搜档网
当前位置:搜档网 › SMO254材料在硫酸镍生产工艺中的应用

SMO254材料在硫酸镍生产工艺中的应用

SMO254材料在硫酸镍生产工艺中的应用
SMO254材料在硫酸镍生产工艺中的应用

SMO254材料在硫酸镍生产工艺中的应用

[摘要]针对硫酸镍生产中板式换热器板片腐蚀严重的问题,通过对板式换热器几种材质板片耐腐蚀性能的分析与试验,选用SM0254材料取代原C一276材料,延长了板式换热器的板片寿命,降低了生产成本。

[关键词]板式换热器;板片;硫酸镍;浓缩;温度;腐蚀;腐蚀率;使用寿命

板式换热器存在的问题:

大冶有色金属有限公司稀贵金属厂从铜冶炼系统的电积后液中回收硫酸镍,主要工艺为铜电积后液在蒸发反应釜中加热浓缩,提高溶液中镍的浓度,同时硫酸浓度从14%上升到35%左右,然后使用冷冻机降温,结晶生产出硫酸镍产品。为了提高浓缩工序的生产效率,采用了负压蒸发方式,即使用真空泵降低反应釜内的气压,气压越低,溶液沸腾所需要的温度就越低,进而加快了蒸发浓缩进程。由于蒸发产生的气体会降低反应釜内负压,所以使用板式大冶有色金属有限公司稀贵金属厂从铜冶炼系统的电积后液中回收硫酸镍,主要工艺为铜电积后液在蒸发反应釜中加热浓缩,提高溶液中镍的浓度,同时硫酸浓度从14%上升到35%左右,然后使用冷冻机降温,结晶生产出硫酸镍产品。为了提高浓缩工序的生产效率,采用了负压蒸发方式,即使用真空泵降低反应釜内的气压,气压越低,溶液沸腾所需要的温度就越低,进而加快了蒸发浓缩进程。由于蒸发产生的气体会降低反应釜内负压,所以使用板式属厂原有3台板式换热器,型号为BR0.8B一1.0—47一E,2007年4月硫酸镍系统扩能改造,增加了同型号的板式换热器4台。该型号的板式换热器换热总面积为47 m2,单片换热面积为0.8m2,设计压力为1.0 MPa,设计温度为150℃,板片材质为C一276,板片厚度为0.6 mm,板片进口直径为200 mm。

生产中浓缩工序的负压一般仅为一0.06 MPa,蒸发效率不高,不能满足生产要求。2007年1月对3台板式换热器进行解体检修,发现每台换热器板片的进气孔腐蚀严重,此乃造成系统负压泄漏的主要原因;同时导致冷却水与冷凝水混合,已经无法满足生产工艺的要求,遂于20o7年1月对所有板片进行了更换。生产运行至2007年4月,浓缩工艺过程又陆续出现负压不稳定、生产产量下降的情况。遂对原3台板式换热器进行了逐一的解体检查,发现存在与2007年1月同样的问题:板片的进气口全部被腐蚀,必须将板片进行整体更换,而从2007年1月至4月二次更换板片的周期仅为4个月。同样的问题出现在2007年9月起新系统扩建投入使用的4 、5 、6 、7 板式换热器上,这4台板式换热器投用后,陆续出现负压不稳定、冷却水量大幅增加的现象,判断为板式换热器板片出现问题。2007年9月20日在对4 板式换热器的解体检查中发现,所有C一276材质的板片进气孔已全部被腐蚀,不得不进行板片的更换,否则生产将无法进行。从2007年4月投入使用到9月所有板片全部被腐蚀,其间扣除因限电等原因造成的停产时间,新投入使用的4台板式换热器板片使用寿命亦仅为4个月,与前3台的使用寿命基本相同。板式换热器板片的设计使用寿命为2年,而实际使用寿命远远低于设计值,故现场对C一276这种材质的板片是否适合预浓缩生产工艺的工况条件产生了质疑。

2 板式换热器板片材质及其应用工况分析角色设置2008(2) BR0.8B一1.0—47一E板式换热器的板片为波纹板片,波纹板片由0.6~1 mm厚度的金属板一次压制而成,其波纹形式有平直波纹或人字波纹,设置波纹可以增加板片的有效传热面积,使流体通过时形成湍流,强化传热作用。每块板片作为一个传热面,板上设有4个分配液体的孔,孔及板片四周粘有密封垫片,使板片之间形成两组独立平行的通道,冷热两种介质在各自固定的通道内流动,达到最佳的换热效果。2.1 C一276材料及其应用工况分析BR0.8B一1.0—47一E板式换热器的板片原使用C一276材料,C一276材料为哈氏合金,其主要化学成分见表1。从表1可以看出,

C一276材料是一种镍基合金,具有极强的耐腐蚀性,主要耐湿氯、各种氧化性氯化物、氯化盐溶液、硫酸和氧化性盐,在低温和中温盐酸中均有很好的耐腐蚀性能,适用于化工、石油、烟道气体除硫、纸浆和造纸等特殊领域中极苛刻的腐蚀环境。C一276材料在纯硫酸中的腐蚀率曲线见图从图3 C一276的腐蚀率曲线可以看出,C一276的腐蚀率在介质温度为80℃以下时比较稳定,年腐蚀量为0.13~0.5 mm;当介质温度超过80℃时,温度每升高10℃,腐蚀率增加一倍。因此,欲使c一276这种材质的板片在预浓缩工况下的使用寿命延长,必须控制板片进气口的进气温度在80℃以下。但在实际生产中,为了提高浓缩后液硫酸镍的结晶率,必须提升浓缩液的终点浓度和温度,亦即提高板式换热器的气体进口温度;同时,由于浓缩工艺生产过程处于负压工作状态,当系统负压由于泄漏等原因下降、达不到工艺要求的一0.08 MPa时,浓缩过程中电积后液的沸点温度势必将随之提高,使浓缩液的终点温度亦随之提高,从而导致板式换热器的气体进口温度提高,也就是说,浓缩生产工艺过程中的电积后液在浓缩过程中很难长期保证其终点温度控制在80℃以下。温度的升高,导致板片的腐蚀率增加,从而影响了板片的使用寿命。因此,有必要寻找一种可以替代C一276材质、适合预浓缩生产工矿条件的新材料。

2.2 四种不同材质的挂片试验

2007年7月6 Et,选择了四种不同材质的旧板片,即C一276板、SMO254板、普通不锈钢板和钛板,在硫酸镍生产浓缩工艺过程中进行了挂片试验,挂片试验时间为45天。图4所示为四种材质的板片试验45天后的情况。

从图可以清楚地看出,SMO254的腐蚀情况最轻,肉眼基本看不出其腐蚀的迹象。料具有非常高的抗点蚀和抗缝隙腐蚀能力,因此,一直广泛地应用于海上及脱盐工业、海水处理、含氯的在进行上述四种挂片试验的同时,对浓缩工艺漂白设备及二氧化氯阶段设备和烟气脱硫装置中。过程中产生的气体经板式换热器冷却后变成的冷却 SMO254材料在纯硫酸中的等腐蚀率曲线见图5从表2可以看出,在生产工艺控制正常的情况

下,对板式换热器板片的腐蚀主要包括氯离子的腐蚀、气流的冲刷腐蚀以及相关的电化学腐蚀。在正

常情况下,由于硫酸的浓度相当低,所以对板式换热器板片的腐蚀程度较小。

SMO254材料及其应用工况分析

SMO254材料是一种奥氏体不锈钢,其主要化学成分见表3。

表3 SMO254材料主要化学成分单位:%

Table 3 Major chemi cal composition of SMO254

由于SMO254材料中加入了少量的氮,而氮的加入使得金属中间相的沉淀变得更加缓慢,这种材34

图5 SMO254材料在纯硫酸中的等腐蚀翠曲线

Fig.5 Curve of corrosion rate of SM O254 in pure

sulphuric acid从等腐蚀率曲线可以看出,SMO254材料在稀酸工矿条件下所能承受的温度较C一276材料高,可以替代C一276材料在硫酸镍生产浓缩工艺中的作用。

