搜档网
当前位置:搜档网 › 直角三角形的边角关系(含答案)

直角三角形的边角关系(含答案)

直角三角形的边角关系(含答案)
直角三角形的边角关系(含答案)

第十四章 直角三角形的边角关系

基础知识梳理

1.锐角三角函数.

在Rt △ABC 中,∠C 是直角,如图所示. (1)正切:∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA=

A A ∠∠的对边

的邻边

(2)正弦:∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA=

A ∠的对边

邻边

(3)余弦:∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA=

A ∠的邻边

邻边

(4)锐角三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数. (5)锐角的正弦和余弦之间的关系.

任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值. 即:如果∠A+∠B=90°,那么sinA=cos (90°-A )=cosB ;cosA=sin (?90?°-?A )?=sinB . (6)一些特殊角的三角函数值(如下表).

(7)已知角度可利用科学计算器求得锐角三角函数值;同样,?已知三角函数值也可利用科学计算器求得角度的大小.

(8)三角函数值的变化规律.

①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小).

②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(?或增大).(9)同角三角函数的关系.

①sin2A+cos2A=1;②tanA=sin

cos

A

A

2.运用三角函数解直角三角形.

由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对

边分别为a,b,c.

(1)三边之间的关系:a2+b2=c2(勾股定理).

(2)锐角之间的关系:∠A+∠B=90°.

(3)边角之间的关系:sinA=a

c

,cosA=

b

c

,tanA=

a

b

所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),?就可以求出其余三个未知元素.

解直角三角形的基本类型题解法如下表所示:

(1)尽量使用原始数据,使计算更加准确;

(2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题;

(3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题;

(4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便;

(5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,?应当选用什么关系式进行计算;

(6)添加辅助线的过程应书写在解题过程中.

3.解直角三角形的实际问题.

解直角三角形的实际问题涉及到如下概念和术语.

(1)坡度、坡角.

如图所示,坡面的垂直高度h和水平宽度L的比叫做坡度(或叫做坡比),用字母i

表示,即i=h

l

坡面与水平面的夹角记作α(叫做坡角),则i=h

l

=tanα.

(2)仰角、俯角.

当从低处观测高处的目标时,视线和水平线所成的锐角称为仰角.当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.如图所示.

(3)方位角和方向角.

①方位角:正北方向顺时针旋转与已知射线所成的角叫做方位角.如图所示的∠α(0°<α<360°).

②方向角:正北或正南方向与已知射线所成的锐角叫做方向角.如图14-5所示的∠β(0°<β<90°),若∠β=30°,则方向角可记作南偏西30°.

(4)燕尾槽的深度、燕尾角.

燕尾槽的横断面如图所示,AE是燕尾槽的深度,AD是外口宽,BC是里口宽,∠B是燕尾角.

考点与命题趋向分析

(一)能力

1.通过实例认识锐角三角函数(sinA ,cosA ,tanA ),知道30°,45°,60?°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.

2.运用三角函数解决与直角三角形有关的简单实际问题. (二)命题趋向分析

1.三角函数是代数与几何衔接点之一,是三角学的基础,近年来锐角三角函数常与四边形、相似形、坐标系、圆等相结合出题,多涉及实际应用问题,如梯子的倾斜程度、坡度等问题.

【例1】(2004年河南省)如图1,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时梯子的倾斜角为75°.如果梯子底端不动,顶端靠在对面墙上,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角为45°,则这间房子的宽AB 是________米.

(1) (2) 【分析一】AB=AC+CB=

tan 75a ?+tan 45b

?

如图2,在Rt △ACB 中,∠C=90°.∠A=15?°,?∠ABC=75°, 在∠ABC 内部作∠ABD=15°,则∠BDC=30°,∠DBC=60°,

设BC=1,则BD=2, ∵∠A=∠ABD=15° ∴AD=BD=2

∴tan75°=

AC BC

∴sin75°=

AC

AB 如图1所示:NB=CB=b 米

∴米

∴米 在Rt △MAC 中,sin75°=

AM

MC

∴4a=()b

解得

)a

∴AB=AC+CB=

tan 75a ?+tan 45b ?+b=(a+)a=a (米)

【分析二】在图1中连MN ,可由MC=NC ,∠MCN=60°得等边三角形MCN ,作MH?⊥BN 于H .由∠A=∠MHB=90°,∠MCA=∠MNH=75°,MC=MN .可证△MAC ≌△MHN ,得AM=MH .?再证四边形MABH 为矩形,可得AB=MH=AM=a 米. 【解】此空应填a .

2.涉及特殊角的三角函数值的应用题是近年中考中的热点,?对学生的综合能力要求较高,要勤于观察生活中的数学现象,并善于将生活中的实际问题转化为数学问题并加以解决.

【例2】(2004年哈尔滨市)如图,在测量塔高AB 时,?选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.?已知测角器高CE=1.5m ,CD=30m .求塔高AB .(答案保留根号) 【分析】由CD=30m ,可求EG=30m ,考虑到∠AGF 是△AEG 的外角,可知EG=AG ,故AG=30m ,在Rt △AGF 中可求AF 长.AB=AF+FB 问题得以解决. 【解】由题意可知:EG=CD=30米 ∵∠AEG=30°,∠AGF=60°

∴∠EAG=30° ∴EG=AG=30米

在Rt △AFG 中,sin60°=

AF

AG

∴AF=AG ·sin60°=30

×

3

2

(米) 答:塔高AB 为(

3

2

)米.

【规律总结】本题发现EG=AG=30米,以及熟记特殊角三角函数值是关键.

3.近10年来含特殊角的三角函数值的应用问题中中考中呈现上升趋势,?这类考题往往给定一些角的三角函数值供考生选用,且这类题多以中档解答题为主,望读者引起注意.

【例3】(2004年沈阳市)某地一居民楼,窗户朝南,窗户的高度为h 米,?此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1).小明想为自己家的窗户设计一个直角形遮阳篷BCD ,要求它既能最大限度地遮挡夏天炎热的阳光,?又能最大限度地使冬天温度的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,∠β=73°30′,小明又量得窗户的高AB=1.65米.若同时满足下面两个条件:(1)?当太阳光与地面夹角为α时,要想使太阳光刚好全部射入室内;(2)?当太阳光与地面夹角为β时,要想使太阳光刚好不射入室内.请你借助图形(如图2),帮助小明算一算,?遮阳篷BCD 中,BC 和CD 的长各是多少?(精确到0.01米) 以下数据供计算中选用:

sin24°36′=0.416 cos24°36′=0.909 tan24°36′=0.458 cot24°36′=2.184 sin73°30′=0.959 cos73°30′=0.284

tan73°30′=3.376 cot73°30′

=0.296

【分析】图中有两个直角三角形,即△BCD 和△ACD .?利用这两个直角三角形求解.另外题中所给数据中cot24°36′实际上是tan24°36′的倒数,今后我们会学习到. 【解】∵在Rt △BCD 中,tan ∠CDB=BC

CD

,∠CDB=∠α ∴BC=CD ·tan ∠CDB=CD ·tan α ∵在Rt △ACD 中,tan ∠CDA=

AC

CD

,∠CDA=∠β ∴AC=CD ·tan ∠CDA=CD ·tan β ∵AB=AC-BC

=CD ·tan β-CD ·tan α =CD (tan β-tan α) ∴CD=

tan tan AB

βα-= 1.653.3760.458

-≈0.57(米)

∴BC=CD ·tan ∠CDB ≈0.57×0.458≈0.26(米) 答:BC 的长约为0.26米,CD 的长约为0.57米.

【规律总结】本题的解决关键是把∠α、∠β置于两个直角三角形中,另外要细心体会把实际问题转化为数学模型的过程和方法.

