搜档网
当前位置:搜档网 › 第二节原子结构与元素的性质

第二节原子结构与元素的性质

第二节原子结构与元素的性质
第二节原子结构与元素的性质

第二节原子结构与元素的性质

教学步骤、内容

教学方法、手段、

师生活动

[引入]我们明白元素性质是由元素原子结构决定的,那具体阻碍哪些性质呢?

[讲]元素的性质指元素的金属性和非金属性、元素的要紧化合价、原子半径、

元素的第一电离能和电负性。

[学与咨询]元素周期表中,同周期的主族元素从左到右,最高化合价和最低

化合价、金属性和非金属性的变化规律是什么?

[投影小结]同周期主族元素从左到右,元素最高化合价和最低化合价逐步升

高,金属性逐步减弱,非金属性逐步增强。

[讲]元素的性质随核电荷数递增发生周期性的递变,称为元素周期律。元素

周期律的内涵丰富多样,下面,我们来讨论原子半径、电离能和电负性的周期

性变化。

[板书]二、元素周期律

1、原子半径

[投影]观看图1—20分析:

[学与咨询]1.元素周期表中同周期主族元素从左到右,原子半径的变化趋

势如何?应如何明白得这种趋势?

2.元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应

如何明白得这种趋势?

[小结]同周期主族元素从左到右,原子半径逐步减小。其要紧缘故是由于核

电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子

后电子间斥力增大带来原子半径增大的趋势。

同主族元素从上到下,原子半径逐步增大。其要紧缘故是由于电子能层增

加,电子间的斥力使原子的半径增大。

[讲]原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是

核电荷数。明显电子的能层数越大,电子间的负电排斥将使原子半径增大,因

此同主族元素随着原子序数的增加,电子层数逐步增多,原子半径逐步增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,因此同周期元素,从左往右,原子半径逐步减小。

[咨询]那么,粒子半径大小的比较有什么规律呢?

[投影小结]1、原子半径大小比较:电子层数越多,其原子半径越大。当电子层数相同时,随着核电荷数增加,原子半径逐步减小。最外层电子数目相同的原子,原子半径随核电荷数的增大而增大

2、核外电子排布相同的离子,随核电荷数的增大,半径减小。

3、同种元素的不同粒子半径关系为:阳离子<原子<阴离子,同时价态越高的粒子半径越小。

[过渡]那么,什么叫电离能呢,电离能与元素的金属性间有什么样的关系呢?[板书]2、电离能

〔1〕定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能.

①常用符号I表示,单位为KJ?mol-1

②意义:通常用电离能来表示原子或离子失去电子的难易程度。[讲]原子为基态原子,保证失去电子时消耗能量最低。电离能用来表示原子或分子失去电子的难易程度。电离能越大,表示原子或离子越难失电子;电离能越小,表示原子或离子易失电子,

[点击试题]Na元素的I1=496 KJ·mol-1,那么Na (g) -e-→Na +(g) 时所需最低能量为 .

[板书]〔2〕元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。

[讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的〝气态〞〝基态〞〝电中性〞〝失去一个电子〞等差不多上保证〝最低能量〞的条件。

[投影]

[咨询]读图l—21。碱金属原子的第一电离能随核电荷数递增有什么规律呢? [讲]从图l—2l可见,每个周期的第一个元素(氢和碱金属)第一电离能最小,最后一个元素(稀有气体)的第一电离能最大;同族元素从上到下第一电离能变小(如He、Ne、Ar、Kr、Xe、Rn的第一电离能依次下降,H、Li、Na、K、Rb、

[点击试题]不同元素的气态原子失去最外层一个电子所需要的能量〔设其为E〕如下图,试依照元素在周期表中的位置,分析图中曲线的变化特点,并回答以下咨询题。

〔1〕同主族内不同元素的E值的变化特点是。各主族中E值的这种变化特点表达了元素性质的变化规律。

〔2〕同周期内,随原子序数的增大,E值增大。但个不元素的E值显现反常现象,试推测以下关系中正确的选项是〔填写编号〕。

①E〔砷〕>E〔硒〕②E〔砷〕<E〔硒〕

③E〔溴〕>E〔硒〕④E〔溴〕>E〔硒〕

〔3〕估量1mol气态Ca原子失去最外层一个电子所需能量E值的范畴:<E<。

〔4〕10号元素E值较大的缘故是

解析:此题考查了元素第一电离能的变化规律和学生的归纳总结能力。〔1〕同主族元素最外层电子数相同,随着原子核电荷数逐步增大,原子核对最外层电子的吸引力逐步减小,因此失去最外层电子所需能量逐步减小。〔2〕依照图像可知,同周期元素E〔氮〕>E〔氧〕,E〔磷〕>E〔硫〕,E值显现反常现象。故可推知第四周期E〔砷〕>E〔硒〕。但ⅥA族元素和ⅦA族元素的E值未显现反常。因此E〔溴〕>E〔硒〕。此处应填①、③。

〔3〕1mol 气态Ca原子失去最外层一个电子比同周期元素钾要难,比同主族元素Mg要容易,故其E值应在419~738之间。

〔4〕10号元素是Ne,它的原子最外层差不多成为8电子稳固结构,故其E 值较大。

答案:〔1〕随着原子序数的增大,E值变小周期性。〔2〕①、③〔3〕419、438或填E〔钾〕、E〔镁〕〔4〕10号元素是氖,该元素原子的最外层电子排布已达到8个电子稳固结构。

[学与咨询]2、下表的数据从上到下是钠、镁、铝逐级失去电子的电离能。什么缘故原子的逐级电离能越来越大?这些数据跟钠、镁、铝的化合价有什么联系?

[讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能(用I1表示),从一价气态基态正离子中再失去一个电子所需消耗的能量叫做第二电离能(用I2表示),依次类推,可得到I3、I4、I5……同一种元素的逐级电离能的大小关系:I1

Na的I1,比I2小专门多,电离能差值专门大,讲明失去第一个电子比失去第二电子容易得多,因此Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小专门多,因此Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小专门多,因此A1容易失去三个电子形成+3价离子。而电离能的突跃变化,讲明核外电子是分能层排布的。

[板书]〔4〕第二电离能;由+1价气态阳离子再失去1个电子形成+2价气态阳离子所需要的能量称为第二电离能,常用符号I2表示,依次还有第三、第四电离能等。

[讲]通常,原子的第二电离能高于第一电离能,第三电离能又高于第二电离能。这是因为元素的原子失去电子后,原子核对核外电子的作用增加,再失去电子消耗能量增加,失电子变得困难。

[讲]依照电离能的定义可知,电离能越小,表示在气态时该原子越容易失去电子;反之,电离能越大,讲明在气态时该原子越难失去电子。因此,运用电离能数值能够判定金属原子在气态时失电子的难易程度。

[板书](5) 电离能的应用

C.在所有元素中,氟的电离能最大

D.钾的第一电离能比镁的第一电离能大

解析:考查元素第一电离能的变化规律,一样同周期从左到右第一电离能逐步增大,碱金属元素的第一电离能最小,稀有气体最大故A正确C不正确;但有反常,第ⅢA和VA族元素比同周期相邻两种元素第一电离能都低。同主族从上到下元素的第一电离能逐步减小。,由于核外价电子排布镁为3S2,Al 为3S23P1,故Al的第一电离能小于Mg的,因此B错误;依照同主族同周期规律能够估量:第一电离能K

3、以下原子的价电子排布中,对应于第一电离能最大的是〔〕

A、ns2np1

B、ns2np2

C、ns2np3

D、ns2np4

解析:当原子轨道处于全满、半满时,具有的能量较低,原子比较稳固,电离能较大。答案:C

4.能够证明电子在核外是分层排布的事实是〔〕

A、电负性

B、电离能

C、电子亲和能

D、电势能

解析:各级电离能逐级增大,I1,I2,I3。。。。。外层电子只有一个电子的碱金属元素专门容易失去一个电子变为+1价阳离子,而达到稳固结构,I1较小,但再失去一个电子变为+2价阳离子却专门困难。即I2突跃式升高,即I2?I1,又如外层只有两个的Mg、Ca等碱土金属元素,I1和I2差不较小,但失去2个电子达到稳固结构后,在失去电子变为+3价阳离子却专门困难,即I3突跃式变大,I3?I2>I1,因此讲电离能是核外电子分层排布的实验佐证。答案:B

5、下表是元素周期表的一部分,表中所列的字母分不代表某一化学元素

〔1〕以下〔填写编号〕组元素的单质可能差不多上电的良导体。

①a、c、h ②b、g、k ③c、h、l ④d、e、f

〔2〕假如给核外电子足够的能量,这些电子便会摆脱原子核的束缚而离去。

教案

[复习]1、什么是电离能?它与元素的金属性、非金属性有什么关系?2、同周期元素、同主族元素的电离能变化有什么规律?

[讲]元素相互化合,可明白得为原子之间产生化学作用力,形象地叫做化学键,原子中用于形成化学键的电子称为键合电子。电负性的概念是由美国化学家鲍林提出的,用来描述不同元素的原子对键合电子吸引力的大小(如图1—22)。电负性越大的原子,对键合电子的吸引力越大。

[投影]

[板书]3、电负性

(1) 键合电子:元素相互化合时,原子中用于形成化学键的电子称为键合电子

孤电子:元素相互化合时,元素的价电子中没有参加形成化学键的电子的孤电子。

[讲]用来表示当两个不同原子在形成化学键时吸引电子能力的相对强弱。鲍林给电负性下的定义是〝电负性是元素的原子在化合物中吸引电子能力的标度〞。

[板书]〔2〕定义:用来描述不同元素的原子对键合电子吸引力的大小。

〔3〕意义:元素的电负性越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性越小,相应原子在化合物中吸引电子的能力越弱。

[讲]鲍林利用实验数据进行了理论运算,以氟的电负性为4.0和锂的电负性为1。0作为相对标准,得出了各元素的电负性(稀有气体未计),如图l—23所示。

[板书](4) 电负性大小的标准:以F的电负性为4.0和Li的电负性为1.0作为相对标准。

[摸索与交流]同周期元素、同主族元素电负性如何变化规律?如何明白得这些规律?依照电负性大小,判定氧的非金属性与氯的非金属性哪个强?[讲]金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故能够用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐步变大;周期表从上到下,元素的电负性逐步变小。

[投影]

[讲]同周期元素从左往右,电负性逐步增大,讲明金属性逐步减弱,非金属性逐步增强。同主族元素从上往下,电负性逐步减小,讲明元素的金属性逐步减弱,非金属性逐步增强。

[板书](5)元素电负性的周期性变化

○1金属元素的电负性较小,非金属元素的电负性较大。

○2同周期从左到右,元素的电负性递增;同主族,自上而下,元素的电负性递减,对副族而言,同族元素的电负性也大体出现出这种变化趋势。

[讲]电负性大的元素集中在元素周期表的右上角,电负性小的元素位于元素周期表的左下角。

[科学探究]依照数据制作的第三周期元素的电负性变化图,请用类似的方法制作IA、VIIA元素的电负性变化图。

[投影]电负性的周期性变化例如

[讲]元素的电负性用于判定一种元素是金属元素依旧非金属元素,以及元素的爽朗性。通常,电负性小于2的元素,大部分是金属元素;电负性大于2的元素,大部分是非金属元素。非金属元素的电负性越大,非金属元素越爽朗;金属元素的电负性越小,金属元素越爽朗。例如,氟的电负性为4,是最强的非金属元素;钫的电负性为0.7,是最强的金属元素,

[板书](6) 元素电负性的应用

○1元素的电负性与元素的金属性和非金属性的关系

[讲]金属的电负性一样都小于1.8,非金属的电负性一样都大于1.8,而位于非金属三角区边界的〝类金属〞(如锗、锑等)的电负性在1.8左右,它

们既有金属性,又有非金属性。

[讲]利用电负性能够判定化合物中元素化合价的正负;电负性大的元素易出现负价,电负性小的元素易出现正价。

[板书]○2电负性与化合价的关系

[讲]电负性数值的大小能够衡量元素在化合物中吸引电子能力的大小。电负性数值小的元素在化合物中吸引电子的能力弱,元素的化合价为正值;电负性数值大的元素在化合物中吸引电子的能力强,元素的化合价为负价

[板书]③判定化学键的类型

[讲]一样电负性差值大的元素原子间形成的要紧是离子键,电负性差值小于1.7或相同的非金属原子之间形成的要紧是共价键;当电负性差值为零时,通常形成非极性键,不为零时易形成极性键。当电负性差值大于 1.7,形成的是离子键

[点击试题]元素的电负性和元素的化合价等一样,也是元素的一种差不多性质。下面给出14种元素的电负性:

元素Al B Be C Cl F Li Mg N Na O P 电负性 1.5 2.0 1.5 2.5 2.8 4.0 1.0 1.2 3.0 0.9 3.5 2.1 :两成键元素间电负性差值大于1.7 时,形成离子键,两成键元素间电负性差值小于1.7时,形成共价键。

①依照表中给出的数据,可推知元素的电负性具有的变化规律是。

②.判定以下物质是离子化合物依旧共价化合物?