3 换热器板片材质的更换及其使用

根据上述分析结果,于2007年9月27日将1板式换热器的板片全部更换为SMO254材质制作的板片。在2007年11月21日对1 板式换热器进行解体检查时发现,使用已近2个月的SMO254材质板片的光洁度及亮度良好,与使用前情况无异,板片的四孔孔径大小一样,同时,测量板片的厚度仍为2.3 SMO254材料及其应用工况分析SMO254材料是一种奥氏体不锈钢,其主要化学成分见表3。

表3 SMO254材料主要化学成分单位:%

Table 3 Major chemi cal composition of SMO254

3 换热器板片材质的更换及其使用

根据上述分析结果,于2007年9月27日将1板式换热器的板片全部更换为SMO254材质制作的板片。在2007年11月21日对1 板式换热器进行解体检查时发现,使用已近2个月的SMO254材质板片的光洁度及亮度良好,与使用前情况无异,板片的四孔孔径大小一样,同时,测量板片的厚度仍为0.6 mm,说明板片不存在任何腐蚀。若将板片换向使用,可以延长一倍的使用寿命。截至2008年3月,板片已连续使用6个月,高于C一276材质的板片。SM0254材质的板片每片价格约为2200元,C一276材质的板片每片价格约为4800元,前者仅为后者的一半,故将其他板式换热器的板片陆续更换为SM0254材质。SM0254材质的板片在硫酸镍生产浓缩工艺过程中的应用获得成功,虽板片使用寿命还需要较长时间生产检验,但可以肯定的是,在硫酸镍生产浓缩工艺过程中使用SM0254材质较使用C一276材质可以节约至少一倍的生产成本。

SMO254材料在硫酸镍生产工艺中的应用

SMO254材料在硫酸镍生产工艺中的应用 [摘要]针对硫酸镍生产中板式换热器板片腐蚀严重的问题,通过对板式换热器几种材质板片耐腐蚀性能的分析与试验,选用SM0254材料取代原C一276材料,延长了板式换热器的板片寿命,降低了生产成本。 [关键词]板式换热器;板片;硫酸镍;浓缩;温度;腐蚀;腐蚀率;使用寿命 板式换热器存在的问题: 大冶有色金属有限公司稀贵金属厂从铜冶炼系统的电积后液中回收硫酸镍,主要工艺为铜电积后液在蒸发反应釜中加热浓缩,提高溶液中镍的浓度,同时硫酸浓度从14%上升到35%左右,然后使用冷冻机降温,结晶生产出硫酸镍产品。为了提高浓缩工序的生产效率,采用了负压蒸发方式,即使用真空泵降低反应釜内的气压,气压越低,溶液沸腾所需要的温度就越低,进而加快了蒸发浓缩进程。由于蒸发产生的气体会降低反应釜内负压,所以使用板式大冶有色金属有限公司稀贵金属厂从铜冶炼系统的电积后液中回收硫酸镍,主要工艺为铜电积后液在蒸发反应釜中加热浓缩,提高溶液中镍的浓度,同时硫酸浓度从14%上升到35%左右,然后使用冷冻机降温,结晶生产出硫酸镍产品。为了提高浓缩工序的生产效率,采用了负压蒸发方式,即使用真空泵降低反应釜内的气压,气压越低,溶液沸腾所需要的温度就越低,进而加快了蒸发浓缩进程。由于蒸发产生的气体会降低反应釜内负压,所以使用板式属厂原有3台板式换热器,型号为BR0.8B一1.0—47一E,2007年4月硫酸镍系统扩能改造,增加了同型号的板式换热器4台。该型号的板式换热器换热总面积为47 m2,单片换热面积为0.8m2,设计压力为1.0 MPa,设计温度为150℃,板片材质为C一276,板片厚度为0.6 mm,板片进口直径为200 mm。 生产中浓缩工序的负压一般仅为一0.06 MPa,蒸发效率不高,不能满足生产要求。2007年1月对3台板式换热器进行解体检修,发现每台换热器板片的进气孔腐蚀严重,此乃造成系统负压泄漏的主要原因;同时导致冷却水与冷凝水混合,已经无法满足生产工艺的要求,遂于20o7年1月对所有板片进行了更换。生产运行至2007年4月,浓缩工艺过程又陆续出现负压不稳定、生产产量下降的情况。遂对原3台板式换热器进行了逐一的解体检查,发现存在与2007年1月同样的问题:板片的进气口全部被腐蚀,必须将板片进行整体更换,而从2007年1月至4月二次更换板片的周期仅为4个月。同样的问题出现在2007年9月起新系统扩建投入使用的4 、5 、6 、7 板式换热器上,这4台板式换热器投用后,陆续出现负压不稳定、冷却水量大幅增加的现象,判断为板式换热器板片出现问题。2007年9月20日在对4 板式换热器的解体检查中发现,所有C一276材质的板片进气孔已全部被腐蚀,不得不进行板片的更换,否则生产将无法进行。从2007年4月投入使用到9月所有板片全部被腐蚀,其间扣除因限电等原因造成的停产时间,新投入使用的4台板式换热器板片使用寿命亦仅为4个月,与前3台的使用寿命基本相同。板式换热器板片的设计使用寿命为2年,而实际使用寿命远远低于设计值,故现场对C一276这种材质的板片是否适合预浓缩生产工艺的工况条件产生了质疑。 2 板式换热器板片材质及其应用工况分析角色设置2008(2) BR0.8B一1.0—47一E板式换热器的板片为波纹板片,波纹板片由0.6~1 mm厚度的金属板一次压制而成,其波纹形式有平直波纹或人字波纹,设置波纹可以增加板片的有效传热面积,使流体通过时形成湍流,强化传热作用。每块板片作为一个传热面,板上设有4个分配液体的孔,孔及板片四周粘有密封垫片,使板片之间形成两组独立平行的通道,冷热两种介质在各自固定的通道内流动,达到最佳的换热效果。2.1 C一276材料及其应用工况分析BR0.8B一1.0—47一E板式换热器的板片原使用C一276材料,C一276材料为哈氏合金,其主要化学成分见表1。从表1可以看出,

白炭黑的分散性(非常好)

前言 白炭黑是橡胶工业重要的补强材料,因其微观结构和聚集体形态和炭黑类似,并在橡胶中有相近的补强性能,故被称为白炭黑。白炭黑按照其生产方法可分为两类,即沉淀法白炭黑和气相法白炭黑。沉淀法白炭黑作为橡胶补强原材料,主要用于轮胎、鞋类、和其它浅色橡胶制品。本文只讨论沉淀法白炭黑(以下简称为白炭黑)。在轮胎行业中,过去白炭黑主要用于子午线轮胎的带束层,以增强钢丝和橡胶的粘合性。也有些轮胎企业将白炭黑用于子午线载重轮胎胎面,以提高胎面的抗刺扎和抗崩花性,其用量较少,一般为10~15份。近15年来,由于欧洲和北美对环保和节能的要求日益严格,将白炭黑用于轮胎胎面,可以显著降低轮胎的滚动阻力,同时能保持较好的抗冰滑性和抗湿滑性,其耐磨性仅有稍许降低。1992年,米其林公司率先制造出全用白炭黑的“绿色轮胎”,其滚动阻力较一般轮胎降低约30%,节油及减少汽车废气效果显著。但是由于传统白炭黑品种的分散性不好,配用白炭黑的胎面胶,虽然滚动阻力比配用炭黑的低,但其耐磨性能却比配用炭黑的差得多。 为了适应绿色轮胎快速发展对白炭黑的要求,国外几家主要制造商都已经生产供应、并仍在进一步研究开发分散性较好的白炭黑产品,目前白炭黑已经发展了以下三代产品: 1.第一代是传统的或被称为“标准”的白炭黑品种; 2.第二代被称为“高分散性白炭黑”(HighDispersibleSilica,简称HDS)和“易分散性白炭黑”(EasyDis

