搜档网
当前位置:搜档网 › 硅太阳能电池的丝网印刷技术

硅太阳能电池的丝网印刷技术

硅太阳能电池的丝网印刷技术
硅太阳能电池的丝网印刷技术

硅太阳能电池的丝网印刷技术

1 引言

随着全球能源的日趋紧,太阳能以无污染、市场空间大等独有的优势受到世界各国的广泛重视,国际上众多大公司投入太阳能电池研发和生产行业。从太阳能获得电力,需通过太阳能电池进行光电变换来实现,硅太阳能电池是一种有效地吸收太阳能辐射并使之转化为电能的半导体电子器件,广泛应用于各种照明及发电系统中。

2 硅太阳能电池的生产工序

太阳能电池原理主要是以半导体材料硅为基体,利用扩散工艺在硅晶体中掺入杂质:当掺入硼、磷等杂质时,硅晶体中就会存在着一个空穴,形成n 型半导体;同样,掺入磷原子以后,硅晶体中就会有一个电子,形成p型半导体,p型半导体与n型半导体结合在一起形成pn结,当太照射硅晶体后,pn 结中n型半导体的空穴往p型区移动,而p型区中的电子往n型区移动,从而形成从n型区到p型区的电流,在pn结中形成电势差,这就形成了电源,见图1。

图2为硅太阳能电池生产的主要工序,从中可以看出丝网印刷是生产太阳能电池的重要工序,其印刷质量(厚度,宽度,膜厚一致性)影响电池片的技术指标。

3 工序对印刷电极的要求

3.1 背面银电极印刷(背银)

在电池片的正极面(p区)用银铝浆料印刷两条电极导线(宽约3~4mm)作为电池片的电极(图3)。

3.2 背面铝印刷(背铝)

在电池片的正极面采用铝浆料印刷整面(除背银电极外)。

3.3 正面银印刷(正银)

在电池片的正面(喷涂减反射膜的面)同时用银浆料印刷一排间隔均匀的栅线和两条电极(图4),在工艺上要求栅线间距约3mm、宽度约O.10~0.12mm:

4 印刷原理

图5为丝网印刷原理示意图,丝网印刷由五大要素构成,即丝网、刮刀、浆料、工作台以及基片。丝网印刷基本原理是:利用丝网图形部分网孔透浆料,非图文部分网孔不透浆料的基本原理进行印刷。印刷时在丝网一端倒入浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮板从图形部分的网孔中挤压到基片上。由于浆料的黏性作用而使印迹固

着在一定围之,印刷过程中刮板始终与丝网印版和承印物呈线接触,接触线随刮刀移动而移动,由于丝网与承印物之间保持一定的间隙,使得印刷时的丝网通过自身的力而产生对刮板的反作用力,这个反作用力称为回弹力。由于回弹力的作用,使丝网与基片只呈移动式线接触,而丝网其它部分与承印物为脱离状态,保证了印刷尺寸精度和避免蹭脏承印物。当刮板刮过整个印刷区域后抬起,同时丝网也脱离基片,工作台返回到上料位置,至此为一个印刷行程。

4.1 刮刀

从图5的印刷原理示意中可以看出,刮刀的作用是将浆料以一定的速度和角度将浆料压入丝网的漏孔中,刮刀在印刷时对丝网保持一定的压力,刃口压强在10~15N/cm之间,刮板压力过大容易使丝网发生变形,印刷后的图形与丝网的图形不一致,也加剧刮刀和丝网的磨损,刮板压力过小会在印刷后的丝网上存在残留浆料。刮刀材料一般为聚胺脂橡胶或氟化橡胶,硬度围为邵氏A60°~A90°,刮板条的硬度越低,印刷图形的厚度越大,刮刀材料必须耐磨,刃口有很好的直线性,保持与丝网的全接触;刮刀一般选用菱形刮刀,它具有4个刃口,可逐个使用,利用率高,见图6。

刮刀速度:刮刀速度是决定效率的最大因素,以半自动印刷机为例,印刷所占时间一般为总循环的2/3;印刷速度的设定由印刷图形和印刷用浆料的黏度决定,速度越高,刮刀带动浆料进入丝网漏孔的时间越短,浆料的填充性会差,出现图7所示现象,如果印刷线条精细,速度应低一些,图4所示的正银工序中栅线的线宽在0.1~0.12nun,一般速度设定在200~250mm/s,图3所示的背铝和背银工序因印刷线条宽速度设定在300mm/s;印刷用浆料因不同工序而不同,相应黏度不同,但总体黏度比较低,所以印刷速度较快;在实际的印刷中速度的恒定同样很重要,如果在印刷过程中速度出现波动,会导致图形厚度的不一致。

刮刀角度:刮刀角度的设定与浆料有关;浆料黏度值越高,流动性越差,需要刮刀对浆料的向下的压力越大,刮刀角度小;刮刀角度调节围为45°~75°。在印刷过程中起关键作用的是刮刀刃口2~3mm的区域,在印刷压力下刮刀与丝网摩擦,在开始印刷时近似直线,刮刀刃口对丝网的局部压力很大,见图5所示,随着刮刀刃口的磨损,刃口形状呈圆弧形,它对浆料朝丝网方向的分力急剧增加,丝网作用于丝网单位面积的压力明显减小,刮刀刃口处与丝网的实际角度远小于45°,印刷后丝网表面会有残余浆料,易发生渗漏,同时印刷线条边缘模糊。见图7,这时需要更换刮刀。

4.2 丝网

常用的丝网材料有不锈钢和尼龙2种。不锈钢丝网的特点是丝径细、目数多,耐磨性好,强度高,尺寸稳定,拉伸性小,由于丝径精细,油墨的通过性能好,尺寸精度稳定,适于太阳能电池片的印刷。尼龙丝网是由化学合成纤维制作而成,具有很高的强度,耐磨性、耐化学药品性、耐水性、弹性都比较好,由于丝径均匀,表面光滑,故油墨的通过性也极好。其不足是尼龙丝网的拉伸性较大。这种丝网在绷网后的一段时间,力有所降低,使丝网印版松驰,精度下降,在太阳能电池片的印刷中采用不锈钢丝网。图8为丝网的外形。