4.运用解直角三角形知识解决实际问题是近年中考的热点题型,?主要涉及测量(特别是底部不可到达的物体的高度的测量)、航空、航海、工程等领域,且说理性题(如船会不会触礁,速度应提高多少,巡逻艇能否追上走私船等)比重有所加大.这类题主要考查学生应用相关知识解决实际问题的能力. 【例4】(2003年青岛)如图14-11所示,?人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只,正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26?海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问 (1)需要几小时才能追上?(点B 为追上时的位置) (2)确定巡逻艇追赶方向(精确到0.1°)

(参考数据:sin66.8°≈0.9191,cos66.8°≈0.3939,?sin67.?4?°≈0.?9231,cos67.4°≈0.3843,sin68.4°≈0.9298,cos68.4°≈0.3681,?sin70.?6?°≈0.9432,cos70.6°≈0.3322).

【分析】由于已知速度,本题第(1)问可利用直角△ABO 的各边长列方程求解,?第

(2)问可利用sin∠AOB=AB

OB

,求出∠AOB的度数.

【解】(1)设需要t小时才能追上,则AB=24t,OB=26t.

在Rt△ABO中,OB2=AB2+OA2,即(26t)2=(24t)2+102,解得t=±1,t=-1不合题意,舍去,

∴t=1,即需要1小时才能追上.

(2)在Rt△ABO中

∵sin∠AOB=AB

OB

=

24

26

t

t

=

12

13

≈0.9231,

∴∠AOB≈67.4°

即巡逻艇的追赶方向是北偏东67.4°.解题方法与技巧

1.数形结合思想.

【例1】已知tanα=3

4

,求

sin cos

sin cos

αα

αα

+

-

的值.

【分析】利用数形结合思想,将已知条件tanα=3

4

用图形表示.

【解】如图所示,在Rt△ABC中,∠C=90°,∠A=α,设BC=3k,AC=4k,则

=5k.

∴sinα=BC

AB

=

3

5

k

k

=

3

5

cosα=

44

55

AC k

AB k

==,

∴原式=34

55

34

55

+

-

=-7.

方法2:转化思想

【例2】已知tanα=3

4

,求

sin cos

sin cos

αα

αα

+

-

的值.

【分析】可将所求式子的分子、分母都除以cos,转化为含有sin

cos

α

α

的式子,?再利用

tanα=sin

cos

α

α

进行转化求解.

【解】将式子sin cos

sin cos

αα

αα

+

-

的分子、分母都除以cosα,得

原式=

3

1

tan14

3

tan11

4

α

α

+

+

=

--

=-7

【规律总结】因为tanα=3

4

所以α不等于90°,所以cosα≠0,因此分子分母可以

同时除以cosα.实现转化的目的.

方法3:方程思想

【例3】去年某省将地处A、B两地的两所大学合并成了一所综合性大学,?为了方便A、B两地师生的交往,学校准备在相距2千米的A、B?两地之间修筑一条笔直的公路(即图中的线段AB),经测量,在A地的北偏东60°方向,B地的西偏北45°的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?

【分析】过C作AB的垂线段CM,把AM、BM用含x

,x表示,利用AM+MB=2

,解出CM的长与0.7千米进行比较,本题要体会设出CM的长,列方

程解题的思想方法.

【解】作CM⊥AB,垂足为M,设CM为x千米,在Rt△MCB中,

∠MCB=∠MBC=45°,则MB=CM=x千米.

在Rt△AMC中,∠CAM=30°,∠ACM=60°

tan∠ACM=AM CM

∴AM=CM·tan60°

千米

∵AM+BM=2千米

≈1.732-2=0.732

∴CM长约为0.732千米,大于0.7千米

∴这条公路不会穿过公园.

方法4:建模思想

【例4】如图所示,一艘轮船以20里/时的速度由西向东航行,?途中接到台风警报,

台风中心正以40里/时的速度由南向北移动,距离台风中心

里的圆形区域(包括

边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A?正南方向的B处,且AB=100里.

(1)若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,?试求轮船最初遇到台风的时间;若不,请说明理由.

(2)现轮船自A处立即提高船速,向位于东偏北30°方向,相距60里的D港驶去,

为使台风到来之前到达D

3.6)

【分析】本题是航海问题,把航海问题抽象成纯数学问题,建立起“解直角三角形”的“数学模型”.

【解】(1)设途中会遇到台风,且最初遇到台风的时间为t小时,此时,轮船位于C 处,台风中心移到E处,连结CE,则有

AC=20t,AE=AB-EB=100-40t,

在Rt△ACE中,AE2+AC2=EC2

∴(20t)2+(100-40t)2=(

2

∴t2-4t+3=0

△=(-4)2-4×1×3=4>0

∴途中会遇到台风

解方程①得t1=1,t2=3

∴最初遇到台风的时间为1小时.

(2)设台风抵达D港的时间为t小时,此时台风中心至M点,过D作DF⊥AB,垂足为F,连结DM.

在Rt△ADF中,AD=60,∠FAD=60°

FA=30

又FM=FA+AB-BM=130-40t

∴(

2+(130-40t)2=(

2

整理,得4t2-26t+39=0

解之得t1

,t2

∴台风抵达D

港的时间为

13

4

小时,到D港的速度为60

÷

13

4

≈25.5

(海

里/时).

因此为使台风抵达D 港之前轮船到D 港,轮船应提高6海里/时.

方法5:说理性问题的解法

【例5】如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500m 为半径的圆形区域为居民区,?取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400m ,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?

【分析】说明输水路线是否穿过居民区,应过A 作MN 的垂线段AH ,计算出AH 的长,然后把AH 与500m 比较大小.

【解】过A 作AH ⊥MN ,垂足为H ∵MK ∥BG

∴∠GBH=∠KMH=30°

又∵∠GBA=75°,∠HBA=45° ∴∠BAH=45° ∴AH=BH

设AH 为xm ,则BH=xm ,在Rt △MHA 中,

∠HMA=∠KMA-∠KMB=60°-30°=30°. ∵tan ∠HMA=

AH

MH

∴MH=

tan 30x

∵MB=MH-BH

解得x=200

∴AH ≈546.4m>500m

答:输水路线不会穿过居民区.

【规律总结】此题是说理性问题,这类题要求学生对基本概念、基本定理、基本思路有清醒的认识,能根据实际问题进行相关的计算,并利用计算所得结果说明问题的原因、依据.

方法6:探索性问题

【例6】某学校为了改善教职工居住条件,?准备在教学楼(正楼)的正南方向建一座住宅楼(正楼),要求住宅楼与教学楼等高,均为15.6米,已知该地区冬至正午时分太阳高度最低,太阳光线与水平线的夹角为30°,如果住宅楼与教学楼间相距19.2米,如图1所示.

(1)此时住宅楼的影子落在教学楼上有多高?(精确到0.1米)

(2)要使住宅楼的影子刚好落在教学楼的墙角,则两楼间的距离应是多少??(精确到0.1米) 【分析】(1)如图所示,设冬至正午太阳最低时,住宅楼顶A?点的影子落在教学楼上的C 处,那么CD 的长就是影子落在教学楼上的高度.

(2)如图2所示,BC 的长就是两楼间的距离.

(1) (2) 【解】(1)如图1所示,作CE ⊥AB 于E , 在Rt △ACE 中,∠ACE=30°,EC=19.2, ∴AE=EC ·tan30°=19.2

19.2 1.7323?≈11.1

CD=EB=AB-AE

≈15.6-11.1=4.5(米)

∴住宅楼的影子落在教学楼上约有4.5米高 (2)如图2所示,

在Rt △ABC 中,∠ACB=30° BC=

tan 30AB ?

15.6×1.732≈27.0(米)

∴要使冬至正午的太阳能够照到教学楼的墙角,两楼间的距离至少应为27.0米.