persibleSilica,简称EDS)。高分散性白炭黑是一种具有较高分散性,且无粉尘的白炭黑产品,适用于绿色轮胎。易分散性白炭黑是90年代中期开发的一种性能介于HDS和传统白炭黑之间的产品,其价格较HDS低,是一种性能价格比较高的替代HDS的产品。表1为国外主要的、已经商品化的HDS和EDS品种。 在轮胎用胶料中,如果采用HDS和EDS可以获得较高的拉伸强度、撕裂强度、定伸应力、扯断伸长率。采用HDS还可以改善胶料加工性能和耐磨性,从而可以得到较好的轮胎综合性能。在乘用轮胎的胶料中,如果采用HDS,除有明显的性能改进外,其成本也可降低。 3.第三代被称为“独特结构的高分散性白炭黑”,其分散性和补强性更好,目前处于研究开发或推广应用阶段。也有人称第三代产品为“高分散性白炭黑”而将第二代产品统称为“易分散性白炭黑”或者“半分散性白炭黑”。 为了研究开发或应用好高分散性白炭黑,必须首先了解如何检测白炭黑的分散性,了解白炭黑的微观结构和理化性能,及其对白炭黑的分散性和在橡胶中的补强性能的影响。在此基础上才能做好高分散性白

新材料产业——新能源材料

新材料产业——新能源材料 发展领域 新材料是指那些新出现的或正在发展中的、具有传统材料所不具备的优异性能和特殊功能的材料;或采用新技术(工艺,装备),使传统材料性能有明显提高或产生新功能的材料;一般认为满足高技术产业发展需要的一些关键材料也属于新材料的范畴。 新材料作为高新技术的基础和先导,应用范围极其广泛,它同信息技术、生物技术一起成为21世纪最重要和最具发展潜力的领域。随着我国能源消耗大幅度增长,煤炭、石油、天然气等传统能源已难于满足长期发展的需求,并会在消耗过程中对环境造成巨大破坏,要解决上述问题必须提高燃烧效率,实现清洁煤燃烧,开发新能源,节能降耗。这3个方面都与材料有着极为密切的关系。 新能源材料是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料,它是发展新能源的核心和基础。主要包括储氢合金材料为代表的镍氢电池材料、嵌锂碳负极和LiCoO2正极为代表的锂离子电池材料、燃料电池材料、Si半导体材料为代表的太阳能电池材料和发展风能、生物质能以及核能所需的关键材料等。

前景展望 新能源和再生清洁能源技术是21世纪世界经济发展中最具有决定性影响的五个技术领域之一,新能源包括太阳能、生物质能、核能、风能、地热、海洋能等一次能源以及二次电源中的氢能等。新能源材料则是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料,主要应用于照明、供电、供热等领域。 主要包括以镍氢电池材料、锂离子电池材料为代表的 绿色电池材料;燃料电池材料;太阳能电池材料以及铀、氘、氚为代表的反应堆核能材料等。 当前绿色电池材料研究的热点和前沿技术包括高能储氢材料、聚合物电池材料、磷酸铁锂正极材料等。在燃料电池材料领域当前研究的热点和前沿技术包括中温固体氧化物燃料电池,电解质材料等。在太阳能电池材料领域当前研究的热点和前沿技术包括晶体硅太阳能电池材料、非晶硅薄膜电池材料、化合物薄膜电池材料和染料敏化电池材料等。 对我国来说,首先要考虑的是提高能源生产效率、减少污染,其中当务之急是逐步实现洁净煤燃烧。为了提高燃烧效率,提高热效和增加机动性,要发展超临界蒸汽发电机组、整体煤气化联合循环技术和大功率工业燃气轮机组,这些技术对材料的要求都十分苛刻,需要耐热、耐蚀、抗磨蚀、抗

硫酸镍分离除杂工艺概述

镍溶液除杂工艺研究进展 周晴 摘要:针对目前的硫酸镍、氯化镍等镍盐产品标准对镍盐中杂质含量提出了更严格的要求。以及公司现有工艺对产品中的Cu,Fe,Zn,Ca,Mg,Mn处理不够理想,现介绍国内外镍溶些液中出除去这些杂质的方法和研究现状,并指出今后的发展趋势。 关键词:硫酸镍除杂沉淀溶剂萃取 2009年,新的硫酸镍和氯化镍产品标准[1]相继颁布。硫酸镍新标准取消了原I类产品合格品等级,对镍、钴、铁、铜、铅、钙、镁及水不溶物的含量进行了调整,增加了钠、锰、镉、汞、铬的指标,删除了硝酸盐、铵沉淀物、氨、氯化物4项指标。电镀用氯化镍新标准对镍、钴、锌、铁、铜、铅、镉、砷和水不溶物指标也进行了调整,增设了汞、锰2项指标。新的标准增加了对杂质种类的要求,对杂质含量要求也更加严格,如电镀用硫酸镍,新增了对钠的含量要求,对钙镁的含量也明确给出了限值。因而对镍溶液除杂工艺也提出了更高要求。结合镍溶液中常见金属杂质离子的情况,概括了从镍溶液(主要是硫酸镍溶液)中去除杂质离子的方法,并分析了今后的发展趋势。 一、溶剂萃取法除杂工艺 溶剂萃取法,作为有色金属分离、提取的一种重要的手段和方法,它具有操作连续化、杂质分离完全、产品质量稳定、金属回收率高、传质速度快、对环境的污染小等优点,是较为理想的净化手段,目前,在有色金属的生产过程中正日益受到人们的重视,其应用领域也正在日益扩大。因此在硫酸镍的生产工艺上溶剂萃取法也得到了广泛的应用。 硫酸镍除杂常用萃取剂有:P204,P507,除铜萃取剂,Lix84I,N902等 现主要以P204和P507的作用机理及分离效果做个论述 1.1 P204萃取剂简介 P204 的代表产品二-(2- 乙基已基)磷酸是一种烷基磷酸萃取剂,其分子式简式为HR2PO4,它相当于国外的D2EHPA。P2O4 从20 世纪70 年代开始广泛应用于稀土分离和有色金属冶金中的分离提取,它对钴和铁以及其他杂质元素有着优良的萃取能力,用得较多的是从硫酸溶液中分离铁、铜、锌。 1.2 P204萃取过程机理 因为P204 是一种酸性萃取剂,它萃取金属的反应方程式可表示如下: Men++nHL = MeLn+nH+ 上式中Me 表示金属离子,n 表示其价数。反应方程式的萃取平衡常数K 与萃取本身的性质、萃取温度、稀释剂等因素有关,它的分配系数D 可用下式表示: lgD = lgK+2lg[HL]+2pH 式中,L 代表有机离子。从上述看出,分配系数D 是pH 的函数,即P204萃取过程的分配系数