Mg3N2BeCl2 AlCl3SiC

解析:元素的电负性是元素的性质,随原子序数的递增呈周期性变化。据条件及上表中数值:Mg3N2电负性差值为1.8,大于1.7,形成离子键,为离子化合物;BeCl2AlCl3SiC电负性差值分不为1.3、1.3、0.8,均小于1.7,形成共价键,为共价化合物。

答案:1.随着原子序数的递增,元素的电负性与原子半径一样呈周期性变化。

2.Mg3N2;离子化合物。SiC,BeCl2、AlCl3均为共价化合物。

[板书]○4对角线规那么:元素周期中处于对角线位置的元素电负性数值相近,性质相似。

[科学探究]

第一章《原子结构与性质》全章教案

第一章物质结构与性质教案 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。 通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。 第一节原子结构 第一课时 知识与技能: 1、进一步认识原子核外电子的分层排布 2、知道原子核外电子的能层分布及其能量关系 3、知道原子核外电子的能级分布及其能量关系 4、能用符号表示原子核外的不同能级,初步知道量子数的涵义 5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 方法和过程: 复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。 情感和价值观:充分认识原子结构理论发展的过程是一个逐步深入完美的过程。 教学过程: 1、原子结构理论发展 从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。 现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。 〖复习〗必修中学习的原子核外电子排布规律:

结构化学第二章原子的结构和性质习题及答案(教学材料)

一、填空题 1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a r e a r a -?-?π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________.角动量在Z 轴方向分量为_________. 2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。 3. 如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为__________。 二、选择题 1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( ) A. n,l B. n,l,m C. n D. n,m 2. 用来表示核外某电子运动状况的下列各组量子数(n ,l ,m ,ms )中,哪一组是合理的() A. (2,1,-1,-1/2) B. (0,0,0,1/2) C. (3,1,2,1/2) D.(2,1,0,0) 3. 如果一个原子的主量子数是4,则它( ) A. 只有s 、p 电子 B. 只有s 、p 、d 电子 C. 只有s 、p 、d 和f 电子 D. 有s 、p 电子 4. 对氢原子Φ方程求解,下列叙述有错的是( ). A. 可得复函数解Φ=ΦΦim m Ae )(. B. 由Φ方程复函数解进行线性组合,可得到实函数解. C. 根据Φm (Φ)函数的单值性,可确定|m|=0.1.2…………I D. 根据归一化条件1)(220=ΦΦΦ?d m π求得π21 =A 5. He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( ). A.1 B.1/9 C.1/4 D.1/16 6. 电子在核附近有非零几率密度的原子轨道是( ). A.Ψ3P B. Ψ3d C.Ψ2P D.Ψ2S 7. 氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数? A. (1) (3) B. (2) (4) C. (3) (4) (5) D. (1) (2) (5)

原子结构与元素的性质说课稿

《原子结构与元素的性质》说课设计 高二年级化学组xx 一、教学分析: (一)分析教材 本节课是在必修2第一章《物质结构元素周期律》,选修3第一章第一节《原子结构》基础上进一步认识原子结构与元素性质的关系。在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。按照课程标准要求比较系统而深入地介绍了原子结构与元素性质的关系,为后阶段学习元素周期律和分子结构奠定了基础。尽管本节内容比较抽象,学生学起来有困难,但教科书在内容编排上注重了由易到难层层深入,能够激发和保持学生的学习兴趣。 (二)分析学生 1、知识技能方面:学生已学习了原子结构及元素周期表的相关知识和元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性变化等知识,为学习本节奠定了一定的知识基础。 2、学法方面:在必修2第一章《物质结构元素周期律》的学习过程中已经初步掌握了理论知识的学习方法——逻辑推理法、抽象思维法、总结归纳法,具有一定的学习方法基础。根据以上两个分析,我确定本课教学目标如下 二、教学目标: (一)知识与技能目标 1、了解元素原子核外电子排布的周期性变化规律。 2、进一步认识元素周期表与原子结构的关系。 (二)过程与方法目标通过问题探究和讨论交流,进一步掌握化学理论知识的学习方法──结构决定性质。

(三)情感态度与价值观目标学生在问题探究的过程中,同时把自己融入科学活动和科学思维中,体验科学研究的过程和认知的规律性,在认识上和思想方法上都得到提升。根据以上两个分析,我确定了本节课的教学重点和难点:(四)教学的重点和难点 1、教学重点:元素的原子结构与元素周期表的关系 2、教学难点:元素周期表的分区为了有用地达成教学目标,突出教学重点,突破难点,我准备采用以下教学策略,下面说教学策略的设计 三、教学策略: (一)教学模式 在建构主义学习理论指导下,采用“复习引入——自主探究——合作交流——巩固练习”的教学模式。 (二)教学方法与手段讲授法与讨论法相结合,其中运用多媒体等教学手段。 (三)教学流程图 教学策略是有针对性的,必须把例外的教学策略运用到相应的教学环节中,要想使一堂课优化,只有把有用的教学策略恰当地运用到优化的教学过程中,才能更有用地达成教学目标下面,我重点说教学过程的设计。 四、说教学过程 (一)创设情境,温故导新1.创设情景:展示门捷列夫的第一张元素周期表和例外形式排列的几种元素周期表,激发学生学习的兴趣,扩展学生知识面。 2.温故导新:通过复习元素周期表的结构如何?元素的原子结构与元素在周期表中的位置有什么关系等问题?很自然的导入新课。 (二)活动探究、探索新知为了让学生参与活动探究,使生疏的化学概念变得栩栩如生,易于理解,同时也使学生对化学学习,尤其是微观领域的学习