硅太阳能电池制造工艺流程图

硅太阳能电池制造工艺流程图 1、硅片切割,材料准备:工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1.cm的p型(掺硼)。 2、去除损伤层: 1、硅片切割,材料准备: 工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,厚度约200~350um,电阻率约1Ω.cm的p型(掺硼)。 2、去除损伤层: 硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um。 3、制绒: 制绒,就是把相对光滑的原材料硅片的表面通过酸或碱

腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH 加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80度,浓度约1~2%,腐蚀时间约15分钟。对于多晶来说,一般采用酸法腐蚀。 4、扩散制结: 扩散的目的在于形成PN结。普遍采用磷做n型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。 5、边缘刻蚀、清洗: 扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 6、沉积减反射层: 沉积减反射层的目的在于减少表面反射,增加折射率。

晶体硅太阳能电池的制造工艺流程

晶体硅太阳能电池的制造 工艺流程 This model paper was revised by the Standardization Office on December 10, 2020

提高太阳能电池的转换效率和降低成本是太阳能电池技术发展的主流。 晶体硅太阳能电池的制造工艺流程说明如下: (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为-。 (5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。 (6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。 (7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。 (8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。 (9)烧结:将电池芯片烧结于镍或铜的底板上。 (10)测试分档:按规定参数规范,测试分类。

由此可见,太阳能电池芯片的制造采用的工艺方法与半导体器件基本相同,生产的工艺设备也基本相同,但工艺加工精度远低于集成电路芯片的制造要求,这为太阳能电池的规模生产提供了有利条件。

高效晶硅太阳能电池生产的前沿技术介绍

高效晶硅太阳能电池生产的前沿技术介绍系列之 ————SE电池技术 序言: 太阳能电池产品能够普及的关键是低成本发电。当光伏发电成本与传统能源持平甚至低于传统能源的时候,太阳能电池产品将不依赖于政府的补贴,得以在民众中普及推广。低成本的实现途径包括光电转化效率提高、生产成本下降及组件寿命提升三方面。提高太阳能电池光电转换效率一直是光伏行业工艺研发人员的工作重点,近年来发展起来的高效晶硅太阳能电池前沿技术包括:SE选择性发射电极技术、MWT技术、EWT 技术、HIT技术、表面钝化技术、IBC技术、LBSF技术、黑硅技术、双面电池技术、二次印刷技术等。虽然,到目前为止,上述太阳能电池前沿技术的生产成本还很难与常规电池工艺匹敌,无法实现大批量生产。但是,低成本光伏产品的爆炸式发展将依赖于太阳能电池新工艺技术的革新。因此,我计划对目前世界范围内研发的高效晶硅太阳能电池前沿技术进行一个系列介绍,以便于我司技术人员了解晶硅太阳能电池行业的技术动态,拓展思维方式。本期将首先介绍SE选择性发射电极技术。 一、SE电池技术介绍 SE电池技术即选择性发射极(SE-selectiveemiter)技术,即在金属栅线(电极)与硅片接触部位进行重掺杂,在电极之间位置进行轻掺杂。这样的结构可降低扩散层复合,由此可提高光线的短波响应,同时减少前金属电极与硅的接触电阻,使得短路电流、开路电压和填充因子都得到较好的改善,从而提高转换效率。其电池结构示意图如图1所示: 图1:SE电池与传统电池结构比较 二、SE结构电池的优点 1、降低串联电阻,提高填充因子 在丝网印刷工艺下,前栅接触电阻、体电阻和扩散层薄层电阻对串联电阻贡献最大。根据金属-半导体接触电阻理论,接触电阻与金属势垒(barrierheight)和表面掺杂浓度(Nb)有关,势垒越低,掺杂浓度越高,接触电阻越小。 2、减少载流子Auger复合,提高表面钝化效果 当杂质浓度大于1017cm-3时,Auger复合是半导体中主要的复合机制,而Auger复合速率与杂质浓度的平方成反比关系,所以SE的浅扩散可以有效减少载流子在扩散层横向流动时的Auger,提高载流子收集效率。

单晶硅太阳能电池制作工艺

单晶硅太阳能电池/DSSC/PERC技术 2015-10-20 单晶硅太阳能电池 2.太阳能电池片的化学清洗工艺切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒. 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。 1、用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。由于SC-1是H2O2和NH4OH 的碱性溶液,通过H2O2的强氧化和NH4OH的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 具体的制作工艺说明(1)切片:采用多线切割,将硅棒切割成正方形的硅片。(2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将硅片表面切割损伤层除去30-50um。(3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备绒面。(4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行扩散,制成PN+结,结深一般为0.3-0.5um。(5)周边刻蚀:扩散时在硅片周边表面形成的扩散层,会使电池上下电极短路,用掩蔽湿法腐蚀或等离子干法腐蚀去除周边扩散层。(6)去除背面PN+结。常用湿法腐蚀或磨片法除去背面PN+结。(7)制作上下电极:用真空蒸镀、化学镀镍或铝浆印刷烧结等工艺。先制作下电极,然后制作上电极。铝浆印刷是大量采用的工艺方法。(8)制作减反射膜:为了减少入反射损失,要在硅片表面上覆盖一层减反射膜。制作减反射膜的材料有MgF2 ,SiO2 ,Al2O3 ,SiO ,Si3N4 ,TiO2 ,Ta2O5等。工艺方法可用真空镀膜法、离子镀膜法,溅射法、印刷法、PECVD法或喷涂法等。(9)烧结:将电池芯片烧结于镍或铜的底板上。(10)测试分档:按规定参数规范,测试分类。 生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、去磷硅玻璃、等离子刻蚀、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。本文介绍的是晶硅太阳能电池片生产的一般工艺与设备。 一、硅片检测硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低,因此需要对来料硅片进行检测。该工序主要用来对硅片的一些技术