二氧化硅的工业化生产

二氧化硅的工业化生产 1.1 二氧化硅的种类 二氧化硅也称硅质原料,不仅包括天然矿物,也包括各种合成产品,其产品可分为结晶态和无定形状两类。 二氧化硅天然矿物通常包括结晶态二氧化硅矿物石英砂、脉石英、粉石英和无定形硅矿物硅藻土。 合成产品要紧是白炭黑(无定形二氧化硅),包括气相白炭黑(气相二氧化硅)、沉淀白炭黑(沉淀二氧化硅)。 石英是二氧化硅天然矿物的要紧矿物组分,化学成分为SiO2,玻璃光泽,断口呈油脂光泽。贝壳状断口,莫氏硬度7,密度2.65~2.66 。颜色不一,无色透亮的叫水晶,乳白色的叫乳石英。按其结晶习性分,三方晶系的为低温石英,又叫-石英;六方晶系的为高温石英,又称-石英。 石英砂是一个矿产品的专门名词,它泛指石英成分占绝对优势的各种砂,诸如海砂、河砂、湖砂等。地质学按成因将它们划分为冲积砂、洪积砂、残积砂等。石英砂的矿物含量变化专门大,以石英为主,其次包含各类长石、岩屑、重矿石(石榴子石、电气石、辉石、角闪石、榍石、黄玉、绿帘石、钛铁矿等)以及云母、绿泥石、黏土矿物等。 石英砂岩,是一种固结的砂质岩石,常简称为砂岩,是自然界最常见、最一般的硅质矿物原料之一,其石英和硅质碎屑含量一样在95%以上,副矿物多为长石、云母和黏土矿物,重矿物含量专门少。常见的重矿物有电气石、金红石、磁铁矿等。 石英岩是由石英砂岩或其他硅质岩石通过变质作用而形成的变质岩。脉石英是与花岗岩有关的岩浆热液矿脉,其矿物组成几乎全部为石英。 粉石英是一种颗粒极细、二氧化硅含量专门高的天然石英矿。粉石英这一词过去叫法专门多,它既包括天然的粉石英,同时也包括了由硅质矿物原料(石英岩、脉石英)加工而成的石英细粉。 硅砂是以石英为要紧成分的砂矿飞总称。以天然颗粒状态从地表或地层中产出的硅砂,以及石英岩、石英砂岩风化后呈粒状产出的砂矿称

新能源材料与器件专业实习报告

实习报告 实习内容:□认识实习(社会调查) □教学实习(□生产□临床□劳动) □毕业实习 实习形式:□集中□分散 学生姓名:王仕亮 学号:72301011052 专业班级:新能源材料111班 实习单位:赛维LDK太阳能高科技有限公司 实习时间:2014.11.13-2014.11.20 年月日

一、实习目的 1.通过对现场的参观、考查,以及技术专家和工程师的讲解,对光伏产业链 及环节有一个比较直观的了解,更加深刻地了解太阳电池的生产的各个环节的主要过程,主要从硅料的生产、硅片的制作处理,到太阳电池的生产,(最后到太阳能电池组件的制作); 2.通过对现场的参观,对设备和组织管理等建立感性直观的认识,从而加深 对已学理论课程的理解,并为后续专业课程的学习打下必要的基础; 3.对赛维LDK太阳能高科技有限公司的企业文化与理念、产业规划和布局有 初步的认识,以便为日后有可能从事相关行业作好正确的定位; 4.通过这次认识实习,使课堂所学理论联系实际,培养独立观察问题、分析 问题和解决问题的能力,以及树立一个正确的职业观念。 5.通过实习进一步培养我们的组织性、纪律性、集体主义精神等优良品德, 为胜任以后的工作打好基础。 二、实习内容 1.实习安排

实习时间的安排基本上是上午以授课的形式进行讲解,当天下午针对上午的讲解内容进行现场参观与介绍。于此同时,为了增强同学们对于职场的认识与感受,特别地,在对工艺与公司的参观之余,为我们进行了扩展活动和讲解了《公共礼仪》的课程。 这样的安排使我们更加高效地对当天所学的知识有所反馈及巩固, 2.企业与产品概况 江西赛维LDK太阳能高科技有限公司由香港流星实业有限公司和苏州柳新实业有限公司共同出资设立的合资企业,工厂座落于江西省新余市高新技术开发区,是集太阳能多晶体硅铸锭,多晶体硅片研发、生产、销售为一体的高新技术光伏企业。 公司注册资金2900万美元,一期总投资7250万美元。全套引进国际领先的光伏技术,生产及检测设备。2006年3月份投产75兆瓦生产能力,预计产值达8亿。2007年初形成产能200兆瓦,预计产值达36亿。2008年形成产能400兆瓦,预计产值达60亿。2010年将形成1000兆瓦,预计产值达150亿以上。至此我国光伏产业发展头小尾大的上游核心技术“瓶颈”和长期以来的高度对外依存将一去不复返。

机制砂生产质量控制指导书

机制砂生产质量控制指导书 参考文献: DB50/5030-2004 《机制砂、混合砂应用技术规程》(重庆市建设委员会,2004年版) DB24/016-2010 《山砂混凝土技术规程》(贵州省建设厅,2010年版)GB/T14684-2011 《建筑用砂》北京:中国标准出版社,2005年版 JGJ52-2006 《普通混凝土用砂质量标准及检验方法》北京:中国建筑工业出版社,2006版 TB10424-2010《铁路混凝土施工质量验收标准》中国铁道出版社 2011年版 一、机制砂质量控制指标 1、机制砂的粗细程度按细度模数分为粗、中、细三级,其细度模数应符合以下规定: 粗砂:3.7~3.1 中砂:3.0~2.3 细砂:2.2~1.6 2、机制砂的颗粒级配应处于下表中任何一个区内,除4.75mm和0.60mm 筛档上外,细骨料的实际颗粒级配与下表所列的累积筛余相比允许稍有超出分界线,但超出总量不应大于5% 表1

3、含粉量限制 表2 4、含泥量与泥块含量限制 表3 5、碱骨料反应及碱活性对用于桥梁涵洞等结构物的机制砂,应检验其碱活性,检测结果应符合TB10424-2010《铁路混凝土工程施工质量验收标准》,若有潜在危害,且属碱-碳酸盐反应时,不应做混凝土集料;且属碱-硅酸盐反应时,应采取抑制措施或限制使用。 6、有害物的限制机制砂中的轻物质、云母、有机质、炭化物及碳酸盐

等有害物质含量应满足下表规定: 表4 二、机械设备 1、破碎设备 根据我标段的实际情况,建议采用现代国产机制砂生产流水线设备生产,其优点:节能降耗,提高产量,低成本,低强度,占地面积小,稳定运行,智能控制,符合“十二五”期间,国家环保号召的要求,也是现代砂石料企业主的追求。 2、输送设备 皮带输送机是最常用的一种原料输送设备。这是由于皮带输送机输送速度快,而且是连续的,生产率高;它可以沿一定斜度把骨料送到几十米高处;皮带输送机输送平稳,没有噪音,消耗功率小,工作可靠,维修简单,所以是最理想的输送设备之一。 3、电气设备 条件允许的情况下应具备单独变压器,备用电源。每个独立控制单元设置一电压表监视电源电压。对于11KW及以上的电动设备设置电流表监视其运行情

蒸气间接加热浓缩生产粗硫酸镍工艺应用

蒸气间接加热浓缩生产粗硫酸镍工艺应用 余智艳 (南昌有色冶金设计研究院,南昌市,330002) (摘要)介绍蒸气间接加热浓缩法生产粗硫酸镍工艺在铜电解液净化过程中的应用对该工艺的工艺原理、操作参数的确定、所用设备特点及配置要求作了论述。 〔关键词〕蒸气间接加热浓缩法粗硫酸镍工艺 近年来,为了充分利用铜资源,满足市场需要,以废杂铜为原料生产电铜的铜电解厂日益增加。由于受资金、原料等客观条件的限制,这些铜冶炼厂的规模一般为1~2万t/a。而以杂铜为原料产出的阳极板含镍较高有的高达0.3%以上,这些镍必须在电解液净化过程中脱除。因此迫切需要一种适合中小型铜冶炼厂、设备简单、投资省的脱镍工艺。而蒸气间接加热浓缩生产粗硫酸镍工艺正满足了这一需要本人曾在几个工程的设计中运用该工艺现就其工艺原理、操作参数、设备选择及配置等方面做一些分析和论述。 1、概述 镍是铜阳极板中的主要杂质之一,在电解过程中若电解液中的镍离子浓度超过15g/L,对电铜质量将产生不良影响,必须在电解液的净化过程中除去,以保证电解的正常生产。 电解液中镍的脱除方法主要有结晶法、萃取法、离子交换法等。而国内主要采用结晶法生产粗硫酸镍,如一些老冶炼厂采用的直火浓缩法和冷冻结晶法、80年代贵溪冶炼厂从日本引进的电热浓缩法等。直