原子结构与元素的性质高考总复习

原子结构与元素的性质 1.原子核外电子排布与周期的划分 周期外围电子排布 各周期增加的能级元素种数ⅠA族0族最外层最多容纳电子数 一1s11s221s2 二2s12s22p682s、2p8 三3s13s23p683s、3p8 四4s14s24p684s、3d、4p18 五5s15s25p685s、4d、5p18 六6s16s26p686s、4f、5d、6p32 七7s187s、5f、6d(未完)…… (2)观察分析上表,讨论原子核外电子排布与周期划分的关系 ①元素周期系形成的原因:元素原子核外电子排布发生周期性的变化。 ②元素周期系的形成过程 ③元素周期系的特点:每一周期(除第一周期外)从碱金属元素开始,到稀有气体元素结束,外围电子排布从n s1递增至n s2n p6;元素周期系的周期不是单调的,而是随周期序号的递增逐渐增多,同时,金属元素的数目也逐渐增多。 2.原子核外电子排布与族的划分 族数ⅠAⅡAⅢAⅣAⅤAⅥAⅦA 价电子排布式n s1n s2n s2n p1n s2n p2n s2n p3n s2n p4n s2n p5 列数121314151617 价电子数1234567 副族元素21Sc22Ti23V24Cr25Mn29Cu30Zn 族数ⅢBⅣBⅤBⅥBⅦBⅠBⅡB 价电子排布式3d14s23d24s23d34s23d54s13d54s23d104s13d104s2 价电子数目34567 (3)依据上述表格,讨论族的划分与原子核外电子排布的关系 ①同主族元素原子的价层电子排布完全相同,价电子全部排布在n s或n s n p轨道上。价电子数与族序数相同。 ②稀有气体的价电子排布为1s2或n s2n p6。 ③过渡元素(副族和Ⅷ族)同一纵行原子的价层电子排布基本相同。价电子排布为(n-1)d1~10n s1~2,ⅢB~ⅦB族的价电子数与族序数相同,第ⅠB、ⅡB族和第Ⅷ族不相同。

第二节原子结构与元素的性质

第二节原子结构与元素的性质

教学步骤、内容 教学方法、手段、 师生活动 [引入]我们明白元素性质是由元素原子结构决定的,那具体阻碍哪些性质呢? [讲]元素的性质指元素的金属性和非金属性、元素的要紧化合价、原子半径、 元素的第一电离能和电负性。 [学与咨询]元素周期表中,同周期的主族元素从左到右,最高化合价和最低 化合价、金属性和非金属性的变化规律是什么? [投影小结]同周期主族元素从左到右,元素最高化合价和最低化合价逐步升 高,金属性逐步减弱,非金属性逐步增强。 [讲]元素的性质随核电荷数递增发生周期性的递变,称为元素周期律。元素 周期律的内涵丰富多样,下面,我们来讨论原子半径、电离能和电负性的周期 性变化。 [板书]二、元素周期律 1、原子半径 [投影]观看图1—20分析: [学与咨询]1.元素周期表中同周期主族元素从左到右,原子半径的变化趋 势如何?应如何明白得这种趋势? 2.元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应 如何明白得这种趋势? [小结]同周期主族元素从左到右,原子半径逐步减小。其要紧缘故是由于核 电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子 后电子间斥力增大带来原子半径增大的趋势。 同主族元素从上到下,原子半径逐步增大。其要紧缘故是由于电子能层增 加,电子间的斥力使原子的半径增大。 [讲]原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是 核电荷数。明显电子的能层数越大,电子间的负电排斥将使原子半径增大,因

此同主族元素随着原子序数的增加,电子层数逐步增多,原子半径逐步增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,因此同周期元素,从左往右,原子半径逐步减小。 [咨询]那么,粒子半径大小的比较有什么规律呢? [投影小结]1、原子半径大小比较:电子层数越多,其原子半径越大。当电子层数相同时,随着核电荷数增加,原子半径逐步减小。最外层电子数目相同的原子,原子半径随核电荷数的增大而增大 2、核外电子排布相同的离子,随核电荷数的增大,半径减小。 3、同种元素的不同粒子半径关系为:阳离子<原子<阴离子,同时价态越高的粒子半径越小。 [过渡]那么,什么叫电离能呢,电离能与元素的金属性间有什么样的关系呢?[板书]2、电离能 〔1〕定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能. ①常用符号I表示,单位为KJ?mol-1 ②意义:通常用电离能来表示原子或离子失去电子的难易程度。[讲]原子为基态原子,保证失去电子时消耗能量最低。电离能用来表示原子或分子失去电子的难易程度。电离能越大,表示原子或离子越难失电子;电离能越小,表示原子或离子易失电子, [点击试题]Na元素的I1=496 KJ·mol-1,那么Na (g) -e-→Na +(g) 时所需最低能量为 . [板书]〔2〕元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。 [讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的〝气态〞〝基态〞〝电中性〞〝失去一个电子〞等差不多上保证〝最低能量〞的条件。 [投影] [咨询]读图l—21。碱金属原子的第一电离能随核电荷数递增有什么规律呢? [讲]从图l—2l可见,每个周期的第一个元素(氢和碱金属)第一电离能最小,最后一个元素(稀有气体)的第一电离能最大;同族元素从上到下第一电离能变小(如He、Ne、Ar、Kr、Xe、Rn的第一电离能依次下降,H、Li、Na、K、Rb、

原子结构与元素性质

第二节原子结构与元素的性质 一、元素周期表的编排原则 1.将电子层数相同的元素按原子序数递增的顺序从左到右排成横行。 2.把最外层电子数相同的元素(个别例外)按电子层数递增的顺序从上到下排成纵行。 二、周期表的结构 周期:具有相同的电子层数的元素按照原子序数递增的顺序排成一个横行。 主族:由短周期和长周期元素共同构成的族。 副族:仅由长周期元素构成的族。 1.核外电子排布与族序数之间的关系 可以按照下列方法进行判断:按电子填充顺序由最后一个电子进入的情况决定,具体情况如下:

(3)进入(n -1)d ①(n -1)d 1~5为ⅢB~ⅦB ?族数=[(n -1)d +n s]电子数 ②(n -1)d 6~8为Ⅷ ③(n -1)d 10为ⅠB、ⅡB ?族数=n s 的电子数 ④进入(n -2)f ? ?????????4f ——La 系元素5f ——Ac 系元素ⅢB 2. 3.(1)主族(ⅠA~ⅦA)和副族ⅠB、ⅡB 的族序数=原子最外层电子数(n s +n p 或n s)。 (2)副族ⅢB~ⅦB 的族序数=最外层(s)电子数+次外层(d)电子数。 (3)零族:最外层电子数等于8或2。 (4)Ⅷ族:最外层(s)电子数+次外层(d)电子数。若之和分别为8、9、10,则分别是Ⅷ族第1、2、3列。 1.同周期,从左到右,原子半径依次减小。 2.同主族,从上到下,原子或同价态离子半径均增大。 3.阳离子半径小于对应的原子半径,阴离子半径大于对应的原子半径,如r (Na +)

4.电子层结构相同的离子,随核电荷数增大,离子半径减小,如r(S2-)>r(Cl-)>r(K+)>r(Ca2+)。 5.不同价态的同种元素的离子,核外电子多的半径大,如r(Fe2+)>r(Fe3+),r(Cu+)>r(Cu2+)。 特别提醒 在中学要求的畴可按“三看”规律来比较微粒半径的大小 “一看”能层数:当能层数不同时,能层越多,半径越大。 “二看”核电荷数:当能层数相同时,核电荷数越大,半径越小。 “三看”核外电子数:当能层数和核电荷数均相同时,核外电子数越多,半径越大。 七、电离能 1.第一电离能 (1)每个周期的第一个元素(氢和碱金属)第一电离能最小,稀有气体元素原子的第一电离能最大,同周期中自左至右元素的第一电离能呈增大的趋势。 (2)同主族元素原子的第一电离能从上到下逐渐减小。 2.逐级电离能 (1)原子的逐级电离能越来越大 首先失去的电子是能量最高的电子,故第一电离能较小,以后再失去电子都是能级较低的电子,所需要的能量多;同时,失去电子后离子所带正电荷对电子吸引更强,从而电离能越来越大。 (2)金属元素原子的电离能与其化合价的关系 一般来讲,在电离能较低时,原子失去电子形成阳离子的价态为该元素的常见价态。如Na的第一电离能较小,第二电离能突然增大(相当于第一电离能的10倍),故Na的化合价为+1,而Mg在第三电离能、Al在第四电离能发生突变,故Mg、Al的化合价分别为+2、+3。 八、元素电负性的应用 1.元素的金属性和非金属性及其强弱的判断 (1)金属的电负性一般小于 1.8,非金属的电负性一般大于 1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。 (2)金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼。 (3)同周期自左到右,电负性逐渐增大,同主族自上而下,电负性逐渐减小。 (4)电负性较大的元素集中在元素周期表的右上角。 2.化学键的类型的判断 一般认为:如果两个成键元素原子间的电负性差值大于1.7,它们之间通常形成离子键;如果两个成键元素原子间的电负性差小于1.7,它们之间通常形成共价键。

原子结构与元素的性质时优秀教案

第二节原子结构与元素地性质 第三课时 【学习目标】 1.能说出元素电负性地涵义,能应用元素地电负性说明元素地某些性质 2.能根据元素地电负性资料,解释元素地“对角线”规则,列举实例予以说明 3.能从物质结构决定性质地视角解释一些化学现象,预测物质地有关性质 4.进一步认识物质结构与性质之间地关系,提高分析问题和解决问题地能力 【学习过程】 【课前预习】 1. 叫键合电子;我们用电负性描述. 2.电负性地大小可以作为判断元素金属性和非金属性强弱地尺度. 地电负性一般小于1.8,地电负性一般大于1.8,而位于非金属三角区边界地“类金属”地电负性则在1.8左右,他们既有性又 有性. 【知识梳理】 【复习】1.什么是电离能?它与元素地金属性、非金属性有什么关系? 2.同周期元素、同主族元素地电离能变化有什么规律? (3)电负性: 【思考与交流】1. 什么是电负性?电负性地大小体现了什么性质?阅读教材p20页表同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧地非金属性与氯地非金属性哪个强? 【科学探究】 1.根据数据制作地第三周期元素地电负性变化图,请用类似地方法制作IA、VIIA元素 地电负性变化图. 2.电负性地周期性变化示例

【归纳与总结】 1. 金属元素越容易失电子,对键合电子地吸引能力越,电负性越小,其金属性越;非金属元素越容易得电子,对键合电子地吸引能力 越,电负性越,其非金属性越强;故可以用电负性来度量金属性与非金属性地强弱.周期表从左到右,元素地电负性逐渐变;周期表从上到下,元素地电负性逐渐变. 2. 同周期元素从左往右,电负性逐渐增,表明金属性逐渐减弱,非金属性逐渐增.同主族元素从上往下,电负性逐渐减,表明元素地金属性逐渐减弱,非金属性逐渐增强. 【思考】对角线规则:某些主族元素与右下方地主族元素地有些性质相似,被称为对角线原则.请查阅电负性表给出相应地解释? 3. 在元素周期表中,某些主族元素与右下方地主族元素地性质有些相似,被称为“对角线规则”.查阅资料,比较锂和镁在空气中燃烧地产物,铍和铝地氢氧化物地酸碱性以及硼和硅地含氧酸酸性地强弱,说明对角线规则,并用这些元素地电负性解释对角线规则. 4. 对角线规则 【典题解悟】 例题1.下列有关电负性地说法中正确地是() A.主族元素地电负性越大,元素原子地第一电离能一定越大. B.在元素周期表中,元素电负性从左到右越来越大 C.金属元素电负性一定小于非金属元素电负性. D.在形成化合物时,电负性越小地元素越容易显示正价 解析:电负性地变化规律: (1)同一周期,从左到右,元素电负性递增. (2)同一主族,自上而下,元素电负性递减.(3)副族元素地电负性变化趋势和主族类似.主族元素原子地电离能、电负性变化趋势基本相同,但电离能有特例,如电负性:O >N,但第一电离能:N>O,A错误.B、C选项没有考虑过渡元素地情况. 答案:D 例2.能够证明电子在核外是分层排布地事实是() A、电负性 B、电离能 C、电子亲和能 D、电势能 【当堂检测】 1. 电负性地大小也可以作为判断金属性和非金属性强弱地尺度下列关于电负性地变化规律正确地 是()

