(x) 0 (mod m) 或h(x) 0 (mod m)

的解。 证明 留做习题。 下面,我们来研究一次同余方程的解。 定理2 设a ,b 是整数,a ≡/0 (mod m )。则同余方程 ax b (mod m ) (2) 有解的充要条件是(a , m )b 。若有解,则恰有d = (a , m )个解。 证明 显然,同余方程(2)等价于不定方程 ax my = b , (3) 因此,第一个结论可由第四章第一节定理1得出。 若同余方程(2)有解x 0,则存在y 0,使得x 0与y 0是方程(3)的解,此时,方程(3)的全部解是 ??? ????-=+=t m a a y y t m a m x x ),(),(00,t Z 。 (4) 由式(4)所确定的x 都满足方程(2)。记d = (a , m ),以及 t = dq r ,q Z ,r = 0, 1, 2, , d 1, 则 x = x 0 qm r d m x r d m +≡0(mod m ),0 r d 1。 容易验证,当r = 0, 1, 2, , d 1时,相应的解 d m d x d m x d m x x )1(20000-+++,,,,Λ 对于模m 是两两不同余的,所以同余方程(2)恰有d 个解。证毕。 在定理的证明中,同时给出了解方程(2)的方法,但是,对于具体的方程(2),常常可采用不同的方法去解。 例1 设(a , m ) = 1,又设存在整数y ,使得a b ym ,则 x a ym b +(mod m ) 是方程(2)的解。 解 直接验算,有 ax b ym b (mod m )。

0初等数论试卷及答案

初等数论考试试卷 一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( A ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( B ) A.整数12,, ,n a a a 的公因数中最大的称为最大公因数; < B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数 【有最小的吗】 C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数 3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解 ()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d =- =+=±± B.00,,0,1,2, ;a b x x t y y t t d d =+=-=±± C.00,,0,1,2, ;b a x x t y y t t d d =+=-=±± D.00,,0,1,2, ;b a x x t y y t t d d =-=-=±± ( 4.下列各组数中不构成勾股数的是( D ) A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( D ) A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡ C.()()111212mod mod ;a b m a a b a m ≡?≡

初等数论习题与答案、及测试卷

1 证明:n a a a ,,21 都是m 的倍数。 ∴存在n 个整数n p p p ,,21使 n n n m p a m p a m p a ===,,,222111 又n q q q ,,,21 是任意n 个整数 m p q p q q p a q a q a q n n n n )(22112211+++=+++∴ 即n n a q a q a q +++ 2211是m 的整数 2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n 1()1()2)(1(/6+-+++∴n n n n n n 从而可知 12)(1(/6++n n n 3 证: b a , 不全为0 ∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而 有形如by ax +的最小整数00by ax + Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+ 则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=r ax by ax + +∴/00 下证8P 第二题 by ax by ax ++/00 (y x ,为任意整数) b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax b a +∴ 故),(00b a by ax =+ 4 证:作序列 ,2 3, ,2 , 0,2 ,,2 3,b b b b b b - -- 则a 必在此序列的某两项之间

初等数论作业(3)答案

第三次作业答案: 一、选择题 1、整数5874192能被( B )整除. A 3 B 3与9 C 9 D 3或9 2、整数637693能被(C )整除. A 3 B 5 C 7 D 9 3、模5的最小非负完全剩余系是( D ). A -2,-1,0,1,2 B -5,-4,-3,-2,-1 C 1,2,3,4,5 D 0,1,2,3,4 4、如果)(mod m b a ≡,c 是任意整数,则(A ) A )(mod m bc ac ≡ B b a = C ac T )(m od m bc D b a ≠ 二、解同余式(组) (1))132(mod 2145≡x . 解 因为(45,132)=3|21,所以同余式有3个解. 将同余式化简为等价的同余方程 )44(mod 715≡x . 我们再解不定方程 74415=-y x , 得到一解(21,7). 于是定理4.1中的210=x . 因此同余式的3个解为 )132(mod 21≡x , )132(mod 65)132(mod 3 13221≡+ ≡x , )132(mod 109)132(mod 3132221≡?+≡x . (2))45(mod 01512≡+x 解 因为(12,45)=3|15,所以同余式有解,而且解的个数为3. 又同余式等价于)15(mod 054≡+x ,即y x 1554=+. 我们利用解不定方程的方法得到它的一个解是(10,3), 即定理4.1中的100=x . 因此同余式的3个解为 )45(mod 10≡x ,