火浓缩法因具有设备简单、镍直收率高等优点,曾一度在小型铜冶炼厂广泛采用,但由于其燃烧与蒸发设备不密闭、酸挥发多、能耗大、环境污染严重、操作环境恶劣、劳动强度大,在日益重视环境保护及强调劳动安全卫生的今天已不再推荐使用。冷冻结晶法由于需要设备多、占地面积大、脱镍率低等因素一直未得到广泛采用。而电热浓缩法由于自动化程度高、环保效果好、脱镍率高等优点正被越来越多的工厂所采用,但因所需设备复杂、投资大且生产粗硫酸镍成本高,使其在中小型铜冶炼厂的使用受到限制。所以,蒸气间接加热浓缩法(在某一压强下,采用蒸气间接加热使溶液蒸发的方法)则受到中小型铜冶炼厂的普遍青睐。它既解决了操作条件恶劣、劳动强度大等问题,又利于环境保护,且设备简单、投资省,对资金有限的中小型铜冶炼厂是较为适宜的。 2、蒸气间接加热浓缩法的工艺原理及操作参数的确定 2.1蒸气间接加热浓缩法的工艺原理 电解液净化系统生产粗硫酸镍的溶液一般为二次脱铜终液,其成份主要为H2SO4和NiSO4。根据硫酸盐结晶理论,溶液中的硫酸浓度与硫酸盐溶解度在不同温度下存在一定的平衡关系,即溶液中硫酸盐溶解度会随其酸度、温度的变化而改变;同时溶液在不同的酸度、不同的压强下,其沸点也不同,它们之间也存在一定的平衡关系。图1为溶液中硫酸镍的饱和浓度与酸度在不同温度下的关系曲线。图2为溶液的沸点与酸度在不同压强下的关系曲线。

新能源材料制备与加工技术.

新能源材料制备与加工技术李长久 西安交 通 大 学 《新能源材料制 备 与加 工技 西安交 通大学 材料 制备与加工技 术》 本课程的安排

第1讲绪论:能源结构与太阳辐射特点 第2讲太阳电池原理 第3讲太阳电池原理(续 第4讲单晶硅太阳电池制造工艺 第5讲薄膜太阳电池与DSC 制造工艺 第6讲燃料电池基础 第7讲固体氧化物燃料电池与质子交换膜燃料电池制备成形技术第8讲新型2次电池材料 试验1 单晶硅太阳电池特性 试验2 单晶硅、非晶硅、多晶硅太阳电池特性比较 试验3 SOFC 电池输出特性 试验4 PEMFC 试验 西 安 交 通 大

学《新能源材料制备与加工技西安交通大学材料

制 备 与 加 工技 术》 本课程的基本要求 了解能源结构与发展趋势,可再生能源与化石燃料高效能源转换系统 能源转换材料基本特征 太阳电池原理,太阳电池转换效率的影响因素及其影响规律、提高转换效率的基本途径; 太阳电池的种类与制造工艺及其特点; 燃料电池的原理、特点、开发现状与应用前景。二次电池及其相关材料技术 材料制备、加工与制造器件一体化的特征 西 安 交 通

大 学 《 新 能 源 材 料 制 备 与加 工技 西 安 交通 大 学材 料制备与加工技术》

主要参考书 1.(美胡晨明,R.M. 还特著,(李采华译,太阳电 池,北京大学出版社,1990年 2. Chenming HU and Richard M. White, Solar Cell, From Basic to Advanced System, McGraw Hill Book Company, 1983 3.(澳马丁格林著,李秀文等译,太阳电池,电子工 业出版社,1987年 4. 赵富鑫,魏彦章,太阳电池及其应用,国防工业出版社,1985 5. 雷永泉主编,新能源材料,天津大学出版社, 2000。 6. 衣宝廉著,燃料电池,化学工业出版社,2003。 7. Fuel Cell Handbook 西 安 交

微电子工艺技术-复习要点答案

第四章晶圆制造 1.CZ法提单晶的工艺流程。说明CZ法和FZ法。比较单晶硅锭CZ、MCZ和FZ三种生长方法的优缺点。 答:1、溶硅2、引晶3、收颈4、放肩5、等径生长6、收晶。CZ法:使用射频或电阻加热线圈,置于慢速转动的石英坩埚内的高纯度电子级硅在1415度融化(需要注意的是熔硅的时间不宜过长)。将一个慢速转动的夹具的单晶硅籽晶棒逐渐降低到熔融的硅中,籽晶表面得就浸在熔融的硅中并开始融化,籽晶的温度略低于硅的熔点。当系统稳定后,将籽晶缓慢拉出,同时熔融的硅也被拉出。使其沿着籽晶晶体的方向凝固。籽晶晶体的旋转和熔化可以改善整个硅锭掺杂物的均匀性。 FZ法:即悬浮区融法。将一条长度50-100cm 的多晶硅棒垂直放在高温炉反应室。加热将多晶硅棒的低端熔化,然后把籽晶溶入已经熔化的区域。熔体将通过熔融硅的表面张力悬浮在籽晶和多晶硅棒之间,然后加热线圈缓慢升高温度将熔融硅的上方部分多晶硅棒开始熔化。此时靠近籽晶晶体一端的熔融的硅开始凝固,形成与籽晶相同的晶体结构。当加热线圈扫描整个多晶硅棒后,便将整个多晶硅棒转变成单晶硅棒。 CZ法优点:①所生长的单晶的直径较大,成本相对较低;②通过热场调整及晶转,坩埚等工艺参数的优化,可以较好的控制电阻率径向均匀性。缺点:石英坩埚内壁被熔融的硅侵蚀及石墨保温加热元件的影响,易引入氧、碳杂质,不易生长高电阻率单晶。 FZ法优点:①可重复生长,提纯单晶,单晶纯度较CZ法高。②无需坩埚、石墨托,污染少③高纯度、高电阻率、低氧、低碳④悬浮区熔法主要用于制造分离式功率元器件所需要的晶圆。缺点:直径不如CZ法,熔体与晶体界面复杂,很难得到无位错晶体,需要高纯度多晶硅棒作为原料,成本高。 MCZ:改进直拉法优点:较少温度波动,减轻溶硅与坩埚作用,降低了缺陷密度,氧含量,提高了电阻分布的均匀性 2.晶圆的制造步骤【填空】 答:1、整形处理:去掉两端,检查电阻确定单晶硅达到合适的掺杂均匀度。 2、切片 3、磨片和倒角 4、刻蚀 5、化学机械抛光 3. 列出单晶硅最常使用的两种晶向。【填空】 答:111和100. 4. 说明外延工艺的目的。说明外延硅淀积的工艺流程。 答:在单晶硅的衬底上生长一层薄的单晶层。 5. 氢离子注入键合SOI晶圆的方法 答:1、对晶圆A清洗并生成一定厚度的SO2层。2、注入一定的H形成富含H的薄膜。3、晶圆A翻转并和晶圆B键合,在热反应中晶圆A的H脱离A和B键合。4、经过CMP和晶圆清洗就形成键合SOI晶圆 6. 列出三种外延硅的原材料,三种外延硅掺杂物【填空】 7、名词解释:CZ法提拉工艺、FZ法工艺、SOI、HOT(混合晶向)、应变硅 答:CZ法:直拉单晶制造法。FZ法:悬浮区融法。SOI:在绝缘层衬底上异质外延硅获得的外延材料。HOT:使用选择性外延技术,可以在晶圆上实现110和100混合晶向材料。应变硅:通过向单晶硅施加应力,硅的晶格原子将会被拉长或者压缩不同与其通常原子的距离。 第五章热处理工艺 1. 列举IC芯片制造过程中热氧化SiO2的用途?