1原子结构和性质知识点

第一章原子结构与性质 第一节原子结构 【知识点梳理】 1、原子的诞生: 现代大爆炸理论认为:宇宙大爆炸诞生了大量的氢、少量的氦、以及极少量的锂。如今,宇宙中最丰富的元素是氢、其次是氦。地球上的元素大多数是金属,非金属仅22种。 2、能层、能级 (1)能层 ①原子核外的电子是分层排布的。根据电子的能级差异,可将核外电子分成不同的能层。 ②每一能层最多能容纳的电子数不同:最多容纳的电子数为2n2个。 ③离核越近的能层具有的能量越低。 能层序数 1 2 3 4 5 能层符号 能级符号 轨道数 电子数 离核远近由近————————→远 能量高低由低————————→高 (2)能级 在多电子的原子中,同一能层的电子,能量也可以不同。不同能量的电子分成不同的能级。 规律:①每个能层所包含的能级数等于该能层的序数n,且能级总是从s能级开始,如:第一能层只有1个能级1s,第二能层有2个能级2s和2p,第三能层有3个能级3s、3p、3d,第四能层有4个能级4s、4p、4d和4f,依此类推。 ②不同能层上的符号相同的能级中最多所能容纳的电子数相同,即每个能级中最多所能容纳的电子数只与能级有关,而与能层无关。如s能级上最多容纳2个电子,无论是1s还是2s;p能级上最多容纳6个电子,无论是2p还是3p、4p能级。 ③在每一个能层(n)中,能级符号的排列顺序依次是ns、np、nd、nf…… ④按s、p、d、f……顺序排列的各能级最多可容纳的电子数分别是1、3、5、7……的两倍,即分别是2、6、10、14…… 原子轨道 轨道形状 轨道数 最多电子数 (1)基态原子与激发态原子 ①基态原子为能量最低的原子。基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。 ②基态原子与激发态原子相互转化与能量转化关系:

知识讲解_原子结构与元素的性质_基础

原子结构与元素的性质 编稿:宋杰审稿:于冬梅 【学习目标】 1、进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系; 2、知道外围电子排布和价电子层的涵义,认识周期表中各区、周期、族元素的原子核外电子排布的规律; 3、掌握原子半径的变化规律; 4、了解元素电离能的涵义,能应用元素的电离能说明元素的某些性质、主族元素电离能的变化与核外电子排布的关系; 5、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质,根据元素的电负性资料,解释元素的“对角线”规则; 6、认识原子结构与元素周期系的关系,形成有关物质结构的基本观念,认识物质的结构与性质之间的关系,提高分析问题和解决问题的能力。 【要点梳理】 【高清课堂:原子结构与性质#原子结构与周期表】要点一:原子结构与周期表 1、元素周期系:(元素的原子核外电子的排布发生周期性的重复的结果) 随着元素原子的核电荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,这就是元素周期系中的一个个周期。这也是原子核外电子排布规律中为什么最外层的电子数不超过8个电子的原因。 2、元素周期表:(体现元素原子结构、元素性质的周期性变化) ⑴元素周期表的结构 在第一周期中元素只有一个电子层即第一个能层,而第一能层只有一个能级,该能级最多只容纳2个电子,所以第一周期只有两种元素。因此元素周期系的发展就像螺壳上的螺纹一样螺旋上升的。 ⑵、原子结构与元素在周期表中的位置关系(元素在周期表中的位置由原子结构决定) 原子核外电子层数决定元素所在的周期: 周期序数=原子核外电子层数; 原子的价电子总数决定元素所在的族,周期表上的外围电子排布称为“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化,“价电子”即与元素化合价有关的电子,元素周期表的每个纵列的价电子层上电子总数相同,对于主族元素,价电子指的就是最外层电子,所以: 主族元素其族序数=价电子数=最外层电子数。 而副族元素的族序数不等于其最外层电子数,其族序数跟核外电子的排布有关。 要点诠释:价电子数与族序数的关系 S区元素价电子特征排布为nS1~2,价电子数等于族序数。d区元素价电子排布特征为(n-1)d1~10ns1~2,价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。 外围电子总数决定排在哪一族如:29Cu3d104s1,10+1=11尾数是1所以,是IB。

原子结构与性质

原子结构与性质 重点知识梳理 1.了解原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外 电子的排布。了解原子核外电子的运动状态。 2.了解元素电离能的含义,并能用以说明元素的某种性质。 3.了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。 4.了解电负性的概念,知道元素的性质与电负性的关系。 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 (1)遵守能量最低原理、泡利原理、洪特规则。 (2)能级交错现象:核外电子的能量并不是完全按能层序数的增加而升高,不同能层的能 级之间的能量高低有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、 E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。 (3)当能量相同的原子轨道在全满(p6、d10、f14)、半满(p3、d5、f7)和全空(p0、d0、f0) 状态时,体系的能量最低。如24Cr的基态原子电子排布式为:1s22s22p63s23p63d54s1,而不是:1s22s22p63s23p63d44s2。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 例如K:1s22s22p63s23p64s1 或 [Ar]4s1。 (2)电子排布图(轨道表示式) 用方框表示原子轨道,用“↑”或“↓”表示自旋方向不同的 电子,按排入各电子层中各能级的先后顺序和在轨道中的排布情况书写。 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为_________。每周期结尾元素的最外层电子 排布式除He为_________外,其余为_________。He核外只有_________个电子,只有1个_________轨道,还未出现p轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一 定全部是能量相同的能级,而是能量相近的能级。 (3)周期表中,周期序数=该周期元素基态原子的__________________。 2.元素周期表的分区 若已知元素的外围电子排布,可直接判断该元素在周期表中的位置。如:某元素的外围电子排布为4s24p4,由此可知,该元素位于p区,为第四周期ⅥA族元素。即最大能层为其周期数,最外层电子数为其族序数,但应注意过渡元素(副族与第Ⅷ族)的最大能层为其周期数,外围电子数应为其纵列数而不是其族序数(镧系、锕系除外)。 三.元素周期律