【规律总结】此题为探索性题,结论没有直接给出,需要通过观察、分析、比较、概括、推理、判断等活动,逐步确定结论.

方法7:开放性问题

【例7】某处有一天线,高度超过10米,底部四周有铁丝网围墙,?使得不能直接到达天线底部,数学小组的同学们只有测倾器和测量长度用的量绳,请你为他们设计一个能测得天线高度的方案(包括测量方法,并推导计算公式).

【分析】本题是一道开放性试题,是近年来有关解直角三角形的中考试题中,开放程度很高的题目,着重考查学生如何借助解直角三角形知识解决这类测量问题.

解题中要注意测量工具所能测得的数据,以免审题失误.

【解】如图所示,测倾器离地面b 米,在点B 处测得天线顶端仰角为α,从B?点向前走a 米,到达点C ,在点C 处测得天线顶端仰角为β,设AG 为x 米. 在Rt △AGC 中,CG=

tan tan AG x

ββ=

在Rt △AGB 中,BG=tan tan AG x

αα

= ∵BC=BG-CG ∴

tan x α-tan x β

=a

∴x=

11()tan tan a

αβ

-=

tan tan tan tan a αβ

βα-

∴AM=AG+GM=

tan tan tan tan a αβ

βα

- +b

【规律总结】对于开放性问题,一般都有多种解题方法,首先应对解直角三角形知识有关的基本图形非常熟悉,然后才能给出设计方案,选择适合自己的解题方法,灵活巧妙地解答问题.

方法8:综合性问题

【例8】如图所示,已知A 为∠POQ 的边OQ 上一点,以A?为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移,设OM=x ,ON=y (y>x ≥0),△AOM?的面积为S ,且cos α,OA 是方程2z 2-5z+2=0的两个根.

(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ; (3)试求y 与x 之间的函数关系式及自变量x

的取值范围.

(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.

【分析】本题把解直角三角形与一元二次方程、相似三角形、平移、旋转、函数等知识糅合在一起,形成一道综合性很强的考题.本题从解一元二次方程入手,逐步挖掘隐含条件,构造直角三角形,将其转化为解直角三角形问题.

【解】(1)解方程2z 2

-5z+2=0,得z 1=1

2

,z 2=2 ∵α为锐角 ∴O

12

∴α=60°,即∠POQ=∠MAN=60°

∴ON=OA=2,如图14-20所示.

当AM 旋转到AM ′时,点N 移动到N ′ ∴∠M ′N ′A=30°,∠OAN ′=90°, 在Rt △OAN ′中,ON ′=2AO=2×2=4, ∴MN ′=ON ′-ON=4-2=2 ∴点N 移动距离为2

(2)如图1所示,在△OAN 和△AMN 中,∠AON=∠MAN ,∠ANO=∠MNA ,

∴△AON?∽△MAN ,∴

AN MN =ON AN

,∴AN 2

=ON ·MN

(1) (2) (3)如图2所示, 过A 作AH ⊥OP 于点H . ∵MN=ON-OM=x-y ,

∴AN 2=ON ·MN=y (y-x )=y 2

-xy 在Rt △AOH 中,OH=OA ·cos60°=2×12

=1

∴AH=OA ·sin60° ∴HN=ON-OH=y-1 在△ANH 中,

AN 2

=AH 2

+HN 2

=2

+(y-1)2

=y 2

-2y+4,

∴y 2-xy=y 2

-2y+4,整理得y=

4

2x

∵y>O ∴2-x>O ∴x<2 又∵x ≥O

∴x 的取值范围是O ≤x<2

(4)如图2所示,在△AOM 中,OM 边上的高AH 为,

∴S=

12OM ·AH=12·x

∵S 是x ∴S 随x 的增大而增大

∴O ≤ 【规律总结】本题通过作OM 边上的高AH ,从而将其转化为解直角三角形问题,在解有关综合性问题时,要注意挖掘隐含条件,合理运用相应知识,构造直角三角形,利用直角三角形的边角关系沟通各知识点间的联系.

中考试题归类解析

(一)锐角三角函数 【例1】(2003,大连)在Rt △ABC 中,∠C=90°,AC=4,BC=3,则B 的值为( ) A .

45 B .35 C .43 D .3

4

【思路分析】由勾股定理可知AB=5,根据锐角三角函数的定义可知cosB=

3

5

BC AB 解:答案B 【例2】(2003,南京)在△ABC 中,∠C=90°,tanA=1,那么cotB 等于( )

A .1 D .

3

【思路分析】由互为余角的三角函数关系可知:cotB=tanA=1 解:答案C

【规律总结】本题也可由tanA=1得到∠A=45?°,?所以∠B=?45?°,? 故cotB=cot45°=1

【例3】(2003,黄冈)已知∠A 为锐角,且cosA ≤

1

2

,那么( ) A .0°∠A ≤60° B .60°≤A ∠90° C .0°∠A ≤30° D .30°≤A ∠90°

【思路分析】锐角三角函数的余弦值随角度的增大而减小,因为∠A 为锐角,所以O

1

2

,即cos90°

【例4】(2004,山西)计算:sin 248°+sin 2

42°-tan44?°·?tan45?°·?tan46?°=_______.

【思路分析】利用互为余函数的关系化为同角函数,再利用同角三角函数公式就可求出值.

【解】sin 248°+sin 2

42°-tan44°·tna45°tan46°

=sin 248°+cos 2

48°-tan44°·cot44°tan45° =1-1×1 =0 故应填:0

【规律总结】解决这样的问题一是要善于互化函数,往公式上靠,二是特殊角的三角函数值要记住.

【例5】(2004,宁波)计算:(π-3)°-(

12

)-2+(-1)3-sin 2

45° 【思路分析】按运算法则和运算顺序直接计算即可. 【解】(π-3)°-(

12

)-2+(-1)3-sin 2

45° =1-

211()2

+(-1)3

-

(2)2 =1-4-1-12

=-4

12

【规律总结】在中考题中象这样代数值的运算和三角函数值的运算结合在一起的比较多.

(二)解直角三角形

【例1】已知如图所示,在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .

【求证】S△ABC=1

2

absinc=

1

2

bcsinA=

1

2

casinB.

【思路分析】要求面积关键是作高,构造出直角三角形利用锐角三角函数的定义加以理解.

【证明】过A点作AD⊥BC垂足为D

在Rt△ABD中,sinB=AD AB

∴AD=AB·sinB=c·sinB

∴S=1

2

AD·BC=

1

2

ac·sinB

同理可证,S=1

2

absinc=

1

2

bcsinA

【例2】如图,若CD是Rt△ABC斜边上的高,AD=3,CD=4,则BC=_____.【思路分析】先利用勾股定理求出AC长再利用相似比就可求出BC

【解】∵AC2=AD2+DC2

而AD=3 CD=4

Rt△CDA∽Rt△BDC

AD CD = AC BC

BC=

5420

33 AC CD

AD

??

==

故应填:20 3

【规律总结】:本题也可以利用射影定理去解.

【例3】一艘渔船在A处观测到东北方向有一小岛C,周围4.8海里范围内是水产养殖场,渔船沿北偏东30°方向航行10海里到达B处,在B处测得小岛C?在北偏东60°方向,这时渔船改变航线向正东(即BD)方向航行,这艘船是否有进入养殖场的危险.【思路分析】是否有进入养殖场的危险就是看C点

到BD的距离是多少,?如果大于4.8海里就没有进入

养殖场的危险,否则就有危险.

【解】过C点作BD的垂线与BD交于E点

∠BAC=60°-45°=15°

∠BCA=45°-30°=15°

在Rt△CBE中,

sin∠CBE=CE BC

CE=BC·sin∠CBE

=10×1 2

=5(海里)

∵4.8<5

∴没有进入养殖场的危险.