白炭黑的应用(详细)

白炭黑 一、简介 白炭黑的主要成份是SiO2,因其为白色,且主要物性及用途与炭黑相似而得名。 白炭黑按生产方法的不同可分为沉淀白炭黑(沉淀水合二氧化硅)和气相法白炭黑(气相二氧化硅),两种产品的生产方法不同,性质及用途也有很大区别,以下介绍的产品是用硫酸沉淀法生产的,也即沉淀法白炭黑,以下所涉及的白炭黑均为沉淀法白炭黑。 二、名称定义及分子式 白炭黑的学名为:沉淀水合二氧化硅。 定义:沉淀水合二氧化硅是从可溶性硅酸盐水沉液中沉淀而获得的无定形粒子组成的材料。 化学分子式:SiO2〃nH2O 三、主要性质 1、物理性质 外观:白色粉末或粒状或不规则造块。 真密度:约2.0g/ml 假密度:约0.2g/ml(普通产品)。 耐高温、不燃烧;电绝缘性好。 2、化学性质: 能与烧碱发生反应SiO2nH2O+2NaOH=Na2SiO3+(n+1)H2O

能与氢氟酸发生反应SiO2nH2O+4HF=SiF4+(n+2)H2O 2、主要化学指标 SiO2含量(干品)≥90% 筛余物(4.5цm)≤0.5% 加热减量:4.0-8.0% 灼烧减量:(干品)≤7.0% PH值:5.0-8.0 总铜含量:≤30mg/kg 总锰含量:≤50mg/kg 总铁含量:≤1000mg/kg DBP吸收值:2.00-3.50cm3/g 比表面积:不同用途有不同范围,我厂产品控制 145-165m2/g(HT2#) 165-185m2/g(HT1#) 200-300m2/g(HT3#) 3、主要物理性能(配合橡胶品) 拉伸强度≥17.0Mpa 500%定伸强度≥6.3Mpa 扯断伸长度≥675% 四、生产原理 水玻璃和硫酸反应生成水合硅酸 加热 Na2O·mSiO2+H2SO4+nH2o-→Na2SO4+mSiO2·(n+1)H2O↓ 反应完成液经压滤脱水,洗涤、并通过打浆制得白炭黑料浆,经喷

2012-2013 新能源材料复习

一、名词解释 1、二次电池 2、薄膜太阳能电池 3、燃料电池 4、核能 5、新能源 6、储能技术 7、热核反应 8、碱性蓄电池 9、新能源材料10、 生物质能11、地热能 二、基本知识 1、可再生能源包括太阳能、风能、地热能、海洋能、生物质能、氢能和水能等。 2、相变储能材料的热物性主要包括:热导率、比热容、热膨胀系数、相变潜热、相变温度。 3、锂离子电池正极材料氧化物类主要有:钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMn2O4)、钒酸锂(Li3V2O5)、三元氧化物材料等。 4、锂离子电池负极材料主要有:中间相微珠碳(MCMB)、石墨化碳、碳纤维、碳纳米管、金属合金、硅基材料等。 5、硅是目前太阳能电池的主要材料之一,按照其微观结构的不同,用于太阳能电池的硅分为单晶硅、多晶硅和非晶硅。 6、黄铜矿基太阳能电池材料主要有:CuInSe2、CuGaSe2、Cu(In,Ga)Se2、CuInS2等。 7、核能利用是人类高效率利用核能,使核燃料在受控条件下发生核反应,按照反应方式可分为:核裂变与核聚变。 8、氢能是对环境无害的绿色能源,获取氢的原料是水,资源丰富,氢使用后产物是纯水或水蒸汽,故此氢是完全可再生的燃料。氢能源系统的技术关键是氢的制造、储存、运输和利用技术。 9、质子交换膜燃料电池(PEMFC)的双极板材料大致可分为碳(石墨)材料、金属材料和复合材料。 10、透明导电薄膜玻璃是在玻璃基底上通过物理或者化学方法制作的透明导电氧化物薄膜,主要包括In2O3, SnO2, ZnO, CdO氧化物及其复合多元氧化物薄膜材料,例如In2O3:Sn(ITO), ZnO:In(IZO), ZnO:Ga(GZO), ZnO:Al(AZO)。

机制砂生产(干法)及机制砂混凝土技术指南

浙江省交通建设工程 机制砂生产(干法)及机制砂混凝土技术指南 浙江省交通运输厅 二〇一六年一月

目次 前言................................................................................ I II 1 总则 (1) 2 规范性引用文件 (2) 3 术语和定义 (3) 4 机制砂的料源选择 (4) 5 机制砂的生产设备 (5) 5.1 一般规定 (5) 5.2 生产设备配置 (5) 6 机制砂的生产工艺 (7) 6.1 一般规定 (7) 6.2 生产工艺 (7) 6.3 环境保护 (10) 7 机制砂的质量标准 (11) 7.1 规格与类别 (11) 7.2 技术要求 (11) 7.3 质量检验 (13) 8 机制砂混凝土配合比设计 (14) 8.1 原材料选择 (14) 8.2 配合比设计基本要求 (15) 8.3 普通混凝土配合比设计原则 (15) 8.4 高性能混凝土配合比设计原则 (16) 8.5 试验室试配与调整 (17) 8.6 配合比现场验证 (19) 8.7 工艺性试验验证 (19) 9 机制砂混凝土的施工控制 (20) 9.1 一般规定 (20) 9.2 混凝土施工和易性控制 (20) 9.3 混凝土浇筑过程质量控制 (21) 9.4 混凝土结构裂缝的预防措施 (22) 9.5 混凝土结构表面质量控制 (22) 9.6 混凝土结构力学与耐久性能控制 (23) 附录A(规范性附录)机制砂混凝土外加剂相容性快速试验方法 (24) 附录B(资料性附录)机制砂生产(干法)常用生产设备技术参数 (26) 附录C(资料性附录)机制砂生产规模及相应配置(干法) (27) 附录D(资料性附录)机制砂生产参考设备配置及工艺流程图 (28) 附录E(资料性附录)机制砂混凝土配合比设计案例 (33)

白炭黑概述及其生产工艺

白炭黑概述及其生产工艺 硅在自然界中主要以二氧化硅和硅酸盐的状态存在,一切植物皆含有少量的二氧化硅,动物体内的结缔组织中亦含有二氧化硅。硅在地壳中的含量是绝对丰富的,硅在地壳中的重量百分数为27.6%,仅次于氧(47.2%)为第二位。无机硅化合物在八十年代是无机化学品中发展较快的系列产品,尤其是近些年来发展更为迅速。在德温特中心专利索引的无机化学品类中,硅化合物的专利文摘量占了绝对的优势。由此可以看出,无机硅化合物,在众多的无机化学品中是有明显的竞争力的。 纵观世界情况,硅化合物的新品种近些年来增加并不多,而对于无机硅化合物用途的开发则较为重视。例如硅化合物中最老的品种硅酸钠,目前也在向高性能、高附加价值化发展;美国莫比尔公司对于ZSM沸石研制了多种规格,几乎可用于石油化工的各个催化过程;氮化硅陶瓷发动机正在向实用化进军。因此,从目前开发趋势看,无机硅化合物将会大量进入到轻工、食品、医药、建筑、电子、冶金、机械工业等许多领域,一定大有发展前途。 我国的硅化合物产品主要是解放后才逐步发展起来,至今才有几十个品种,因此差距还较大。我国具有优质而丰富的资源,为研究开发更多的硅化合物提供了物质基础。近十多年来,不仅得到了化工部的重视,并委托科研单位出版了“硅铝化合物”资料。可