晶体硅太阳能电池

晶体硅太阳能电池 专业班级:机械设计制造及其自动化13秋姓名:张正红 学号: 1334001250324 报告时间: 2015年12月

晶体硅太阳能电池 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源己经成为越来越值得关注的社会与环境问题。人们开始急切地寻找其他的能源物质,而光能、风能、海洋能以及生物质能这些可再生能源无疑越来越受到人们的关注。光伏技术也便随之形成并快速地发展了起来,因此近年来,光伏市场也得到了快速发展并取得可喜的成就。本文主要就晶体硅太阳能电池发电原理及关键材料进行介绍,并对晶体硅太阳能电池及其关键材料的市场发展方向进行了展望。 关键词:太阳能电池;工作原理;晶体硅;特点;发展趋势 前言 “开发太阳能,造福全人类”人类这一美好的愿景随着硅材料技术、半导体工业装备制造技术以及光伏电池关键制造工艺技术的不断获得突破而离我们的现实生活越来越近!近20年来,光伏科学家与光伏电池制造工艺技术人员的研究成果已经使太阳能光伏发电成本从最初的几美元/KWh减少到低于20美分/KWh。而这一趋势通过研发更新的工艺技术、开发更先进的配套装备、更廉价的光伏电子材料以及新型高效太阳能电池结构,太阳能光伏(PV)发电成本将会进一步降低,到本世纪中叶将降至4美分/KWh,优于传统的发电费用。 大面积、薄片化、高效率以及高自动化集约生产将是光伏硅电池工业的发展趋势。通过降低峰瓦电池的硅材料成本,通过提升光电转换效率与延长其使用寿命来降低单位电池的发电成本,通过集约化生产节约人力资源降低单位电池制造成本,通过合理的机制建立优秀的技术团队、避免人才的不合理流动、充分保证技术上的持续创新是未来光伏企业发展的核心竞争力所在! 一、晶体硅太阳能电池工作原理 太阳能电池是一种把光能转换成电能的能量转换器,太阳能电池工作原理的基础是半导体PN结的光生伏特效应。

单晶硅太阳能电池详细工艺

单晶硅太阳能电池 1.基本结构 2.太阳能电池片的化学清洗工艺 切片要求:①切割精度高、表面平行度高、翘曲度和厚度公差小。②断面完整性好,消除拉丝、刀痕和微裂纹。③提高成品率,缩小刀(钢丝)切缝,降低原材料损耗。④提高切割速度,实现自动化切割。 具体来说太阳能硅片表面沾污大致可分为三类: 1、有机杂质沾污:可通过有机试剂的溶解作用,结合兆声波清洗技术来去除。 2、颗粒沾污:运用物理的方法可采机械擦洗或兆声波清洗技术来去除粒径≥ 0.4 μm颗粒,利用兆声波可去除≥ 0.2 μm颗粒。 3、金属离子沾污:该污染必须采用化学的方法才能将其清洗掉。硅片表面金属杂质沾污又可分为两大类:(1)、沾污离子或原子通过吸附分散附着在硅片表面。(2)、带正电的金属离子得到电子后面附着(尤如“电镀”)到硅片表面。

1、用 H2O2作强氧化剂,使“电镀”附着到硅表面的金属离子氧化成金属,溶解在清洗液中或吸附在硅片表面。 2、用无害的小直径强正离子(如H+),一般用HCL作为H+的来源,替代吸附在硅片表面的金属离子,使其溶解于清洗液中,从而清除金属离子。 3、用大量去离子水进行超声波清洗,以排除溶液中的金属离子。 由于SC-1是H2O2和NH4OH的碱性溶液,通过H2O2的强氧化和NH4OH 的溶解作用,使有机物沾污变成水溶性化合物,随去离子水的冲洗而被排除;同时溶液具有强氧化性和络合性,能氧化Cr、Cu、Zn、Ag、Ni、Co、Ca、Fe、Mg等,使其变成高价离子,然后进一步与碱作用,生成可溶性络合物而随去离子水的冲洗而被去除。因此用SC-1液清洗抛光片既能去除有机沾污,亦能去除某些金属沾污。在使用SC-1液时结合使用兆声波来清洗可获得更好的清洗效果。 另外SC-2是H2O2和HCL的酸性溶液,具有极强的氧化性和络合性,能与氧化以前的金属作用生成盐随去离子水冲洗而被去除。被氧化的金属离子与CL-作用生成的可溶性络合物亦随去离子水冲洗而被去除。 3.太阳能电池片制作工艺流程图 具体的制作工艺说明 (1)切片:采用多线切割,将硅棒切割成正方形的硅片。 (2)清洗:用常规的硅片清洗方法清洗,然后用酸(或碱)溶液将 硅片表面切割损伤层除去30-50um。 (3)制备绒面:用碱溶液对硅片进行各向异性腐蚀在硅片表面制备 绒面。 (4)磷扩散:采用涂布源(或液态源,或固态氮化磷片状源)进行 扩散,制成PN+结,结深一般为0.3-0.5um。

晶硅太阳能电池的特点和种类

晶体硅太阳能电池的种类及特点 太阳能电池已经有30多年的发展历史。目前世界各国研制的硅太阳能电池种类繁多,;主要系列有单晶、多晶、非晶硅几种。其中单晶硅太阳能电池占50%,多晶硅电池占20%、非晶占30%。我国光伏发电发展需解决的关键问题。太阳能光伏发电发展的瓶颈 是成本高。为此,需加大研发力度,集中在降低成本和提高效率的关键技术上有所突破,主要包括:a)晶体硅电池技术。降低太阳硅材料的制备成本:开发专门用于晶体硅太阳 能电池的硅材料,是生产高效和低成本太阳电池的基本条件;同时实现硅材料国产化和 提高性能,从产业链的源头,抓好降低成本工作。提高电池/组件转换效率:高效钝化 技术,高效陷光技术,选择性发射区,背表面场,细栅或者单面技术,封装材料的最佳 折射率等高效封装技术等。光伏技术的发展以薄膜电池为方向,高效率、高稳定性、低 成本是光伏电池发展的基本原则。 单晶硅在太阳能的有效利用当中,太阳能光电利用是近些年来发展最快,也是最具 活力的研究领域。而硅材料太阳能电池无疑是市场的主体,硅基(多晶硅、单晶硅)太阳 能电池占80%以上,每年全世界需消费硅材料3000t左右。生产太阳能电池用单晶硅, 虽然利润比较低,但是市场需求量大,供不应求,如果进行规模化生产,其利润仍然很 可观。目前,中国拟建和在建的太阳能电池生产线每年将需要680多吨的太阳能电池用 多晶硅和单晶硅材料,其中单晶硅400多吨,而且,需求量还以每年15%~20%的增长 率快速增长。硅系列太阳能电池中,单晶硅太阳能电池在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%,技术也最为成熟。高性能单晶 硅电池是建立在高质量单晶硅材料和相关的成熟的加工处理工艺基础上的。现在单晶硅 的电池工艺已近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂 等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率 主要是靠单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳 能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制 成倒金字塔结构。通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得 的电池转化效率超过23%。单晶硅具有完整的金刚石结构。通过掺杂得到n,P型单晶硅,进而制备出p/n结、二极管及晶体管,从而使硅材料有了真正的用途。单晶硅太阳能电 池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶 硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度 降低其成本是非常困难的。 多晶硅众所周知,利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但 目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光 电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过 程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合 1