【规律总结】这种类型题关键是要构建直角三角形计算距离,再根据距离大小来判断是否有危险.

中考试题集萃

(一)填空题

1.(2004,宁波)sin45°=________.

2.(2004,衡阳)∠A为锐角,若cosA=1

3

,则sin(90°-A)=_______.

3.(2004,芜湖)在直角三角形ABC中,∠C=90°,已知sinA=3

5

,则cosB=________.

4.(2004,常州)若∠α′的余角是30°,则∠α′=_______°,sin∠α′=________.

5.(2004,江西)在△ABC中,若AB=3,则cosA=________.

6.(2004,沈阳)在Rt△ABC中∠C=90°,tanA=2

3

,AC=4,则BC=_______.

7.(2004,上海)在△ABC中,∠A=90°,设∠B=θ,AC=b,则AB=______.(用b和θ的三角比表示)

8.(2004,深圳)计算:3tan30°+cot45°-2tan45°+2cos60°=________.

9.(2004,西宁)某人沿倾斜角为β的斜坡走了100m,则他上升的高度是______m. 10.(2004,潍坊)某落地钟钟摆的摆长为0.5m,来回摆动的最大夹角为20°,已知在钟摆的摆运过程中,摆锤离地面的最低高度为am,最大高度为bm,则b-a=_______m(不取近似值).

(二)选择题

1.小强和小明去测量一座古塔的高度(如图)他们在离古塔60m?的A处,用测角仪器测得塔顶的仰角为30°,已知测角仪器高AD=1.5m,则古塔BE的高为(? )

A.()m B.()m

C.31.5m D.28.5m

2.在Rt△ABC中,如果各边长度都扩大为原来的2

倍,则锐角A的正切值()

A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没

有变化

3.用科学计算器计算锐角α的三角函数值时,?不能直接计算出来的三角函数值是( )

A .cot α

B .tan α

C .cos α

D .sin α 4.计算sin30°·cot45°的结果是( )

A .

12 B .2 C .6 D .4

5.=( )

A .1-

3.3

-1 D . 6.在Rt △ABC 中,∠C=90°,AC=12,cosA=12

13

,则tanA 等于( ) A .513 B .1312 C .125 D .5

12

7.已知α为锐角,tan αcos α等于( )

A .

12 B 8.在△ABC 中,∠C=90°,sinA=,则cosB 的值为( )

A .

12 B .2 C .2 D .3

9.在△ABC 中,∠C=90°,AB=5,BC=3,CA=4,那么sinA 等于( ) A .

34 B .43 C .35 D .45

(三)解答题

1.(2004,芜湖)在△ABC 中,∠A 、∠B 都是锐角,且sinA=1

2

,AB=10,?求△ABC 的面积.

2.(2004,大连)如图,某校自行车棚的人字架棚顶为等腰三角形,D 是AB 的中点,?中柱CD=1m ,∠A=72°,求跨度AB 的长(精确到0.01m ).

3.(2004,南京)如图,天空中有一个静止的广告气球C ,从地面A 点测得C 点的仰角为45°,从地面B 点测得C 点的仰角为60°,已知AB=20m ,点C 和直线AB 在同一铅垂平面上,求气球离地面的高度.(结果保留根号).

4.(2004,贵阳)某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6m 的小区超市,超市以上是居民住房,在该楼的前面15m 处要盖一栋高20m 的新楼,当冬季正午的阳光与水平线的夹角为32°时,问: (1)超市以上的居民住房采光是否有影响?为什么?

(2)若要使超市采光不受影响,两楼应相距多少米?(?结果保留整数,?参考数据:sin32°≈

53100,cos32°≈106125,tan32°≈58

三角形中的边角关系

三角形中的边角关系 一、选择题(每小题3分,共30分) 1、下列长度的各组线段中,能组成三角形的是( ) A .1,1,2 B .3,7,11 C .6,8,9 D .3,3,6 2、下列语句中,不是命题的是( ) A .两点之间线段最短 B .对顶角相等 C .不是对顶角不相等 D .过直线AB 外一点P 作直线AB 的垂线 3、下列命题中,假命题是( ) A .如果|a|=a ,则a ≥0 B .如果 ,那么a=b 或a=-b C .如果ab>0,则a>0,b>0 D .若,则a 是一个负数 4、若△ABC 的三个内角满足关系式∠B +∠C=3∠A ,则这个三角形( ) A .一定有一个内角为45° B .一定有一个内角为60° C .一定是直角三角形 D .一定是钝角三角形 5、三角形的一个外角大于相邻的一个内角,则它是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定 6、下列命题中正确的是( ) A .三角形可分为斜三角形、直角三角形和锐角三角形 B .等腰三角形任一个内角都有可能是钝角或直角 C .三角形外角一定是钝角 D .△ABC 中,如果∠A>∠B>∠C ,那么∠A>60°,∠C<60° 7、若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( ) A .3:2:1 B .5:4:3 C .3:4:5 D .1:2:3 8、设三角形三边之长分别为3,8,1-2a ,则a 的取值范围为( ) A .-62 9、如图9,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2 B.1cm 2 C.12cm 2 D.14 cm 2 图9 图10 10、已知:如图10,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( ) A .10° B .18° C .20° D .30° F E C A

三角形中的边角关系

三角形中的边角关系 1、 A+B+C=π , 2C = 2 π-( 2A + 2 B ) 2、 sinC=sin(A+B), cosC=-cos(A+B) sin 2 C =cos( 2 A +2 B ), cos 2 C =sin( 2 A + 2 B ), tan 2 C =cot( 2 A + 2 B ) sin2C=-sin2(A+B), cos2C=cos2(A+B) 3、 三角形面积公式 S ?= 12 absinC= 12 bcsinA= 12 casinB p= 12 (a+b+c ) 4、 正弦定理sin sin sin a b c A B C = = =2R sinA ?sinB ? sinC ?a = b ? c sinA= 2a R ,sinB=2b R ,sinC= 2c R a=2RsinA , b=2RsinB , c=2RsinC 适用类型:AAS →S ,SSA →A (2,1,0解) 5、余弦定理2222cos a b c bc A =+- 2 2 2 co s 2b c a A b c +-= 适用类型:SSS →A ,SAS →S ,AAS →S(2,1,0解) 5、 判定三角形是锐角直角钝角三角形 设c 为三角形的最大边 2c <2a +2b ??ABC 是锐角三角形 2 c =2 a +2 b ??ABC 是直角三角形 2 c >2 a +2 b ??ABC 是钝角三角形 6、 tanA+tanB+tanC=tanAtanBtanC cotAcotB+cotBcotC+cotCcotA=1 tan 2 A tan 2 B +tan 2 B tan 2 C +tan 2 C tan 2 A =1 7* 、若三角形三内角成等差数列,则B=3 π 三边成等差数列,则0

直角三角形的边角关系(习题及答案)

直角三角形的边角关系(习题) ?要点回顾 1.默写特殊角的三角函数值: 2.三角函数值的大小只与角度的有关,跟所在的三角形 放缩(大小)没有关系. 3.计算一个角的三角函数值,通常把这个角放在 中研究,常利用或两种方式进行处理.?例题示范 例:如图,在△ABC 中,∠B=37°,∠C=67.5°,AB=10,求BC 的长.(结果精确到0.1,参考数据:sin37°≈0.6,cos37°≈0.8,tan67.5°≈2.41) 如图,过点A 作AD⊥BC 于点D, 由题意AB=10,∠B=37°,∠C=67.5° 在Rt△ABD 中,AB=10,∠B=37°, sin B =AD ,cos B = BD AB AB ∴AD=6,BD=8 在Rt△ADC 中,AD=6,∠C=67.5°,tan C = AD CD ∴CD=2.49 ∴BC=BD+CD=8+2.49=10.49≈10.5 即BC 的长约为10.5. ①得出结论; ②解直角三角形; ③准备条件. 1