以预料,我国的硅化合物的发展速度必将越来越快,与世界发达国家的差距必将越来越小。 白炭黑是硅化合物中较老的一个品种,三十年代中叶,德、苏、美等国就开始研制,到四十年代末就进入了工业生产,八十年代总生产能力达70~80万吨/年。我国六十年代开始起步,八十年代千吨级的厂有两家,年产量总共仅5000~6000吨,而且品种少,质量差,能耗高,未形成系列化。因此,研制新产品和开发应用领域的任务十分艰巨。 1.物理化学性质 外观为白色高度分散的无定形粉末或絮状粉末,也有加工成颗粒状作为商品的。比重为2.319~2.653,熔点为1750℃。不溶于水及绝大多数酸,在空气中吸收水分后会成为聚集的细粒。能溶于苛性钠和氢氟酸。对其它化学药品稳定,耐高温不分解,不燃烧。具有很高的电绝缘性,多孔性。内表面积大,在生胶中有较大的分散力。经表面改性处理的憎水性白炭黑易溶于油内,用于橡胶和塑料等作为补强填充剂,都会使其产品的机械强度和抗撕指标显著提高。由于制造方法不同,白炭黑的物化性质、微观结构均会有一定差异,故其应用领域和应用效果也不同。 2.用途。 白炭黑的用途很广,且不同产品具有不同的用途,现再概述如下:用作合成橡胶的良好补强剂,其补强性能仅次于炭黑,若经超细化和恰当的表面处理后,甚至优于炭黑。特别是制造白色、彩色及浅色橡胶制品时更为适用。用作稠化剂或增稠剂,合成油类、绝缘漆的调合剂,油漆的退光剂,电子元件包封材料的触变剂,荧光屏涂覆时荧光粉的沉淀剂,彩印胶板填充剂,铸造的脱模剂。加入树脂内,可提高树脂防潮和绝缘性能。填充在塑料制品内,可增加抗滑性和防油性。填充在硅树脂中,可制成耐200℃以上的塑料。在造纸工业中用作填充剂和纸的表面配料。还有用作杀虫剂及农药的载体或分散剂,防结块剂以及液体吸附剂和润滑剂等。 3.生产方法概述

微电子加工工艺总结

1、分立器件和集成电路的区别 分立元件:每个芯片只含有一个器件;集成电路:每个芯片含有多个元件。 2、平面工艺的特点 平面工艺是由Hoerni于1960年提出的。在这项技术中,整个半导体表面先形成一层氧化层,再借助平板印刷技术,通过刻蚀去除部分氧化层,从而形成一个窗口。 P-N结形成的方法: ①合金结方法 A、接触加热:将一个p型小球放在一个n型半导体上,加热到小球熔融。 B、冷却:p型小球以合金的形式掺入半导体底片,冷却后,小球下面形成一个再分布结晶区,这样就得到了一个 pn结。 合金结的缺点:不能准确控制pn结的位置。 ②生长结方法 半导体单晶是由掺有某种杂质(例如P型)的半导体熔液中生长出来的。 生长结的缺点:不适宜大批量生产。 扩散结的形成方式 与合金结相似点: 表面表露在高浓度相反类型的杂质源之中 与合金结区别点: 不发生相变,杂质靠固态扩散进入半导体晶体内部 扩散结的优点 扩散结结深能够精确控制。 平面工艺制作二极管的基本流程: 衬底制备——氧化——一次光刻(刻扩散窗口)——硼预沉积——硼再沉积——二次光刻(刻引线孔)——蒸铝——三次光刻(反刻铝电极)——P-N结特性测试 3、微电子工艺的特点

高技术含量设备先进、技术先进。 高精度光刻图形的最小线条尺寸在亚微米量级,制备的介质薄膜厚度也在纳米量级,而精度更在上述尺度之上。超纯指工艺材料方面,如衬底材料Si、Ge单晶纯度达11个9。 超净环境、操作者、工艺三个方面的超净,如 VLSI在100级超净室10级超净台中制作。 大批量、低成本图形转移技术使之得以实现。 高温多数关键工艺是在高温下实现,如:热氧化、扩散、退火。 4、芯片制造的四个阶段 固态器件的制造分为4个大的阶段(粗线条): ①材料制备 ②晶体生长/晶圆准备 ③晶圆制造、芯片生成 ④封装 晶圆制备: (1)获取多晶 (2)晶体生长----制备出单晶,包含可以掺杂(元素掺杂和母金掺杂) (3)硅片制备----制备出空白硅片 硅片制备工艺流程(从晶棒到空白硅片): 晶体准备(直径滚磨、晶体定向、导电类型检查和电阻率检查)→ 切片→研磨→化学机械抛光(CMP)→背处理→双面抛光→边缘倒角→抛光→检验→氧化或外延工艺→打包封装 芯片制造的基础工艺 增层——光刻——掺杂——热处理 5、high-k技术

白炭黑生产工艺

白炭黑生产工艺 硅在自然界中主要以二氧化硅和硅酸盐的状态存在,一切植物皆含有少量的二氧化硅,动物体内的结缔组织中亦含有二氧化硅。硅在地壳中的含量是绝对丰富的,硅在地壳中的重量百分数为27.6%,仅次于氧(47.2%)为第二位。无机硅化合物在八十年代是无机化学品中发展较快的系列产品,尤其是近些年来发展更为迅速。在德温特中心专利索引的无机化学品类中,硅化合物的专利文摘量占了绝对的优势。由此可以看出,无机硅化合物,在众多的无机化学品中是有明显的竞争力的。 纵观世界情况,硅化合物的新品种近些年来增加并不多,而对于无机硅化合物用途的开发则较为重视。例如硅化合物中最老的品种硅酸钠,目前也在向高性能、高附加价值化发展;美国莫比尔公司对于ZSM沸石研制了多种规格,几乎可用于石油化工的各个催化过程;氮化硅陶瓷发动机正在向实用化进军。因此,从目前开发趋势看,无机硅化合物将会大量进入到轻工、食品、医药、建筑、电子、冶金、机械工业等许多领域,一定大有发展前途。 我国的硅化合物产品主要是解放后才逐步发展起来,至今才有几十个品种,因此差距还较大。我国具有优质而丰富的资源,为研究开发更多的硅化合物提供了物质基础。近十多年来,不仅得到了化工部的重视,并委托科研单位出版了“硅铝化合物”资料。可以预料,我国

的硅化合物的发展速度必将越来越快,与世界发达国家的差距必将越来越小。 白炭黑是硅化合物中较老的一个品种,三十年代中叶,德、苏、美等国就开始研制,到四十年代末就进入了工业生产,八十年代总生产能力达70~80万吨/年。我国六十年代开始起步,八十年代千吨级的厂有两家,年产量总共仅5000~6000吨,而且品种少,质量差,能耗高,未形成系列化。因此,研制新产品和开发应用领域的任务十分艰巨。 1.物理化学性质 外观为白色高度分散的无定形粉末或絮状粉末,也有加工成颗粒状作为商品的。比重为2.319~2.653,熔点为1750℃。不溶于水及绝大多数酸,在空气中吸收水分后会成为聚集的细粒。能溶于苛性钠和氢氟酸。对其它化学药品稳定,耐高温不分解,不燃烧。具有很高的电绝缘性,多孔性。内表面积大,在生胶中有较大的分散力。经表面改性处理的憎水性白炭黑易溶于油内,用于橡胶和塑料等作为补强填充剂,都会使其产品的机械强度和抗撕指标显著提高。由于制造方法不同,白炭黑的物化性质、微观结构均会有一定差异,故其应用领域和应用效果也不同。