几种商业化的高效晶体硅太阳能电池技术

高效晶体硅太阳能电池技术 摘要:晶体硅太阳能电池是目前应用技术最成熟、市场占有率最高的太阳能电池。本文在解释常规太阳能电池能量损失机理的基础上,介绍了可应用于商业化生产的高效晶体硅太阳能电池技术及其工艺流程,并对每种电池技术的优、缺点及工艺难度进行了评价。 关键词:晶体硅电池;高效电池;商业化 1 引言 能源是一个国家经济和社会发展的基础. 目前广泛使用的石油、天然气、煤炭等化石能源面临着严峻的挑战. 2005年2 月我国通过了《中华人民共和国可再生能源法》,从立法角度推进可再生能源的开发和利用,这是解决我国能源与环境、实现可持续发展的重要战略决策。 不论从资源的数量、分布的普遍性,还是从清洁性、技术的可靠成熟性来说,太阳能在可再生能源中都具有更大的优越性,光伏发电已成为可再生能源利用的首要方式。而晶硅太阳电池一直占据着光伏市场的最大份额. 与其它的可再生能源一样,目前要使之从补充能源过渡到替代能源,太阳电池光伏发电推广的最大制约因素仍然是发电成本。围绕着降低生产成本的目标,以高效电池获取更多的能量来代替低效电池一直是科学研究的的热门[1]. 近年来 高效单晶硅太阳能电池研究已取得巨大成就,在美国、德国和日本,高效太阳能电池研究正如火如荼,特别是美国,商品化高效电池的转换效率已超过20%。 . 2 硅太阳能电池能量损失机理 目前研究成果表面,影响晶体硅太阳能电池转换效率的原因主要来自两个方面:①光学损失. 包括电池前表面反射损失、接触栅线的阴影损失以及长波段的非吸收损失,其中反射和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失. 它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失. 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压V oc。光生载流子的复合主要是由于高浓度的扩散层在前表面引入了大量的复合中心。此外,当少数载流子的扩散长度与硅片的厚度相当或超过硅片厚度时,背表面的复合速度S b 对太阳电池特性的影响也很明显。而从商业太阳电池来看,为了降低太阳电池的成本和提高效率,现在生产厂家也在不断地减小硅片的厚度,以降低原材料的价格.因此必须有减少前、背两个表面的光生载流子复合的结构和措施. 3 高效晶体硅太阳能电池技术 3.1 背接触电池IBC/MWT/EWT (1)IBC电池(PCC电池) 背接触电池是由Sunpower公司开发的高效电池,其特点是正面无栅状电极,正负极交叉排列在背面,量产效率可达19%~20%。 这种把正面金属栅线去掉的电池结构有很多优点[2]:(1)减少正面遮光损失,相当于增加了有效半导体面积,有利于增加电池效率;(2)有可能大大降低组件装配成本,因为全部外部接触均在单一表面上;(3)从建造结构的观点看来提供了增值,因为汇流条和焊线串接存在引起的视觉不适被组件背面所替代。

太阳能电池丝网印刷常见问题及处理方法

丝网印刷常见问题及处理方法 漏浆: 检查方法:检查每一个台面同一处有无浆料(适合一、二、三道) 解决方法:根据在硅片上漏浆的位置,确定网版漏浆的位置,查看网版漏浆处的大小,如果漏洞不大,选择合适的胶带在网版下面将漏浆的位置粘住,试做一片,查看是否仍然漏浆,如果仍然漏浆,重新修补,如果不漏,可以继续使用。如果漏洞太大,无法用胶带修补的话,更换网版。第三道网版漏浆解决的方法:查看漏浆是否在删线上,如果不在可用封网浆修补,如果在删线上,直接把网版更换。注意事项:1在修补第一第二道网板时,在胶带粘帖位周围容易造成隐裂,观察确认后,方可生产.发现隐裂,立即更换网板. 2第三道网板使用封网浆,修补后,查看印刷质量.在封网浆周围是否有断线情况.如果发现有断线情况,用无尘布沾取少许清水,轻轻擦拭封网浆周围.在次使用封网浆修补网板时,注意时候有封网浆堵住副删线. 虚印 原因:1印刷参数没有调整. 2刮刀的不平整. 3原材料的问题,硅片厚薄不均. 4网板使用时间过长,造成网板的变形. 5台面不平整. 解决方法:1调整印刷参数,试着抬高丝网间距,加大印刷的压力和刮条深度。 2卸下刮刀,查看是否发生变形,更换刮刀. 3通过测量是否属于原材料的问题. 4更换网板,查看是否依然有这种情况产生. 5以上方法依然不能解决,通知工艺或设备处理. 注意事项:调整印刷参数后必须称重和查看是否出现隐裂,调整参数后的压力变大,容易产生隐裂. 更换刮刀时注意刮刀的平整和安装手法. 断线-3号机 产生原因:1由于长时间的印刷,网板内产生了干浆料. 2第二道台面留有铝浆,导致硅片制绒面粘有铝浆,在印刷第三道时,使铝浆堵住网板. 3杂务或细小的碎片,堵住网板. 处理方法:1浆网板内干浆料铲出,并用粘有松油醇的无尘布擦拭. 2更换②号机的台面纸,并用粘有松油醇的无尘布擦拭.