2 ?巩固练习 1.在Rt△ABC 中,如果各边长度都扩大为原来的2 倍,那么锐 角A 的正弦值() A.扩大2 倍B.缩小2 倍C.没有变化D.不确定2.在Rt△ABC 中,若∠C=90°,AC=3,BC=5,则sin A 的值为 () A. 3 5 B. 4 5 C. 5 34 34 D. 3 34 34 3.在△ABC 中,∠A,∠B 均为锐角,且 ?1 ?2 sin A - + - cos B ? ?? = 0 ,则这个三角形是()A.等腰三角形B.直角三角形 C.钝角三角形D.等边三角形 4.若∠A 为锐角,且cos A 的值大于 1 ,则∠A() 2 A.大于30°B.小于30° C.大于60°D.小于60° 5.已知β为锐角,且 3 A.30?≤β≤60? C.30?≤β< 60? ≤tan β< ,则β的取值范围是() B.30?<β≤60? D.β< 30? 6.如图,在矩形ABCD 中,DE⊥AC,垂足为E,设∠ADE=α, 若cosα= 3 ,AB=4,则AD 的长为() 5 A.3 B. 16 3 C. 20 3 D. 16 5 第6 题图第7 题图 7.如图,在菱形ABCD 中,DE⊥AB,若cos A = 3 ,BE=2,则 5 tan∠DBE= . 2 3 2 3 3

中考数学直角三角形的边角关系提高练习题压轴题训练含答案

中考数学直角三角形的边角关系提高练习题压轴题训练含答案 一、直角三角形的边角关系 1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 =?=米, 639 ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高 2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N, ∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题: (1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM; (2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明; (3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.

三角形边角中的边角关系一对一辅导讲义

教学目标 1、了解三角形的概念,掌握分类思想。 2、经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵。 3、让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三 边关系在现实生活中的实际价值。 重点、难点 了解三角形的分类,弄清三角形三边关系;对两边之差小于第三边的领悟 考点及考试要求 考点1:三角形边与边的关系 考点2:三角形角与角的关系 考点3:三角形边与角的关系 教 学 内 容 第一课时 三角形边角中的边角关系知识梳理 1.以下列各组线段长为边,能组成三角形的是( ) A .1cm ,2cm ,4 cm B .8 crn ,6cm ,4cm C .12 cm ,5 cm ,6 cm D .2 cm ,3 cm ,6 cm 2.等腰三角形的两边长分别为5 cm 和10 cm ,则此三角形的周长是( ) A .15cm B .20cm C .25 cm D .20 cm 或25 cm 3.如图,四边形ABCD 中,AB=3,BC=6,AC=35,AD=2,∠D=90○, 求CD 的长和四边形 ABCD 的面积. 4.三角形中,最多有一个锐角,至少有_____个锐角,最多有______个钝角(或直角),三角形外角 中,最多有______个钝角,最多有______个锐角. 5.两根木棒的长分别为7cm 和10cm ,要选择第三根棒,将它钉成一个三角形框架,那么第三根木棒长xcm 的范围是__________ 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线段能组成 一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其他两边和。用式子表示如下: 知识梳理 课前检测

(完整word版)沪科版八年级数学三角形中的边角关系

三角形中的边角关系 知识点 一、 边 1、基本概念(三角形的定义、 边、 顶点、 △、 Rt △) 2、按边对三角形的分类:≠?? ?????? 不等边三角形三角形腰底等腰三角形等边三角形 ☆3、三边关系: (1)任意两边之和大于第三边 (2)任意两边之差小于第三边 验证:两条较短边之和与第三边的关系 二、角 1、基本概念( 内角、外角、∠ ) 2、按角对三角形的分类:???? ???? 锐角三角形斜三角形三角形钝角三角形直角三角形 3、三角形的内角和 (1)三角形三个内角和等于180° (2)直角三角形的两个锐角互余 (3)一个三角形最多3个锐角,最多1个钝角,最多1个直角,最少2个锐角) 三、线 1、中线 (1) 定义 (2) 重心 (3)中线是线段 (4) 表述方法 2、高线 (1)定义 (2)垂心 (3)高是线段,垂线是直线 (4)表示方法 (5)3种高的画法 3、角平分线 (1)定义 (2)外心 (3)画法 (4)表示方法 四、数三角形的个数 (1)图形的形成过程 (2)三角形的大小顺序 (3)按某一条边沿着一定的方向 (4)固定一个顶点,按照一定的顺序不断变换另外两个顶点去数 基础练习 1、图中有____个三角形;其中以AB 为边的三角形有______________;含∠ACB 的三角形有______________;在△BOC 中,OC 的对角是___________;∠OCB 的对边是___________. 2、用集合来表示“用边长把三角形分类”,下面集合正确的是( ) A B C D 3、若三角形的三边长分别为3,4,x -1,则x 的取值范围是_________________________

(完整)直角三角形的边角关系知识点,推荐文档

直角三角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,∠C 为直角,则锐角A 的各三角 函数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =b c (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =a b (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作 c ot A , 即c ot A =b a 2.直角三角形中的边角关系 (1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90° (3)边角之间的关系: sinA =cosB =a c , cosA =sinB =b c t an A =c ot B =a b , cot A =t an B =b a

3.三角函数的关系 (1)同角的三角函数的关系 1)平方关系:sinA 2+cosA 2=1 2)倒数关系:t an A·c ot A =1 3)商的关系:t an A =sinA cosA ,c ot A =cosA sinA (2)互为余角的函数之间的关系 sin(90°-A)=cosA , cos(90°-A)=sinA t an (90°-A)=c ot A , cot (90°-A)=t an A 4.一些特殊角的三角函数值 0° 30° 45° 60° 90° sin α 0 1 cos α 1 0 tan α 0 1 ----- cot α ----- 1

三角形边角关系培优训练经典

三角内角与外角典型题 1、①求下图各角度数之和。 ②如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F=__________. 2、如图,BE是∠ABD的平分线,CF是∠ACD的平分线,BE、CF相交于点G,∠BDC=140°,∠BGC=110°。求∠A的 度数。 3、如图△ABC中, ∠BAD=∠CBE=∠ACF, ∠ABC=50°,∠ACB=62°,求∠DFE的大小。 4、△ABC中,AD、BE、CF是角平分线,交点是点G,GH⊥BC。求证:∠BGD=∠CGH. A

2 1 P C B A 5.如图,已知CE 为△ABC 的外角∠ACD 的角平分线,CE 交BA 的延长线于点E , 求证:∠BAC > ∠B 6、△ABC 中,∠A: ∠ABC: ∠ACB=3:4:5,CE 是AB 上的高,∠BHC=135° 求证:BD ⊥AC 7、三角形的最大角与最小角之比是4:1,则最小内角的取值范围是多少? 8.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是 . 9.如图,在△ABC 中,∠ABC = ∠ACB ,∠A = 40°,P 是△ABC 内一点,且∠1 = ∠2.则∠BPC =________。 10.锐角三角形ABC 中,3条高相交于点H ,若∠BAC =70°,则∠BHC =_______

11、如图,BE平分∠ABD交CD于F,CE平分∠ACD交AB于G,AB、CD交于点O,且∠A=48?,∠D=46?,则∠BEC= 。 12.已知△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定() A.小于直角 B.等于直角 C.大于直角 D.不能确定 13. △ABC的三条外角平分线所在直线相交构成的三角形是() A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定 14、若?ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是() A.钝角三角形B.直角三角形C.锐角三角形D.都有可能