原子的结构和基本性质

薛定谔建立起描述微观粒子的运动规律的量子力学理论,形成近代原子结构概念。 1、薛定谔方程(不做介绍) 2、量子数 描述原子中各电子状态,包含电子所处的电子层、轨道能级、形状、伸展方向和自旋方向,需要四个参数(量子数)主量子数、副量子数、磁量子数和自旋量子数 (1)主量子数(n) 意义: 表示电子离核的远近和电子能量的高低. 取值: 1, 2, 3, 4, ……. n, 为正整数(自然数), 与电子层相对应。 (2)副量子数(l) 决定了原子轨道的形状. 取值: 受主量子数n的限制,对于确定的n, l 可为:0, 1, 2, 3, 4, ……. (n-1), 为n个取值光谱符号: s, p, d, f, …… 如:n = 3, 表示角量子数可取:l = 0,1,2 (3)磁量子数(m) m 取值受l 的影响, 对于给定的l , m 可取:个值。例如: l = 3, 则共7个值。意义: 对于形状一定的轨道( l 相同电子轨道), m 决定其空间取向. 例如: l = 1, 有三种空间取向(能量相同, 三重简并)。

(4)自旋量子数(m s) 电子本身的自转,可视为自旋. 因为电子有自旋,用Ms 表示,取值: 只有两个, +1/2和-1/2. (电子只有两种自旋方式)通常用“”和“”表示。 注:描述一个电子的运动状态, 要用四个量子数: n, l, m 和m s。 三、原子中电子的分布 (一)基本原理 (1)能量最低原理 电子由能量低的轨道向能量高的轨道排布(电子先填充能量低的轨道,后填充能量高的轨道。 (2)Pauli(保利)不相容原理 每个原子轨道中只能容纳两个自旋方向相反的电子(即同一原子中没有运动状态完全相同的电子,亦即无四个量子数完全相同的电子)。 (3)Hunt(洪特)规则 电子在能量简并的轨道中, 要分占各轨道,且保持自旋方向相同。保持高对称性, 以获得稳定. 包括: 轨道全空,半充满,全充满三种分布。 例: (二)多电子原子轨道能级 美国著名结构化学家Pauling(鲍林), 经过计算, 将能量相近的原子轨道组合, 形成能级组. 按这种方法, 他将整个原子轨道划分成7个能级组: 第一组第二组第三组第四组第五组第六组第七组 1s; 2s 2p; 3s 3p; 4s 3d 4p; 5s 4d 5p;6s 4f 5d 6p; 7s 5f 6d 7p

选修 原子结构与性质 教案

1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原 子 核 外 电 子 的 排 布 。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 复习回顾 1. 原子序数:含义: (1) 原子序数与构成原子的粒子间的关系: 原子序数====。 (2) 表示的意示:ABCDE 2. 元素周期表:(1)编排原则:把电子层数相同的元素,按原子序数递增的顺序从左到右排成横行叫 周期;再把不同横行中最外层电子数相同的元素,按电子层数递增的顺序有上到下排成纵行,叫族。 (2)结构:各周期元素的种数0族元素的原子序数 第一周期 第二周期 第三周期 第四周期 第五周期 第六周期 不完全周期第七周期 ②族族序数罗马数字用表示;主族用A 表示;副族用B 表示。 主族7个 副族7个 第VIII 族是第8、9、10纵行 零族是第18纵行 罗马数字: (3)元素周期表与原子结构的关系: ①周期序数=电子层数②主族序数=原子最外层电子数=元素最高正化合价数 (4)元素族的别称:①第ⅠA 族:碱金属第ⅠIA 族:碱土金属②第ⅦA 族:卤族元素 ③第0族:稀有气体元素 3、 有关概念: 短周 期 周期 (共七个) 长周期 族 (共18个)

原子结构与元素性质

原子结构与元素性质 双基训练 *1. 符号35Cl 中左上角的“35”代表( )。【0.5】 (A) 元素的质量数 (B) 同位素的质量数 (C) 元素的平均相对原子质量 (D) 元素的近似相对原子质量 *2. 原子核内的质子数决定了微粒的( )。【0.5】 (A) 质量数 (B) 核外电子数 (C) 核电荷数 (D) 核内中子数 *3. 下列各组中,互为同位素的是( )。【0.5】 (A) 金刚石 石墨 (B) 168O 17 8O (C) H 2O D 2O (D) 白磷 红磷 *4. 136C —NMR(核磁共振)可以用于含碳化合物的结构分析。136C 表示的碳原子( )。【1】 (A) 核外有13个电子,其中最外层有4个电子 (B) 核内有6个质子,核外有7个电子 (C) 质量数为13,原子序数为6,核内有7个质子 (D) 质量数为13,原子序数为6,核内有7个中子 *5. 有五种微粒分别是4019X 、4018Z 、4019Q +、40220R +、41 20M ,它们所属的元素的种类有( )。 【1】 (A) 2种 (B) 3种 (C) 4种 (D) 5种 *6. 下列各组微粒中,核外电子总数相等的是( )。【1.5】 (A) K +和Na + (B) CO 2和NO 2 (C) CO 和CO 2 (D) N 2和CO *7. 下列有关原子的叙述中,正确的是( )。【1】 (A) 保持物质化学性质的最小微粒 (B) 构成物质的最小微粒 (C) 不能再分的最小微粒 (D) 化学变化中的最小微粒 *8. 元素的种类和原子的种类( )。【1】 (A) 前者大