)45(mod 25)45(mod 3 4510≡+≡x , )45(mod 40)45(mod 3 45210≡?+≡x . (3))321 (m od 75111≡x . 解 因为(111,321)=3|75,所以同余式有3个解. 将同余式化简为等价的同余方程 )107(mod 2537≡x . 我们再解不定方程 2510737=+y x , 得到一解(-8,3). 于是定理4.1中的80-=x . 因此同余式的3个解为 )321(mod 8-≡x , )321(mod 99)321(mod 3 3218≡+-≡x , )321(mod 206)321(mod 3 32128≡?+-≡x . (4)?? ???≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x . 解 因为(7,8,9)=1,所以可以利用定理5.1.我们先解同余式 )7(mod 172≡x ,)8(mod 163≡x ,)9(mod 156≡x , 得到)9(mod 4),8(mod 1),7(mod 4321-=-==x x x .于是所求的解为 ). 494(mod 478)494(mod 510 )494(mod 3)4(562)1(631472=-=?-?+?-?+??≡x (5)???????≡≡≡≡) 9(mod 5)7(mod 3)5(mod 2)2(mod 1x x x x . (参考上题)

初等数论1习题参考答案

附录1 习题参考答案 第一章习题一 1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b = (a)q,即a b,a b及a b。反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。 2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mn pq可知m p mq np。 3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。 4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。 5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2

不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。 第一章习题二 1. 验证当n =0,1,2,… ,11时,12|f(n)。 2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 = 3Q r12r22知r1 = r2 = 0,即3a且3b。 3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。对r=0,1,…,9进行验证即可。 4. 对于任何整数n,m,等式n2 (n 1)2 = m2 2的左边被4除的余数为1,而右边被4除的余数为2或3,故它不可能成立。 5 因a4 3a2 9 = (a2 3a 3)( a2 3a 3),当a = 1,2时,a2 3a 3 = 1,a4 3a2 9 = a2 3a 3 = 7,13,a4 3a2 9是素数;当a 3时,a2 3a 3 > 1,a2 3a 3 > 1,a4 3a2 9是合数。 6. 设给定的n个整数为a1, a2, , a n,作 s1 = a1,s2 = a1a2,,s n = a1a2a n, 如果s i中有一个被n整除,则结论已真,否则存在s i,s j,i < j,使得s i与s j 被n除的余数相等,于是n s j s i = a i + 1a j。