直角三角形的边角关系专题复习

直角三角形的边角关系测试题 1、在Rt △ABC 中,∠A=90o,AB=6,AC=8,则sinB= ,cosC= 2、在△ABC 中,∠B=90o,2 1 cos =C ,则∠C= 】 3、在△ABC 中,∠C=90o,∠A=60o,AC=34,则BC= 4、在△ABC 中,∠C=90o,BC=3,AB=32,则∠A= 5、在△ABC 中,∠C=90o,若tanA= 2 1 ,则sinA= 6、在△ABC 中,若∠C=90o,∠A=45o,则tanA+sinB= 7、如图1,在△ABC 中,∠C=90o,∠B=30o,AD 是∠BAC 的平分线。已知AB=34, 那么AD= # 8、正方形ABCD 中,AM 平分∠BAC 交BC 于M ,AB=2,BM=1,则cos ∠MAC= 9、如果3)20tan(3=?+α,那么锐角α= 10、某校数学课外活动小组的同学测量英雄纪念碑的高,如图2所示,测得的数据为: BC=42m ,倾斜角o?=30α,测得测角仪高CD=1.5m ,则AB= 。(结果保留四位 有效数字) 11、在△ABC 中,∠C=90o,BC=5,AC=12,则tanA=( ) A 、512 B 、125 C 、513 D 、13 5 12、在Rt △ABC 中,∠C=90o,5 3 cos = A ,AC=6cm ,则BC=( )cm A 、8 B 、 C 、 D 、 ! 13、菱形ABCD 的对角线AC=10cm ,BD=6cm ,那么=2tan A ( ) A 、53 B 、54 C 、34 343 D 、34345 14、已知:如图3,梯形ABCD 中,AD 63864238242 3 23 1,23-1,2 3 --3253500 )3sin 2(3tan 2=-+-A B 5 米 353103?+?+?-?45tan 30cos 230tan 330sin ?-?+? -? - ?60tan 45tan 30sin 160cos 45cos 2226—1为平地 上一幢建筑物与铁塔图,题6-2图为其示意图.建筑物AB 与铁塔CD 都垂直于底面,BD=30m ,在A 点测得D 点的俯角为45°,测得C 点的仰角为60°.求铁塔CD 的高度. … 图6-1 图6-2 图2 a C A E B ) 图1 B C D A 图3 图4 图5

直角三角形的边角关系(含答案)

学生做题前请先回答以下问题 问题1:在Rt△ABC中,∠C=90°,sinA=________,cosA=________,tanA=________. 问题2:在Rt△ABC中,∠C=90°,锐角A越大,正弦sinA______,余弦cosA______,正切tanA______. 问题3:默写特殊角的三角函数值: 问题4:计算一个角的三角函数值,通常把这个角放在____________中研究,常利用_________或__________两种方式进行处理. 直角三角形的边角关系 一、单选题(共14道,每道7分) 1.式子2cos30°-tan45°-的值是( ) A. B.0 C. D.2 答案:B 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 2.如果△ABC中,,则下列说法正确的是( ) A.△ABC是直角三角形 B.△ABC是等腰三角形 C.△ABC是等腰直角三角形 D.△ABC是锐角三角形

答案:A 解题思路: 试题难度:三颗星知识点:特殊角的三角函数值 3.已知为锐角,且,那么的取值范围是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:锐角三角函数的增减性 4.如图,在Rt△ABC中,tanB=,BC=,则AC等于( )

A.3 B.4 C. D.6 答案:A 解题思路: 试题难度:三颗星知识点:解直角三角形 5.在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于( ) A. B. C. D. 答案:A 解题思路:

试题难度:三颗星知识点:锐角三角函数的定义 6.在Rt△ABC中,∠C=90°,若AB=4,,则斜边上的高为( ) A. B. C. D. 答案:B 解题思路:

直角三角形的边角关系知识点

直角二角形的边角关系知识考点 知识讲解: 1.锐角三角函数的概念 如图,在ABC 中,/ C 为直角,则锐角 A 的各三角函 数的定义如下: (1)角A 的正弦:锐角A 的对边与斜边的比叫做/ A 的正弦,记作sinA , ⑵ 角A 的余弦:锐角A 的邻边与斜边的比叫做/ A 的余弦,记作 cosA , 口口 b 即 cosA = (3)角A 的正切:锐角A 的对边与邻边的比叫做/ A 的正切,记作tanA , 即 tanA =7 b (4) 角A 的余切:锐角A 的邻边与对边的比叫做/ A 的余切,记作cotA , 即 si nA

b 即cotA =- a 2.直角三角形中的边角关系

(1) 三边之间的关系:a 2 + b 2 = c 2 (2) 锐角之间的关系:A + B = 90° (3) 边角之间的关系: sinA = cosB = -, cosA = sinB =2 c c a b tanA = cotB = , cotA = tanB = 3. 三角函数的关系 (1) 同角的三角函数的关系 2) 倒数关系:tan A -c otA = 1 sinA cosA tanA = , cotA =. cosA st nA (2) 互为余角的函数之间的关系 sin(90 ° - A) = cosA , cos(90 ° - A) = sinA tan (90 ° — A) = cotA , cot (90 ° — A) = tanA 4. 一些特殊角的三角函数值 1) 平方关系:sinA 2 + cosA 2 = 1 3) 商的关系:

2020中考数学专题练习:三角形的边角关系 (含答案)

2020中考数学专题练习:三角形的边角关系 (含答案) 1.已知在△ABC中,∠A=70°-∠B,则∠C=() A.35° B.70° C.110° D.140° 2.已知如图1中的两个三角形全等,则角α的度数是() 图1 A.72° B.60° C.58° D.50° 3.如图2,∠A,∠1,∠2的大小关系是() A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 图2 图3 4.王师傅用四根木条钉成一个四边形木架,如图3.要使这个木架不变形,他至少还要再钉上几根木条() A.0根B.1根C.2根D.3根 5.下列命题中,真命题的是() A.周长相等的锐角三角形都全等 B.周长相等的直角三角形都全等 C.周长相等的钝角三角形都全等 D.周长相等的等腰直角三角形都全等 6.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是() A B C D

7.不一定在三角形内部的线段是() A.三角形的角平分线B.三角形的中线 C.三角形的高D.三角形的中位线 8.用直尺和圆规作一个角的平分线的示意图如图3所示,则能说明∠AOC =∠BOC的依据是() A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等 图3 图4 9.如图4,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=________cm. 10.如图5,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE. 图5 11.如图6,点A,B,D,E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF. 图6

三角形边角关系教案

14.1 三角形中的边角关系(1) -------边的关系 1.三角形的概念 2.三角形的表示方法及分类 3.三角形三边之间的关系 1.了解三角形的概念,掌握分类思想。 2.经历探索三角形中的三条边之间的关系,感受几何学中基本图形的内涵。 3.让学生养成有条理的思考的习惯,以及说理有据的意识,体会三角形三边关系在现实生活中的实际价值。 三教学重难点: 1.重点:了解三角形的分类,弄清三角形三边关系 2.难点:对两边之差小于第三边的领悟 四教学准备: 1.教师准备:多媒体课件 2.学生准备:四根小木条 五课时安排: 一节课 六教学过程: (一)创设情境,探究新知 1.请同学们仔细观察一组图片,找出你熟悉的图形三角形,引入课题 我们在日常生活中几乎随处可见三角形,它简单、有趣,也十分有用。三角形可以帮助我们更好地认识周围的世界,可以帮助我们解决很多实际问题……从这一节课开始我们将学习三角形。 (二)合作交流,探究新知 你能画一个三角形吗? 三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形 3.自学指导: 认真看书67页的内容。注意三角形边的表示方法。 并思考下面问题: (1)知道三角形的顶点,边,角等概念,会用几何符号表示一个三角形; (2)会把三角形按边进行分类,知道每类三角形的特征;