高效晶体硅太阳能电池介绍

高效晶体硅太阳电池简介(1) PERC电池是澳大利亚新南威尔士大学光伏器件实验室最早研究 的高效电池。它的结构如图2-13a所示,正面采用倒金字塔结构,进行双面钝化,背电极通过一些分离很远的小孔贯穿钝化层与衬底接触,这样制备的电池最高效率可达到23.2%[26]。由于背电极是通过一些小孔直接和衬底相接触的,所以此处没能实现钝化。为了尽可能降低此处的载流子复合,所设计的孔间距要远大于衬底的厚度才可。然而孔间距的增大又使得横向电阻增加(因为载流子要横向长距离传输才能到达此处),从而导致电池的填充因子降低。另外,在轻掺杂的衬底上实现电极的欧姆接触非常困难,这就限制了高效PERC电池衬底材料只能选用电阻率低于0.5 Ωcm以下的硅材料。 为了进一步改善PERC电池性能,该实验室设想了在电池的背面增加定域掺杂,即在电极与衬底的接触孔处进行浓硼掺杂。这种想法早已有人提出,但是最大的困难是掺杂工艺的实现,因为当时所采用的固态源进行硼掺杂后载流子寿命会有很大降低。后来在实验过程中发现采用液态源BBr3进行硼掺杂对硅片的载流子寿命影响较小,并且可以和利用TCA制备钝化层的工艺有很好的匹配。1990年在PERC结构和工艺的基础上,J.Zhao在电池的背面接触孔处采用了BBr3定域扩散制备出PERL电池,结构如图2.13b所示[27]。定域掺硼的温度为900 ℃,时间为20 min,随后采用了drive-in step技术(1070 ℃,2 h)。经过这样处理后背面接触孔处的薄层电阻可降到20 Ω/□以下。孔间距离也进行了调整,由2 mm缩短为250 μm,大大减少了横

向电阻。如此,在0.5 Ωcm和2 Ωcm的p型硅片上制作的4 cm2的PERL电池的效率可达23-24%,比采用同样硅片制作的PERC电池性能有较大提高。 1993年该课题组对PERL电池进行改善,使其效率提高到24%,1998年再次提高到24.4%,2001年达到24.7%,创造了世界最高记录。这种PERL电池取得高效的原因是[28]:(1)正面采光面为倒金字塔结构,结合背电极反射器,形成了优异的光陷阱结构;(2)在正面上蒸镀了MgF2/ZnS双层减反射膜,进一步降低了表面反射;(3)正面与背面的氧化层均采用TCA工艺(三氯乙烯工艺)生长高质量的氧化层,降低了表面复合;(4)为了和双层减反射膜很好配合,正面氧化硅层要求很薄,但是随着氧化层的减薄,电池的开路电压和短路电流又会降低。为了解决这个矛盾,相对于以前的研究,增加了“alneal”工艺,即在正面的氧化层上蒸镀铝膜,然后在370 ℃的合成气氛中退火30 min,最后用磷酸腐蚀掉这层铝膜。经过“alneal”工艺后,载流子寿命和开路电压都得到较大提高,而与正面氧化层的厚度关系不大。这种工艺的原理是,在一定温度下,铝和氧化物中OH-离子发生反应产生了原子氢,在Si/SiO2的界面处对一些悬挂键进行钝化。(5)电池的背电场通过定域掺杂形成,掺杂的温度和时间至关重要,对实现定域掺杂的接触孔的设计也非常重要,因为这关系到能否在整个背面形成背电场以及体串联电阻的大小。在这个电池中浓硼扩散区面积为30 μm×30 μm,接触孔的面积为10 μm ×10 μm,孔间距为250 μm,浓硼扩散区的面积仅占背面积的1.44%。定域扩散

晶体硅太阳能电池的丝网印刷技术详解

晶体硅太阳能电池的丝网印刷技术详解 生产晶体硅太阳能电池最关键的步骤之一是在硅片的正面和背面制造非常精细的电路,将光生电子导出电池。这个金属镀膜工艺通常由丝网印刷技术来完成——将含有金属的导电浆料透过丝网网孔压印在硅片上形成电路或电极。典型的晶体硅太阳能电池从头到尾整个生产工艺流程中需要进行多次丝网印刷步骤。通常,有两种不同的工艺分别用于电池正面(接触线和母线)和背面(电极/钝化和母线)的丝网印刷。【表1】 表1:晶体硅太阳能电池的制造需要进行多次丝网印刷步骤。应用材料公司Baccini产品可以帮助实现绿色框中的步骤。 多年来,太阳能丝网印刷设备在精度和自动化方面有了很大进步,具备了在微米级尺寸上重复进行多次印刷的能力。这一发展开创了全新的先进应用,如双重印刷和选择性发射极金属镀膜。Baccini公司在20世纪70年代在微电子领域开发了丝网印刷技术,并在20世纪80年代将这一技术扩展到太阳能金属镀膜领域。今天,Baccini公司已成为应用材料公司Baccini集团,以多项先进技术引领业界的发展。 基本的太阳能丝网印刷 印刷过程从硅片放置到印刷台上开始。非常精细的印刷丝网固定在网框上,放置在硅片上方;丝网封闭了某些区域而其它区域保持开放,以便导电浆料能够通过【图2】。硅片和丝网的距离要严格地控制(称为印刷间隙)。由于正面需要更加纤细的金属线,因此用于正面印刷的丝网其网格通常比用于背面印刷的要细小得多。

表2:印刷丝网上包含打开和闭合的区域,通过打开的区域,导电浆料可以被印刷到硅片上。 把适量的浆料放置于丝网之上,用刮刀涂抹浆料,使其均匀填充于网孔之中。刮刀在移动的过程中把浆料通过丝网网孔挤压到硅片上【图3】。这一过程的温度,压力,速度和其他变量都必须严格控制。 表3:在丝网一端放置导电浆料,用刮刀在将浆料涂抹于丝网,并从网孔中挤压到硅片上。 每次印刷步骤后,硅片被放入烘干炉,使导电浆料凝固。接着,硅片被送入另一个不同的印刷机,在其正面或背面印制更多的线路。所有印刷步骤完成后,将硅片放入高温炉里烧结。 硅片正面和背面的印刷 每块太阳能电池的正面和背面都有通过丝网印刷淀积的导线【图4】,它们的功能是不同的。正面的线路比背面的更细;有些制造商会先印刷背面的导