《初等数论》教学大纲

《初等数论》教学大纲 课程编码:110823 课程名称:初等数论 学时/学分:54/3 先修课程:《数学分析》、《高等代数》 适用专业:信息与计算科学 开设教研室:代数与几何教研室 一、课程性质与任务 1.课程性质:初等数论是信息与计算科学专业的一门专业必修课程。该课程是研究整数性质和方程(组)整数解的一门学科,也是一个古老的数学分支。初等数论是现代密码学的一门基础课程,也是高等学校信息安全专业的一门重要的基础课。初等数论在计算技术、通信技术等技术学科中也得到了广泛的应用。 2.课程任务:初等数论是信息与计算科学专业的一门重要的专业必修课,开设的目的在于使学生熟悉和掌握数论的基础知识,基本理论和基本的解题技能技巧,培养学生的逻辑思维能力,更深入地理解初等数论与其它邻近学科的关系,为进一步学习信息安全领域的其它学科打下坚实的基础。 二、课程教学基本要求 初等数论是研究整数性质的一门学科,历史上遗留下来没有解决的大多数数论难题其问题本身容易搞懂,容易引起人的兴趣,但是解决它们却非常困难。本课程的目的是简单介绍在初等数论研究中经常用到的若干基础知识、基本概念、方法和技巧。 通过本课程的学习,使学生加深对整数的性质的了解,更深入地理解初等数论与其它邻近学科的关系。 1. 有关定义、定理、性质等概念的内容按“知道、了解和理解”三个层次要求;有关计算、解法、公式和法则等方法的内容按“会、掌握、熟练掌握”三个层次要求。 2. 本课程开设在第5学期,总学时54,其中课堂讲授54学时,课堂实践0学时。教学环节以课堂讲授为主,研制电子教案和多媒体幻灯片以及CAI课件,在教学方法和手段上采用现代教育技术。 3. 成绩考核形式:期终成绩(闭卷考试)(70%)+平时成绩(平时测验、作业、课堂提问、课堂讨论等)(30%)。成绩评定采用百分制,60分为及格。

初等数论计算题答案

初等数论第三次作业 计算题 1. 求75与105的最大公因数。 解:因为75 = 3错误!未找到引用源。52,105 = 3错误!未找到引用源。5错误!未找到引用源。7, 所以75与105的最大公因数是15。 2. 求66与121的最大公因数。 解:因为66=6×11,121=11×11, 所以66与121的最大公因数是11 3.求不定方程3x - 4y = 1的一切整数解。 答;因为(3,4)= 1,所以不定方程有整数解。 观察知x = 3,y = 2是其一个整数解。 由公式知其一切整数解为???+=+=t y t x 3243,t 为整数。 4.求不定方程7x + 2y = 1的一切整数解。 答;因为(7,2)=1,1|1,所以不定方程有解。观察知其一个整数解是 0013 x y =??=-?。 于是其一切整数解为1237x t y t =+??=--? ,t 取一切整数。 5.解同余式3x ≡ 1 (mod 7)。 答;因为(3,7)= 1,所以同余式有解且有一个解。 由3x - 7y = 1得???+=+=t y t x 3275, 所以同余式的解为)7(mod 5≡x 6.解同余式3x ≡ 8 (mod 10)。

答;因为(3,10)=1,1|8,所以同余式有解,并且只有一个解。由3108x y -=得 一个解00 61x y =??=?,所以同余式的解为6(mod10)x ≡。 7.解同余式28x ≡ 21 (mod 35)。 答:因为(28,35) = 7,而7|21,所以同余式28x ≡ 21(mod 35)有解,且有7个解。同余式28x ≡ 21(mod 35)等价于4x ≡ 3(mod 5),解4x ≡ 3(mod 5)得x ≡ 2(mod 5),故同余式28x ≡ 21(mod 35)的7个解为x ≡ 2,7,12,17,22,27,32(mod 35)。 8.解同余式组: ???≡≡) 5(mod 2)3(mod 1x x 。 答;由)3(mod 1≡x 得13+=k x ,将其代入)5(mod 2≡x 得)5(mod 213≡+k , 解得)5(mod 2≡k ,即25+=t k , 所以715+=t x ,所以解为)15(mod 7≡x 。 9. 求不定方程3x + 2y = 2的一切整数解。 解:因为(3,2) = 1,所以不定方程有整数解。 显然1,0==y x 是其一个特解, 所以不定方程的一切整数解为错误!未找到引用源。,其中t 取一切整数。 10.解同余式)5(mod 14≡x 答;因为(4,5)= 1,所以同余式有解且有一个解。 由4x - 5y = 1得???+=+=t y t x 3275, 所以同余式的解为)7(mod 5≡x

初等数论试卷和答案

初等数论试卷和答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为 ( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ).