(3)知道等腰三角形的腰,底边,顶角,底角等概念; 依次向学生介绍有关知识 4.巩固练习(多媒体展示) 5.合作探究三角形的三边关系 有这样的四根小棒(6cm、8cm、12cm、18cm)请你任意的取其中的三根,首尾连接,摆成三角形。 (1)有哪几种取法? (2)是不是任意三根都能摆出三角形?若不是,哪些可以?哪些不可以? (3)用三根什么样的小棒才能拼成三角形呢?你从中发现了什么? 小组活动:学生自主探索并合作交流满足怎样的数量关系的三根小棒能组成三角形; 我们可以发现这四根小棒中,如果较短的两根的和不大于最长的第三根,就不能组成三角形。 这就是说:三角形中任何两边的和大于第三边 三角形中任意两边的差与第三边有什么关系?你能根据上面的结论,利用不等式的性质加以说明吗? 三角形中任何两边的差小于第三边 6.讲解例题 例1 :例:一根木棒长为7,另一根木棒长为2,若要围成三角形,那么则第三根木棒长度应在什么范围呢? 解:设第三条边长为a cm,则 7-2<a<7+2 即5<a<9 结论:其它两边之差< 三角形的一边< 其它两边之和 例2:已知:等腰三角形周长为18cm,如果一边长等于4cm,求另两边的长? 解(1)设等腰三角形的底边长为4 cm,则腰长为x cm。根据题意,得 x+x+4=18 解方程,得 x=7

直角三角形的边角关系(含答案)

第十四章 直角三角形的边角关系 基础知识梳理 1.锐角三角函数. 在Rt △ABC 中,∠C 是直角,如图所示. (1)正切:∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA= A A ∠∠的对边 的邻边 . (2)正弦:∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA= A ∠的对边 邻边 . (3)余弦:∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA= A ∠的邻边 邻边 . (4)锐角三角函数:锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数. (5)锐角的正弦和余弦之间的关系. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值. 即:如果∠A+∠B=90°,那么sinA=cos (90°-A )=cosB ;cosA=sin (?90?°-?A )?=sinB . (6)一些特殊角的三角函数值(如下表). (7)已知角度可利用科学计算器求得锐角三角函数值;同样,?已知三角函数值也可利用科学计算器求得角度的大小.

(8)三角函数值的变化规律. ①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小). ②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(?或增大).(9)同角三角函数的关系. ①sin2A+cos2A=1;②tanA=sin cos A A . 2.运用三角函数解直角三角形. 由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对 边分别为a,b,c. (1)三边之间的关系:a2+b2=c2(勾股定理). (2)锐角之间的关系:∠A+∠B=90°. (3)边角之间的关系:sinA=a c ,cosA= b c ,tanA= a b . 所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),?就可以求出其余三个未知元素. 解直角三角形的基本类型题解法如下表所示: (1)尽量使用原始数据,使计算更加准确; (2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题; (3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题; (4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便; (5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,?应当选用什么关系式进行计算; (6)添加辅助线的过程应书写在解题过程中. 3.解直角三角形的实际问题. 解直角三角形的实际问题涉及到如下概念和术语. (1)坡度、坡角.

直角三角形的边角关系提高性测试卷(含答案)

直角三角形的边角关系提高题 一、选择题 1.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,D 为垂足.若AC =4,BC =3,则sin ∠ACD 的值为( ) A . 34 B .43 C .54 D .5 3 2.已知∠A +∠B =90°且cos A =51 ,则cos B 的值为( ) A .51 B .54 C .562 D .5 2 3.已知tan a =3 2 ,则锐角a 满足( ) A .0°<a <30° B .30°<a <45° C .45°<a <60° D .60°<a <90° 4.如图所示,在△ABC 中,AB =AC =5,BC =8,则tan C =( ) A .53 B .54 C .34 D .4 3 5.如图,从山顶A 望到地面C ,D 两点,测得它们的俯角分别是45°和30°,已知CD =100m ,点C 在BD 上,则山高AB 等于 ( ) A .100 m B .350m C .250m D .50(13+)m 6.已知楼房AB 高50 m ,如图,铁塔塔基距楼房房基间的水平距离BD =50 m ,塔高DC 为3 1 (350150+)m ,下列结论中,正确的是 ( ) A .由楼顶望塔顶仰角为60° B .由楼顶望塔基俯角为60° C .由楼顶望塔顶仰角为30° D .由楼顶望塔基俯角为30° 7.如图,水库大坝的横断面积为梯形,坝顶宽6米、坝高24米、斜坡AB 的坡角为45°, 斜坡CD 的坡度i =1∶2,则坝底AD 的长为 ( ) A .42米 B .(32430+)米 C .78米 D .(3830+)米 二、填空题 2.将cos21°、cos37°、sin41°、cos46°的值按由小到大的顺序排列是 . 6.如图,太阳光线与地面成60 角,一棵倾斜的大树与地面成30 角,这时测得 大树在地面上的影长为10m ,则大树的长约为 m .(保留2位有数字)

2020中考数学 几何专项突破:三角形的边角关系(含详解版)

2020中考数学几何专项突破 三角形的边角关系(含答案) 典例探究 例1 如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40° 例2 如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为() A.30° B.60° C.90° D.45° 例3 如果一个三角形的两边长分别为2和4,则第三边长可能是() A.2 B.4 C.6 D.8 巩固练习 1.下列命题中,错误的是: ( ) A.三角形两边之差小于第三边. B.三角形的外角和是360°.

C.三角形的一条中线能将三角形分成面积相等的两部分. D.等边三角形即是轴对称图形,又是中心对称图形. 2.下面四个结论中,正确的是() A. 三角形的三个内角中最多有一个锐角 B. 等腰三角形的底角一定大于顶角 C. 钝角三角形最多有一个锐角 D. 三角形的三条内角平分线都在三角形内 3.下列说法正确的是() 三角形的角平分线是射线。 B、三角形三条高都在三角形内。 三角形的三条角平分线有可能在三角形内,也可能在三角形外。 D、三角形三条中线相交于一点。 4.如图(1),用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何? (A) 5 (B) 6 (C) 7 (D) 10 。 5.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是 A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 6.已知a、b、c为三个正整数,如果a+b+c=12,那么以a、b、c为边能组成的三角形是: ①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是.(只填序号) 7.如图,在中,,是的垂直平分线,交于点,交 于点.已知,则的度数为() A. B. C. D. 8.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是() A.4cm B.5cm C.6cm D.13cm 9.下列长度的三条线段能组成三角形的是( ) A.1cm, 2cm, 3.5cm; B.4cm, 5cm, 9cm C.5cm,8cm, 15cm D.6cm,8cm, 9cm Rt ABC △ο 90 = ∠B ED AC AC D BC Eο 10 = ∠BAE C ∠ ο 30ο 40ο 50ο 60 A D C E B

三角形中的边角关系测试卷

《三角形中的边角关系》测试卷 一、选择题 1、三角形的三边分别为3,1-2a,8,则a 的取值范围是( ) -2 2、下列不属于命题的是( ) A.两直线平行,同位角相等; B.如果x 2=y 2 ,则x =y ; C.过C 点作CD ∥EF ; D.不相等的角就不是对顶角。 3、如果三角形的一个内角等于其它两个内角的差,这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D. 斜三角形 4、四条线段的长度分别为4、6、8、10,可以组成三角形的组数为( ) .3 5、如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A .2 B .3 C .4 D . 5 6、一次数学活动课上,小聪将一副三角板按图中方式叠放,则∠α等于( ) A .30° B .45° C .60° D .75° 7、图(五)为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为 4 21 平方公分,则此方格纸的面积为多少平方公分? A . 11 B . 12 C . 13 D . 14 8、已知如图,∠A=32°,∠B=45°,∠C=38°则ΔDFE 等于( ) ° ° ° ° 9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°, 那么∠2的度数是( ) A .32° B .58° C .68° D .60° 10、已知:如图,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边的高,则∠DBC=( ) A .10° B .18° C .20° D .30° 11、已知等腰三角形的一个内角为040,则这个等腰三角形的顶角为 ( ) A.0 40 B.0 100 C.0 40或0 100 D.0 70或0 50 二、填空题 A B 30° 45° α 1 2