晶硅太阳能电池片的制作过程

晶硅太阳能电池板的制作过程 1、表面制绒单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠,氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为 70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结。 2、扩散制结太阳能电池需要一个大面积的PN结以实现光能到电能的转换,而扩散炉即为制造太阳能电池PN结的专用设备。管式扩散炉主要由石英舟的上下载部分、废气室、炉体部分和气柜部分等四大部分组成。扩散一般用三氯氧磷液态源作为扩散源。把P型硅片放在管式扩散炉的石英容器内,在850---900摄氏度高温下使用氮气将三氯氧磷带入石英容器,通过三氯氧磷和硅片进行反应,得到磷原子。经过一定时间,磷原子从四周进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面,也就是PN结。这种方法制出的PN结均匀性好,方块电阻的不均匀性小于百分之十,少子寿命可大于10ms。制造PN结是太阳电池生产最基本也是最关键的工序。因为正是PN结的形成,才使电子和空穴在流动后不再回到原处,这样就形成了电流,用导线将电流引出,就是直流电。 3、去磷硅玻璃该工艺用于太阳能电池片生产制造过程中,通过化学腐蚀法也即把硅片放在氢氟酸溶液中浸泡,使其产生化学反应生成可溶性的络和物六氟硅酸,以去除扩散制结后在硅片表面形成的一层磷硅玻璃。在扩散过程中,POCL3与O2反应生成P2O5淀积在硅片表面。P2O5与Si反应又生成SiO2和磷原子,这样就在硅片表面形成一层含有磷元素的SiO2,称之为磷硅玻璃。去磷硅玻璃的设备一般由本体、清洗槽、伺服驱动系统、机械臂、电气控制系统和自动配酸系统等部分组成,主要动力源有氢氟酸、氮气、压缩空气、纯水,热排风和废水。氢氟酸能够溶解二氧化硅是因为氢氟酸与二氧化硅反应生成易挥发的四氟化硅气体。若氢氟酸过量,反应生成的四氟化硅会进一步与氢氟酸反应生成可溶性的络和物六氟硅酸。 4、等离子刻蚀由于在扩散过程中,即使采用背靠背扩散,硅片的所有表面包括边缘都将不可避免地扩散上磷。PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路。因此,必须对太阳能电池周边的掺杂硅进行刻蚀,以去除电池边缘的PN结。通常采用等离子刻蚀技术完成这一工艺。等离子刻蚀是在低压状态下,反应气体CF4的母体分子在射频功率的激

硅太阳能电池的丝网印刷技术

硅太阳能电池的丝网印刷技术 1 引言 随着全球能源的日趋紧,太阳能以无污染、市场空间大等独有的优势受到世界各国的广泛重视,国际上众多大公司投入太阳能电池研发和生产行业。从太阳能获得电力,需通过太阳能电池进行光电变换来实现,硅太阳能电池是一种有效地吸收太阳能辐射并使之转化为电能的半导体电子器件,广泛应用于各种照明及发电系统中。 2 硅太阳能电池的生产工序 太阳能电池原理主要是以半导体材料硅为基体,利用扩散工艺在硅晶体中掺入杂质:当掺入硼、磷等杂质时,硅晶体中就会存在着一个空穴,形成n 型半导体;同样,掺入磷原子以后,硅晶体中就会有一个电子,形成p型半导体,p型半导体与n型半导体结合在一起形成pn结,当太照射硅晶体后,pn 结中n型半导体的空穴往p型区移动,而p型区中的电子往n型区移动,从而形成从n型区到p型区的电流,在pn结中形成电势差,这就形成了电源,见图1。

图2为硅太阳能电池生产的主要工序,从中可以看出丝网印刷是生产太阳能电池的重要工序,其印刷质量(厚度,宽度,膜厚一致性)影响电池片的技术指标。 3 工序对印刷电极的要求 3.1 背面银电极印刷(背银) 在电池片的正极面(p区)用银铝浆料印刷两条电极导线(宽约3~4mm)作为电池片的电极(图3)。

3.2 背面铝印刷(背铝) 在电池片的正极面采用铝浆料印刷整面(除背银电极外)。 3.3 正面银印刷(正银) 在电池片的正面(喷涂减反射膜的面)同时用银浆料印刷一排间隔均匀的栅线和两条电极(图4),在工艺上要求栅线间距约3mm、宽度约O.10~0.12mm: 4 印刷原理 图5为丝网印刷原理示意图,丝网印刷由五大要素构成,即丝网、刮刀、浆料、工作台以及基片。丝网印刷基本原理是:利用丝网图形部分网孔透浆料,非图文部分网孔不透浆料的基本原理进行印刷。印刷时在丝网一端倒入浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。油墨在移动中被刮板从图形部分的网孔中挤压到基片上。由于浆料的黏性作用而使印迹固