试卷1答案 一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是(唯一的). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),(). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ). 5、b a ,的公倍数是它们最小公倍数的( 倍数 ). 6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0. 三、计算题(每题8分,共32分) 1、 求[136,221,391]=?(8分) 解 [136,221,391] =[[136,221],391] =[391,17221136?] =[1768,391] ------------(4分) = 17391 1768?

初等数论复习题题库及答案

《初等数论》本科 一 填空题(每空2分) 1.写出30以内的所有素数 2,3,5,7,11,13,17,19,23,29 . 2.,( ,)(,)(,) a b a b a b a b =设是任意两个不为零的整数,则 1 . 3.若,a b 是非零整数,则a 与b 互素的充要条件是存在整数,x y ,适1ax by += 4.写出180的标准分解式是 22235?? ,其正约数个数有 (2+1)(2+1)(1+1)=18个. 5.,1,2,,a b a b L 设与是正整数则在中能被整除的整数恰有 []a b 个. 6.设,a b 是非零整数,c 是整数,方程ax by c +=有整数解(,x y )的充要条件是 (,)|a b c 7. 若整数集合A 是模m 的完全剩余系,则A 中含有 m 个整数. 8.?(3)= 2 ;?(4)= 2 . 9.当p 素数时,(1)()p ?= 1p - ;(2)()k p ?= 1k k p p -- . 10.(),(,)1,1m m a m a ?=-≡设是正整数则 0 (mod ).m 11.,,p p a a a -≡设是素数则对于任意的整数有 0 (mod ).p 12.已知235(mod7)x +≡,则x ≡ 1 (mod7). 13.同余方程22(mod 7)x ≡的解是 4(mod7) . 14.同余方程2310120(mod 9)x x ++≡的解是 .X=6. . 15.(,)1n p =若,n p 是模的二次剩余的充要条件是 -121(mod ).p n p ≡ . 16.(,)1n p =若,n p 是模的二次非剩余的充要条件是 -12 1(mod ).p n p ≡- . 17.3()=5 -1 ; 4 ()=5 1 . 18.,p 设是奇素数则2 ()p = 218(1).p -- . 19.,p 设是奇素数则1()p = 1 ;-1 ()p = -1 2(-1).p . 20. 5()=9 1 ; 2 ()=45 -1 . 二 判断题(判断下列结论是否成立,每题2分). 1. ||,|a b a c x y Z a bx cy ?∈+且对任意的有.成立 2. (,)(,),[,][,]a b a c a b a c ==若则.不成立

初等数论练习册汇总

作业次数:学号姓名作业成绩 第0章序言及预备知识 第一节序言(1) 1、数论人物、资料查询:(每人物写600字左右的简介) (1)华罗庚 2、理论计算与证明: (1 是无理数。 (2)Show that there are infinitely many Ulam numbers 3、用Mathematica 数学软件实现 A Ulam number is a member of an which was devised by and published in in 1964. The standard Ulam sequence (the (1, 2-Ulam sequence starts with U 1=1 and U 2=2 being the first two Ulam numbers. Then for n > 2, U n is defined to be the smallest that is the sum of two distinct earlier terms in exactly one way 。 By the definition, 3=1+2 is an Ulam number; and 4=1+3 is an Ulam number (The sum 4=2+2 doesn't count because the previous terms must be distinct. The integer 5 is not an Ulam number because 5=1+4=2+3. The first few terms are 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47, 48, 53, 57, 62, 69, 72, 77,

自考初等数论试题及答案

初等数论考试试卷1 一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). A b a = B b a -= C b a ≤ D b a ±= 2、如果n 3,n 5,则15( )n . A 整除 B 不整除 C 等于 D 不一定 3、在整数中正素数的个数( ). A 有1个 B 有限多 C 无限多 D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A )(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠ 5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),( 6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9 二、填空题(每题3分,共18分) 1、素数写成两个平方数和的方法是( ). 2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ). 3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ). 4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ). 5、b a ,的公倍数是它们最小公倍数的( ). 6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0. 三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x . 4、求? ?? ??563429,其中563是素数. (8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)

相关主题