三角形边角关系培优训练

三角形三边关系、内角练习题一、三边关系 1.已知 ABC中,周长为12,b=1 2 (a+c),则b为 2.一边长为5cm,另一边长为10cm的等腰三角形的周长是 3.有木条4根,长度为14厘米,10厘米,8厘米,6厘米,选其中三根组成三角形,则选择的种数有种 4.三角形两边长为2cm和7cm,第三边长为奇数,那么这个三角形的周长是 cm 5.一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,求a的取值范围? 6.设△ABC的三边a , b ,c 的长度均为自然数,且a≤b≤c ,a + b + c =13 , 则以a , b , c 为三边的三角形共有多少个。 6.在右图中,已知AD是△ABC的BC边上的高,AE是BC边上的中线,求证: AB+AE+1 2 BC>AD+AC 证明:∵AD⊥BC( )∴AB>AD( ) 在△AEC中,AE+EC>AC( )又∵AE为中线( ) ∴EC=1 2 BC( ) 即AE+1 2 BC>AC( ) ∴AB+AE+ 1 2 BC>AD+AC

21P C B A B 7.如图,已知D 是△AB C 内任意一点,则有AB+AC >DB+DC. 8.如图,已知P 是△ABC 内一点,连结AP ,PB,PC, 求证:(1)PA+PB+PC > 21 (AB+AC+BC) (2) PA+PB+PC < AB+AC+BC 二、三角关系 1.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是 . 2.已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( ) A.小于直角 B.等于直角 C.大于直角 D.不能确定 3. △ABC 的三条外角平分线所在直线相交构成的三角形是( ) A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定 4.如图△ABC,∠ABC = ∠ACB,∠A = 40°,P 是△ABC 内一点,∠1 = ∠2.则∠BPC =____。

三角形边角关系专项练习

三角形边角关系及三线练习题 典型例题 【例1】 已知三角形的三边长分别为4、5、x ,则x 不可能是( ) A. 3 B. 5 C. 7 D. 9 1. 【例2】 一个三角形的三条边中有两条边相等,且一边长为4,还有一边长为9,则它 的周长为( ) A. 17 B. 22 C. 17或22 D. 13 相关变形:一等腰三角形两边长分别为3,5,试求该三角形的周长。 等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) A.150° B.80° C.50°或80° D.70° 【例3】 如图SX —02,AD ⊥BC ,则图中以AD 为高的三角形有___________个。 【例4】 如图SX —03,已知线段AD 、AE 分别是△ABC 的中线和高线,且AB=5cm ,AC=3cm , (1) △ABD 与△ACD 的周长之差为_________;(2) △ABD 与△ACD 的面积关系为__________。 【例5】 已知△ABC 中,给出下列四个条件:(1) ∠A+∠B=∠C; (2) ∠A=90°-∠B; (3) ∠A :∠B :∠C=1:1:2; (4) ∠A :∠B :∠C=1:2:3. 其中能够判定△ABC 是直角三角形的有( )个。 A. 1 B. 2 C. 3 D. 4 【例6】 如图SX —04,Rt △ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求:(1) △ABC 的面积; (2) CD 的长。 【例7】 如图SX —05,△ABC 中,∠B 、∠C 的平分线交于点P ,且∠BPC=130°,求∠ BAC SX — 02 SX —03 SX — 04

三角形中边与角之间的不等关系

三角形中边与角之间的不等关系 《三角形中边与角之间的不等关系》教学设计教学目标: 1. 通过 实验探究发现:在一个三角形中边与角之间的不等关系; 2. 通过实验探究和推理论证,发展学生的分析问题和解决问题的能力;通过探索、总结形成利用图形的翻折等变换是解决几何问题常见的策略; 3. 提供动手操作的机会,让学生体验数学活动中充满着探索与创新,激发学生学习几何的兴趣。教学重点:三角形中边与角之间的不等关 系及其探究过程。教学难点:如何从实验操作中得到启示,写成几 何证明的表达。教具准备:三角形纸片数张、剪刀、圆规、三角板等。教学过程一、知识回顾 1. 等腰三角形具有什么性质? 2. 如何判定一个三角形是等腰三角形?从这两条结论来看,今后要在同 一个三角形中证明两个角相等,可以先证明它们所对的边相等;同样要证明两条边相等可以先证明它们所对的角相等。二、引入新课问题:在三角形中不相等的边所对的角之间又有怎样的大小关系呢?或者不相等的角所对的边之间大小关系又怎样?方法回顾:在探究 “等边对等角”时,我们采用将三角形对折的方式,发现了“在三角形中相等的边所对的角相等”,从而利用三角形的全等证明了这些性质。现在请大家拿出三角形的纸片用类似的方法探究今天的问题。三.探究新知实验与探究1:在△ABC中,如果AB>AC,那么我们可以将△ABC沿∠BAC的平分线AD折叠,使点C落在AB边上的点E处,即AE=AC,这样得到∠AED=∠C,再利用∠AED是△BDE的外角的关系得到∠AED>∠B,从而得到∠C>∠B。由上面的操作过程得到启示, 请写出证明过程。(提示:作∠BAC的平分线AD,在AB边上取点E,使AE=AC,连结DE。)形成结论1:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大。思考:是否还 有不同的方法来证明这个结论? 实验与探究2:在△ABC中,如果∠C>∠B,那么我们可以将△ABC沿BC的垂直平分线MN折叠,使点B落在点C上,即∠MCN=∠B,于是MB=MC,这样AB=AM+MB=AM+MC>AC. 由上面的操作过程得到启示,请写出证明过程。 形成结论2:在一个三角形中,如果两个角不等,那么它们所对的边

三角形边角关系-经典例题.docx

1、如图,BE是ZABD的平分线,CF是ZACD的平分线,BE、CF相交于点G, ZBDC=140° , ZBGC=110° o 求ZA 的度数. 2、如图,已知P是Z\ABC内一点,连结AP, PB, PC 求证:(1) PA+PB+PC > - (AB+AC+BC) 2 (2) PA+PB+PC < AB+AC+BC 4、如图1,在厶ABC中,AD丄BC,AE是角平分线, (1)求ZDAE与ZB、ZCZ间的关系; (2)如图2,AE是ZBAC的角平分线,FD垂直于BC于D,求ZDFE与ZB、ZC之间的关系. (3)如图3,当点F在AE延长线上时,FD仍垂直于BC于D,继续探讨ZDFE与ZB、ZC的关 系A 5、如图Z\ABC 中,ZBAD=ZCBE=ZACF, ZABC=506 , ZACB=62°,求ZDFE 的大小.

6、AABC中,AD、BE、CF是角平分线,交点是点G, GH丄BC 求证:ZBGD=ZCGH. A

7、如图,厶0y=90°,点A、B分别在坐标轴Ox、Oy上移动,BF是ZABP的平分线,BF的反向延 反线与ZOAB的平分线交于点C,求证ZACB的度数是定值. 8、在平面直角坐标系中,点0为坐标原点,点A在第一象限, 点B是x正半轴上一点。过点0做OD〃AB, ZBA0的平分线与 ZM0D的平分线相交于点Q, 求仝竺的值 ZAON 9、直角坐标系中,0P平分ZXOY, B为 Y轴正半轴上一点,D为第四象限内一点, BD 交x 轴于C , DE // 0P 交x 轴于点E , BCE交0P于A, ZBDE的平分线交0P于G,交直线AC于 M,如图 求证2ZOGD - ZOED ZOAC 为定值 CA 平分Z D

相关主题