晶硅太阳能电池发展状况及趋势分析

晶硅太阳能电池发展状况及趋势分析 太阳能属于可再生资源,具有用之不竭、取之不尽的特点,这也推动了晶硅太阳能电池产业的快速发展。我国是晶硅太阳能电池制造大国,但在发展过程中,我国晶硅太阳能电池却遇到了一系列制约性瓶颈,对此要引起高度重视。文章对晶硅太阳能电池发展状况进行了全面和系统的研究,首先对我国晶硅太阳能电池发展状况进行了简要的回顾和分析,在此基础上对未来我国晶硅太阳能电池发展趋势进行了分析,旨在为推动我国晶硅太阳能电池发展提供一些参考。 标签:晶硅太阳能电池;发展现状;发展趋势 随着全球能源约束越来越大,能源问题已经成为制约全球经济发展的重要因素,特别是在全球都高度重视环境保护的形势下,如何开拓新的能源市场已经成为各个国家高度重视的问题,特别是加强对新能源的利用已经是大势所趋。晶硅太阳能电池是重要的新能源,而且具有绿色环保的优势,因而必须高度重视晶硅太阳能电池的发展。尽管从总体上来看,我国晶硅太阳能取得了重要的发展,但在全球市场竞争越来越激烈的情况下,我国必须大力推动晶硅太阳能电池转型发展,使其在“中国制造2025”战略方面取得重大突破,进而推动我国晶硅太阳能电池步入更加科学化的发展轨道。 1 我国晶硅太阳能电池发展现状 随着全球晶硅太阳能电池市场的不断发展壮大,全球都高度重视晶硅太阳能电池发展,特别是自2004年以来,全球晶硅太阳能电池增长率始终保持在20%以上的速度。我国是太阳能光伏电池生产大国,自1959年以来,我国在这方面不断取得新的更大的成效,我国晶硅太阳能电池组件在全球市场的占有率达到了70%左右,表明我国晶硅太阳能电池产生呈现出蓬勃发展的态势。尽管从总体上来看,我国属于晶硅太阳能电池“制造大国”,但我国还没有上升到“制造强国”的行列,还存在一些不容忽视的问题。 一是发电成本相对较高。晶硅太阳能电池的发展水平如何,最为重要的就是发电成本,只有较低的发电成本,才能使晶硅太阳能电池得到更有效的推广和利用,使其成为“清洁发电”的重要战略性举措。尽管我国不断加大晶硅太阳能电池技术创新力度,而且也取得了重要的成效,但当前我国晶硅太阳能电池发电成本仍然相对较高,远远高于普通市电价格。由于发电成本相对较高,特别是我国一些晶硅太阳能电池生产企业不注重降低成本,这也直接导致我国晶硅太阳能电池发展受到一定的影响,需要引起高度重视,并通过积极的技术创新来降低发电成本。 二是国际贸易壁垒较多。由于我国属于晶硅太阳能电池生产大国,但在出口方面却受到国际贸易壁垒的限制,导致我国晶硅太阳能电池发展受到限制。特别是2008年金融危机以来,针对我国晶硅太阳能电池的贸易壁垒越来越多,国际贸易保护主义越来越严重,比如美国的“双反”政策征收100%的关税。欧盟、印

硅太阳能电池-制造工艺

硅太阳能电池-制造工艺 PV的意思:它是英文单词Photovoltaic 的简写,中文意思是光生伏特”(简称光伏”)。在物理学中,光生伏特效应(简称为光伏效应),是指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象 硅太阳能电池制造工艺流程图 1、硅片切割,材料准备: 工业制作硅电池所用的单晶硅材料,一般采用坩锅

直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10?15cm ,厚度约200~350um ,电阻率约1 Q .cm 的p型(掺硼)。 2、去除损伤层:硅片在切割过程会产生大量的表面缺陷,这就会产生两个问题,首先表面的质量较差,另外这些表面缺陷会在电池制造过程中导致碎片增多。因此要将切割损伤层去除,一般采用碱或酸腐蚀,腐蚀的厚度约10um 。 3、制绒:制绒,就是把相对光滑的原材料硅片的表面通过酸或碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。对于单晶硅来说一般采用NaOH 加醇的方法腐蚀,利用单晶硅的各向异性腐蚀,在表面形成无数的金字塔结构,碱液的温度约80 度,浓度约1~2% ,腐蚀时间约15 分钟。对于多晶来说,一般采用酸法腐蚀。 4、扩散制结: 扩散的目的在于形成PN 结。普遍采用磷做n 型掺杂。由于固态扩散需要很高的温度,因此在扩散前硅片表面的洁净非常重要,要求硅片在制绒后要进行清洗,即用酸来中和硅片表面的碱残留和金属杂质。

5、边缘刻蚀、清洗: 扩散过程中,在硅片的周边表面也形成了扩散层。周边扩散层使电池的上下电极形成短路环,必须将它除去。周边上存在任何微小的局部短路都会使电池并联电阻下降,以至成为废品。目前,工业化生产用等离子干法腐蚀,在辉光放电条件下通过氟和氧交替对硅作用,去除含有扩散层的周边。 扩散后清洗的目的是去除扩散过程中形成的磷硅玻璃。 6、沉积减反射层: 沉积减反射层的目的在于减少表面反射,增加折射率。广泛使用PECVD淀积SiN ,由于PECVD淀积SiN时,不光是生长SiN作为减反射膜,同时生成了大量的原子氢,这些氢原子能对多晶硅片具有表面钝化和体钝化的双重作用,可用于大批量生产。 7、丝网印刷上下电极: 电极的制备是太阳电池制备过程中一个至关重要的步骤,它不仅决定了发射区的结构,而且也决定了电池的串联电阻和电池表面被金属覆盖的面积。,最早采用真空蒸镀或化学电镀技术,而现在普遍采用丝网印刷法,即通过特殊的印刷机和模版将银浆铝浆(银铝浆)印刷在太阳电池的正背面,以形成正负电极引线。