新能源、工艺及设备

新能源、工艺及设备 新能源:太阳能:太阳能专利、光伏产品、太阳能灯、光热产品、太阳能热水器、太阳能热水器配件 风能:风能专利、风力发电机组、风电叶片材料、发电机及器件、风电搭筒及材料、风电化工材料、测风防雷设备、风电母线、风电控制系统、加工、检测设备、风电传动设备生物质能:生物质能专利、生物质原料、生物柴油、燃料乙醇、乙醇汽油、甲醇、甲醇汽油、二甲醚、生物质化 其他新能源:核能、氢能、地热能、海洋能、燃料电池、锂电池、新能源汽车 工艺:1、洁净煤技术采用先进的燃烧和污染处理技术和高效清洁的煤炭利用途径(如煤的气化与液化),减少燃煤的污染物排放,提高煤炭利用率。 2、太阳能太阳向宇宙空间辐射能量极大,而地球所接受的只是其中极其微小的一部分。因地理位置以及季节和气候条件的不同,不同地点和在不同时间里所接受到的太阳能有所差异,地面所接受到的太阳能平均值大致是:北欧地区约为每天每一平方米2千瓦/小时,大部分沙漠地带和大部分热带地区以及阳光充足的干旱地区约为每平方米6千瓦/小时。目前人类所利用的太阳能尚不及能源总消耗量的1%。 3、地热能据测算,在地球的大部分地区,从地表向下每深人100米温度就约升高3℃,地面下35公里处的温度约为1100℃一1300℃,地核的温度则更高达2000℃以上。估计每年从地球内部传到地球表面的热量,约相当于燃烧370亿吨煤所释放的热量。如果只计算地下热水和地下蒸汽的总热量,就是地球上全部煤炭所储藏的热量的1700万倍。 现在地热能主要用来发电,不过非电应用的途径也十分广阔。世界_L第一座利用地热发电的试验电站于1904年在意大利运行。地热资源受到普遍重视是本世纪60年代以后的事。目前世界上许多国家都在积极地研究地热资源的开发和利用。地热能主要用来发电,地热发电的装机总容量已达数百万千瓦。 我国地热资源也比较丰富,高温地热资源主要分布在西藏、云南西部和台湾等地。 4、核能核能与传统能源相比,其优越性极为明显。1公斤铀235裂变所产生的能量大约相当于2500吨标准煤燃烧所释放的热量。现代一座装机容量为100万千瓦的火力发电站每年约需200一300万吨原煤,大约是每天8列火车的运量。同样规模的核电站每年仅需含铀235百分之三的浓缩铀28吨或天然铀燃料150吨。所以,即使不计算把节省下来的煤用作化工原料所带来的经济效益,只是从燃料的运输、储存上来考虑就便利得多和节省得多。据测算,地壳里有经济开采价值的铀矿不超过400万吨,所能释放的能量与石油资源的能量大致相当。如按目前速度消耗,充其量也只能用几十年。不过,在铀235裂变时除产生热能之外还产生多余的中子,这些中子的一部分可与铀238发生核反应,经过一系列变化之后能够得到怀239,而怀239也可以作为核燃料。运用这些方法就能大大扩展宝贵的铀235资源。目前,核反应堆还只是利用核的裂变反应,如果可控热核反应发电的设想得以实现,其效益必将极其可观。核能利用的一大问题是安全问题。核电站正常运行时不可避免地会有少量放射性物质随废气、废水排放到周围环境,必须加以严格的控制。现在有不少人担心核电站的放射物会造成危害,其实在人类生活的环境中自古以来就存在着放射性。数据表明,即使人们居住在核电站附近,它所增加的放射性照射剂量也是微不足道的。事实证明,只要认真对待,措施周密,核电站的危害远小于火电站。据专家估计,相对于同等发电量的电站来说,燃煤电站所引起的癌症致死人数比核电站高出50一1000倍,遗传效应也要高出100倍。 5、海洋能海洋能包括潮汐能、波浪能、海流能和海水温差能等,这些都是可再生能源。海水的潮汐运动是月球和太阳的引力所造成的,经计算可知,在日月的共同作用下,潮汐的

机制砂生产机械的对比及分析

机制砂生产机械的对比及分析 随着天然砂资源的日益短缺,不合理的开采对环境造成了严重破坏,因此国家和各地政府开始严格限制或禁止开采天然砂,于是积极推广使用机制砂石成为砂石行业乃至混凝土行业产业结构转型升级的主要发展方向和产业主体。 河北金隅鼎鑫水泥有限公司原有一条生产线利用本企业的自有矿山生产粗骨料,由于产品成品率低、质量差、附加值低、资源综合利用率低,无法满足企业日益增长的环境和效益要求。为了解决以上问题,需要将原生产线的废弃尾料进行二次利用,将其中2.5mm以上的石粉分离出来并制成机制砂,因此需要寻找一种适用于本企业现状的机械设备进行机制砂的生产。 1 机制砂生产机械 目前,机制砂的主要生产工艺有湿法水洗制砂和干法制砂两种。在机制砂发展早期,湿法制砂工艺较多,但湿法制砂需耗费大量的水资源,且水污染问题严重,而且水洗后机制砂中的微细石粉随水流失,导致使用其搅拌的混凝土易出现泌水等问题。随着国家环保要求标准的提高和混凝土行业的发展,湿法水洗制砂工艺基本退出了机制砂行业。 传统的干法制砂工艺有锤式破碎机制砂、反击破碎机制砂、圆锥破碎机制砂以及以上破碎机组合使用的制砂工艺,但均有着产品含粉量过高、粒形差、级配不合理、成品率低、设备磨损大等缺陷,也基本退出了机制砂市场。

目前国内制砂企业主要使用新型干法制砂工艺,包括双轴锤式破碎机制砂工艺、立轴破碎机制砂工艺、对辊破碎机制砂工艺3种。 1.1 双轴锤式破碎机制砂 双轴锤式破碎制砂工艺是在传统单轴锤式破碎机基础上发展起来的一种破碎制砂工艺,其制砂主机设备主要由机体、破碎板、上转子、下转子、摆锤、旋转驱动装置、筛板等组成。该机在工作过程中2个转子相对运转,进入破碎腔的物料首先由第一个转子上的锤头进行打击破碎并获得一定动能后撞向第二个转子,由于第二个转子与物料飞来的方向相反,此时第二个转子对物料的打击速度等于2个速度的叠加,物料经如此多次的循环打击而破碎后经篦条的缝隙排出。通过调整下方的篦条缝隙,调整产品的粒度和级配。 (1)优点:其2个转子相对运转带动破碎腔内物料相互撞击,物料反复碰撞形成了石料在破碎腔内的自粉碎,极大地降低了锤头及耐磨部件的消耗。破碎腔内物料被2个转子相互沿切线方向抛出,形成反复相互高速撞击,所以破碎比大,产量高,成品率高,最大产能可达250t/h。同时,由于产量大和设备结构简单,其单位机制砂产品电耗低,运营成本低。 (2)缺点:由于该工艺只是通过调整篦条缝隙来调整产品的粒度、颗粒级配和细度模数,调整时需更换篦条,耗时较长;且仅更换篦条对级配和细度模数调整幅度有限,产品质量的可控性不高,一般只能生产Ⅲ类砂,因此使用此工艺的机制砂生产企业不多。 1.2 立轴破碎机制砂

相关主题