(C) 相等 (D) 不能确定 *9. 某元素原子L 层电子数是K 层电子数的2倍,那么此元素是( )。【1】 (A) F (B) C (C) O (D) N *10.氢原子的电子云图中的小黑点表示的意义是( )。【1】 (A) 一个小黑点表示一个电子 (B) 黑点的多少表示电子个数的多少 (C) 表示电子运动的轨迹 (D) 电子在核外空间出现几率的多少 **11.下列分子的电子式书写正确的是( )。【1.5】 **12.A 元素的离子A n - ,其核外共有x 个电子,该原子的质量数为y ,则原子核内含有的中子数为( )。【1.5】 (A) y -x +n (B) y -x -n (C) y +x +n (D) y +x -n **13.美国科学家将两种元素铅和氪的原子核对撞获得了一种质子数为118、中子数为175的超重元素,该元素原子核的中子数与核外电子数之差是( )。【1】 (A) 57 (B) 47 (C) 61 (D) 293 **14.下列说法中,正确的是( )。【1.5】 ①金刚石、石墨是碳的两种同位素 ②金刚石、石墨是碳的两种单质 ③金刚石、石墨是碳的两种元素 ④金刚石、石墨互称为碳的同素异形体 (A) 只有④ (B) 只有②④ (C) 只有①② (D) 只有③④ **15.在以下四种物质中,①28g 一氧化碳(121668C O )、②28g 氮气(1427N )、③26g 乙炔 (1212261C H )、④28g 硅(2814Si ),所含微粒数相同的是( )【2】。 (A) 分子数 (B) 原子数

原子结构和性质知识点总结和练习

第一章 原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。 说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量 最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式为或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

原子结构与元素的性质教案 示例

《原子结构与元素的性质》教案示例 一、教学内容 本节课是人教版化学选修3第一章第二节的教学内容,是在必修2第一章《物质结构元素周期律》, 选修3第一章第一节《原子结构》基础上进一步认识原子结构与元素性质的关系。 本节教学内容分为两部分:第一部分在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。第二部分在复习元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性变化的基础上,进一步从原子半径、电离能以及电负性等方面探究元素性质的周期性变化规律。本节教学需要三个课时,本教学设计是第一课时的内容。 二、教学对象分析 1、知识技能方面:学生已学习了原子结构及元素周期表的相关知识和元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性变化,具备了学习本节教学内容的基本理论知识,有一定的知识基础。 2、学习方法方面:在必修2第一章《物质结构元素周期律》的学习过程中已经初步掌握了理论知识的学习方法──逻辑推理法、抽象思维法、总结归纳法,具有一定的学习方法基础。 三、设计思想 总的思路是通过复习原子结构及元素周期表的相关知识引入新知识的学习,然后设置问题引导学生进一步探究原子结构与元素周期表的关系,再结合教材中的“科学探究”引导学生进行问题探究,最后在学生讨论交流的基础上,总结归纳元素的外围电子排布的特征与元素周期表结构的关系。根据新课标的要求,本人在教学的过程中采用探究法,坚持以人为本的宗旨,注重对学生进行科学方法的训练和科学思维的培养,提高学生的逻辑推理能力以及分析问题、解决问题、总结规律的能力。 四、教学目标 1. 知识与技能:(1)了解元素原子核外电子排布的周期性变化规律;(2)了解元素周期表的结构;(3)了解元素周期表与原子结构的关系。 2. 过程与方法:通过问题探究和讨论交流,进一步掌握化学理论知识的学习方法──逻辑推理法、抽象思维法、总结归纳法。 3. 情感态度与价值观:学生在问题探究的过程中,同时把自己融入科学活动和科学思维中,体验科学研究的过程和认知的规律性,在认识上和思想方法上都得到提升。 五、教学的重点和难点 1. 教学的重点:元素的原子结构与元素周期表结构的关系。 2. 教学的难点:元素周期表的分区。

第一章 原子结构与性质知识点归纳

第一章 原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 2.位、构、性关系的图解、表解与例析 (1)元素在周期表中的位置、元素的性质、元素原子结构之间存在如下关系: 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除外),排成一个 纵行 周期(7个横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 性质递变 原子半径 主要化合价 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④ 结 构

(2)核外电子排布遵循的三个原理: a.能量最低原理b.泡利原理c.洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a.原子结构简图b.电子排布式c.轨道表示式5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 1.先推断元素在周期表中的位置。 2.一般说,族序数—2=本族非金属元素的种数(1 A族除外)。 3.若主族元素族序数为m,周期数为n,则: (1)m/n<1时为金属,m/n值越小,金属性越强: (2)m/n>1时是非金属,m/n越大,非金属性越强;(3)m/n=1时是两性元素。

《原子结构与元素性质》教案1 (2)

《原子结构与元素性质》教案 【课程标准与教材分析】 本节教材包括两部分内容,1、电离能及其变化规律2、元素的电负性及其变化规律。在《化学2(必修)》中学生学习了核外电子排布和核外电子排布与元素周期表关系,在此基础上本节教材通过“联想·质疑”引入了电离能、电负性的概念,定量地描述元素原子的得失电子能力;教材又通过“交流·研讨”等活动性栏目,使学生在讨论中主动构建元素原子核外电子排布周期性变化对元素电离能、电负性、化合价等元素性质的本质影响,从而对元素周期律的认识更为深刻,并能建构起新的“构(原子结构)——位(元素在周期表中的位置)——性(元素性质)”三者关系的认识平台。 本节课计划2课时(建议连堂上) 本节主要内容是理解电离能的概念及其变化规律;理解元素的电负性的概念及其变化规律并能够用此从定量的角度来解释元素原子核外电子排布周期性变化对元素电离能、电负性、化合价等元素性质的本质影响。 在教学过程中注意给学生必要的知识支持,如电负性数据的来源 教学目标: 知识与技能目标: 1、使学生了解电离能、电负性的概念及。认识主族元素电离能(特别是第一电离能)的周期性变化规律,知道电离能与元素化合价的关系。 2、使学生知道主族元素电负性与元素的金属性、非金属性的关系,认识主族元素电负性的周期性变化规律。 3、使学生体会原子结构与元素周期律的本质联系。 过程与方法目标:运用演绎推理和数据分析理解掌握电离能和电负性在元素周期表中的变化规律。 情感态度价值观目标:通过电负性电离能的逐步引入,感受科学家们在科学创造中的丰功伟绩。 本节知识框架:

本节重点难点: 1、元素原子核外电子排布、元素的第一电离能、元素的电负性的周期性变化 2、元素的电负性与元素的金属性、非金属性的关系。 3、元素的电离能、电负性与元素得失电子能力的 教学媒介:多媒体演示 教学素材: 素材1:主族元素原子得失电子能力的变化趋势 素材2、元素的化合价 化合价是元素性质的一种体现。观察思考:为什么钠元素的常见价态为+1价,镁元素的为+2价,铝元素的为+3价?化合价与原子结构有什么关系? 素材3、第三周期元素的第一电离能变化趋势图

相关主题