太阳能电池制造中的丝网印刷技术概述

太阳能电池制造中的丝网印刷技术概述 摘要太阳能电池连接技术的最重要的部分就在硅衬底金属化制造。这个方法是一项先进的印刷工艺,这个技术能够在很大程度上决定太阳能电池的能量转换效率。这项工艺被大规模用于太阳能电池的批量化生产,是第三代太阳能电池制造过程中最重要的环节。 关键词丝网印刷;晶体硅;电极;质量控制 太阳能电池是利用光电效应将光能转化成电能的装置。它是太阳能发电的基础和核心。目前,光伏电池生产有二个主要难题。第一,怎么增加太阳能电池的转换效率,以加大电池板组件一平方米范围内的发电量。第二,在加大投入成本之前,怎样通过现有技术使太阳能电池的制造力得到加强。丝网印刷技术在制造太阳能电池片背电场和正电极的生产中越来越成熟运用,逐渐变成了现在光伏电池生产的最为流行的技术。 1 太阳能电池丝网印刷 1.1 丝网印刷在光伏电池制造过程中的位置 制造晶体硅光伏电池的过程有印刷背电极、铝背场和正电极。电极印刷的好坏很大程度上决定了电池片性能的好坏。所以它是光伏电池制造过程的一个主要环节。利用丝网印刷技术,在硅片上印刷一种化学活性很高的金屬浆料,通过烘干将金属浆料固化,然后在高温状态下快速烧结。在具有化学活性的金属浆料作用下,金属和硅晶体生成了一个合金层,从而形成良好的接触以及铝背场。 1.2 丝网印刷技术 丝网印刷是采用压印的方式将预定的图形印刷在基板上,该设备由电池背面银铝浆印刷、电池背面铝浆印刷和电池正面银浆印刷三部分组成。其工作原理为:利用丝网图形部分网孔透过浆料,用刮刀在丝网的浆料部位施加一定压力,同时朝丝网另一端移动。浆料在移动中被刮刀从图形部分的网孔中挤压到基片上。由于浆料的黏性作用使印迹固着在一定范围内,印刷中刮板始终与丝网印版和基片呈线性接触,接触线随刮刀移动而移动,从而完成印刷行程,得到印制的丝网图形。丝网印刷技术,是把包含金属的混合导电浆料通过网状孔压入,压在晶体硅片上生成新的电路和电极,并由光伏电池衍生出光电子。混有金属的浆液压在已经有P-N结的晶体硅片上,背面的银铝浆液单独压制,成为背电极,这样对构件的拼接有好处。二,压制的铝浆被大量掺入杂质,生成P+层。铝背场降低载体复合材料的使用量,以收敛带正电荷的粒子,来加大电压。三,印刷银浆对带正负电荷的粒子的收集有很大的好处,进而便于电极的生成。背电极是用银铝浆(或是银浆)印在电池片的背面(即在未涂布的表面上)的光伏电池板的电极。铝是P型杂质这一事实反映了背电场的功能。实际制造中所需的背场浆料以铝浆为主。背电极印刷对浆料的需求包括:背电极要是光伏电池的实际正电极,需要

高效晶体硅太阳能电池背场钝化技术

高效晶体硅太阳能电池 作者:S.W. Glunz,Fraunhofer Institute of Solar Energy System 如今的晶体硅光伏组件的成本分布主要是材料成本,特别是硅片成本。因此,采用更薄的硅片以及增加电池的转换效率引起了光伏业界的广泛兴趣。 表面钝化 电介质钝化与背表面场 所有转换效率大于20%的电池结构都具有电介质层的钝化表面。然而,目前业界的晶体硅太阳能电池的表面结构多采用的是丝网印刷和热场Al背表面场(Al-BSF)。它有两个主要的限制:由烧结工艺带来的硅片弯曲;更低的电学和光学特性。特别是,Sback、背表面再复合速率是关键的参数,但是在文献中却有着大量的数值。这使得衡量Al-BSF的潜力与电介质钝化变得很困难。 我们对不同的背表面结构并结合高效前表面结构进行了实验。这将有可能准确的确定表面的再复合速率、Sback以及内部反射率Rback。 图1表示了不同背表面结构的内部量子效率,从低质量的欧姆Al接触开始一直到PERL/LBSF背表面。有效的Sback和Rback已经从IQE和反射率测量中去除。

采用这些参数就有可能确定不同背表面结构对太阳能电池性能的影响(图2)。电介质钝化甚至比高质量的发射极和更薄的硅片带来的好处更多。 电介质层的钝化机理 良好的表面钝化有两种不同的机理:交界面状态Dit的降低;场效应钝化,即钝化层中一种载子类型与固定电荷Qf结合时的显著降低。尽管这些机理或两种机理的结合会导致较低的表面再复合速率,Seff(Δn)曲线显示了不同的特性(图3)。热生长的SiO2层更容易获得交界面状态的降低,而对于PECVD沉积的薄膜,如SiNx,场效应钝化和中等程度的Dit降低则更为常见。SiO2的Dit=1010cm2eV-1,Qf=1010cm2。而SiNx的Dit=1011cm2eV-1,Qf=1011cm2。

晶体硅太阳能电池制作工艺概述

工业化电池工艺 太阳电池从研究室走向工厂,实验研究走向规模化生产是其发展的道路,所以能够达到工业化生产的特征应该是: [1]电池的制作工艺能够满足流水线作业; [2]能够大规模、现代化生产; [3]达到高效、低成本。 当然,其主要目标是降低太阳电池的生产成本。目前多晶硅电池的主要发展方向朝着大面积、薄衬底。例如,市场上可见到125×125mm2、150×150mm2甚至更大规模的单片电池,厚度从原来的300微米减小到目前的250、200及200微米以下。效率得到大幅度的提高。日本京磁(Kyocera)公司150×150的电池小批量生产的光电转换效率达到%,该公司1998年的生产量达到。 (1)丝网印刷及其相关技术 多晶硅电池的规模化生产中广泛使用了丝网印刷工艺,该工艺可用于扩散源的印刷、正面金属电极、背接触电极,减反射膜层等,随着丝网材料的改善和工艺水平的提高,丝网印刷工艺在太阳电池的生产中将会得到更加普遍的应用。 a.发射区的形成 利用丝网印刷形成PN结,代替常规的管式炉扩散工艺。一般在多晶硅的正面印刷含磷的浆料、在反面印刷含铝的金属浆料。印刷完成后,扩散可在网带炉中完成(通常温度在900度),这样,印刷、烘干、扩散可形成连续性生产。丝网印刷扩散技术所形成的发射区通常表面浓度比较高,则表面光生载流子复合较大,为了克服这一缺点,工艺上采用了下面的选择发射区工艺技术,使电池的转换效率得到进一步的提高。 b.选择发射区工艺 在多晶硅电池的扩散工艺中,选择发射区技术分为局部腐蚀或两步扩散法。局部腐蚀为用干法(例如反应离子腐蚀)或化学腐蚀的方法,将金属电极之间区域的重扩散层腐蚀掉。最初,Solarex应用反应离子腐蚀的方法在同一台设备中,先用大反应功率腐蚀掉金属电极间的重掺杂层,再用小功率沉积一层氮化硅薄膜,该膜层发挥减反射和电池表面钝化的双重作用。在100cm2 的多晶上作出转换效率超过13%的电池。在同样面积上,应用两部扩散法,未作机械绒面的情况下转换效率达到16%。 c.背表面场的形成 背PN结通常由丝网印刷A浆料并在网带炉中热退火后形成,该工艺在形成背表面结的同时,对多晶硅中的杂质具有良好的吸除作用,铝吸杂过程一般在高温区段完成,测量结果表明吸杂作用可

相关主题