搜档网
当前位置:搜档网 › 知识讲解_原子结构与元素的性质_基础

知识讲解_原子结构与元素的性质_基础

知识讲解_原子结构与元素的性质_基础
知识讲解_原子结构与元素的性质_基础

原子结构与元素的性质

编稿:宋杰审稿:于冬梅

【学习目标】

1、进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系;

2、知道外围电子排布和价电子层的涵义,认识周期表中各区、周期、族元素的原子核外电子排布的规律;

3、掌握原子半径的变化规律;

4、了解元素电离能的涵义,能应用元素的电离能说明元素的某些性质、主族元素电离能的变化与核外电子排布的关系;

5、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质,根据元素的电负性资料,解释元素的“对角线”规则;

6、认识原子结构与元素周期系的关系,形成有关物质结构的基本观念,认识物质的结构与性质之间的关系,提高分析问题和解决问题的能力。

【要点梳理】

【高清课堂:原子结构与性质#原子结构与周期表】要点一:原子结构与周期表

1、元素周期系:(元素的原子核外电子的排布发生周期性的重复的结果)

随着元素原子的核电荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,这就是元素周期系中的一个个周期。这也是原子核外电子排布规律中为什么最外层的电子数不超过8个电子的原因。

2、元素周期表:(体现元素原子结构、元素性质的周期性变化)

⑴元素周期表的结构

在第一周期中元素只有一个电子层即第一个能层,而第一能层只有一个能级,该能级最多只容纳2个电子,所以第一周期只有两种元素。因此元素周期系的发展就像螺壳上的螺纹一样螺旋上升的。

⑵、原子结构与元素在周期表中的位置关系(元素在周期表中的位置由原子结构决定)

原子核外电子层数决定元素所在的周期:

周期序数=原子核外电子层数;

原子的价电子总数决定元素所在的族,周期表上的外围电子排布称为“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化,“价电子”即与元素化合价有关的电子,元素周期表的每个纵列的价电子层上电子总数相同,对于主族元素,价电子指的就是最外层电子,所以:

主族元素其族序数=价电子数=最外层电子数。

而副族元素的族序数不等于其最外层电子数,其族序数跟核外电子的排布有关。

要点诠释:价电子数与族序数的关系

S区元素价电子特征排布为nS1~2,价电子数等于族序数。d区元素价电子排布特征为(n-1)d1~10ns1~2,价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。

外围电子总数决定排在哪一族如:29Cu3d104s1,10+1=11尾数是1所以,是IB。

⑶、元素周期表的分区

【高清课堂:原子结构与性质#元素周期律】要点二:元素周期律

1、原子半径

㈠决定原子半径大小的因素

原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是核电荷数。电子层数越多,电子间的排斥将使原子半径增大;而当电子层数相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小。

①电子能层数:电子能层数越多,原子半径越大

②核电荷数:核电荷数越大,原子半径越小

㈡原子半径的变化规律

①同周期:从左到右,原子半径逐渐减小

同周期元素原子具有相同的电子能层,但随着核电荷数增多,原子核对核外电子的吸引力变大,从而使原子半径减小

②同主族:从上到下,原子半径逐渐增大

同主族元素自上到下,原子具有的电子能层数增多,使原子半径增大,虽然自上到下核电荷数也增多可使原子半径减小,但由于核电荷数的增多使核对核外电子的吸引比不上由于能层的增多使得电子负电排斥来得大,所以最终结果原子半径增大。

【小结】在同周期中影响原子半径的主要因素是核电荷数的多少,而同主族中影响原子半径的主要因素是能层数的多少

要点诠释:原子的核外电子排布与元素周期律的关系

在原子里,原子核位于整个原子的中心,电子在核外绕核作高速运动,因为电子在离核不同的区域中运动,我们可以看作电子是在核外分层排布的。按核外电子排布的3条原则将所有原子的核外电子排布在该原子核的周围,发现核外电子排布遵守下列规律:原子核外的电子尽可能分布在能量较低的电子层上(离核较近);若电子层数是n,这层的电子数目最多是2n2个;无论是第几层,如果作为最外电子层时,那么这层的电子数不能超过8个,如果作为倒数第二层(次外层),那么这层的电子数便不能超过18个。这一结果决定了元素原子核外电子排布的周期性变化规律,按最外层电子排布相同进行归类,将周期表中同一列的元素划分为一族;按核外电子排布的周期性变化来进行划分周期。

如:第一周期中含有的元素种类数为2,是由1s1~2决定的

第二周期中含有的元素种类数为8,是由2s1~22p0~6决定的

第三周期中含有的元素种类数为8,是由3s1~23p0~6决定的

第四周期中元素的种类数为18,是由4s1~23d0~104p0~6决定的

......

由此可见,元素原子核外电子排布的规律是元素周期表划分的主要依据,是元素性质周期性变化的根本所在。对于同族元素而言,从上至下,随着电子层数增加,原子半径越来越大,原子核对最外层电子的吸引力越来越小,最外层电子越来越容易失去,即金属性越来越强;对于同周期元素而言,随着核电荷数的增加,原子核对外层电子的吸引力越来越强,使原子半径逐渐减小,金属性越来越差,非金属性越来越强。因此,在元素周期表中非金属主要集中在右上三角区内,处于非金属三角区边缘的元素常被称为半金属或准金属。

2、电离能:(可以衡量元素的原子失去一个电子的难易程度)

㈠概念:气态中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。

注意:上述表述中的“气态”“基态”“电中性”“失去一个电子”等都是保证“最低能量”的条件,缺一不可。

㈡第一电离能的变化规律:随着核电荷数的递增,元素的第一电离能呈周期性变化

①同周期:随着原子序数的增加,元素的第一电离能逐渐增大

对于同一周期的元素,随着核电荷数的增加,原子半径逐渐变小(稀有气体除外,稀有气体原子半径比同周期的卤族元素原子半径大),原子核对核外电子的吸引越来越强,元素的原子越来越难失去电子,因此元素的第一电离能呈递增趋势。同周期内,碱金属的第一电离能最小,稀有气体的第一电离能最大。

②同主族:随着核电荷数的递增,元素的第一电离能逐渐减小

同一主族元素,从上到下,随着核电荷数的增加,电子能层数逐渐增多,原子半径逐渐增大,原子核对核外电子的吸引越来越弱,元素的原子越来越容易失去电子,故同一主族,随着电子层数的增加,元素的第一电离能逐渐减小。

㈢影响电离能的因素

①核电荷数

②原子半径

③原子的电子构型(当元素具有全充满,半充满的电子构型时,稳定性高,电离能大)

【小结】第一电离能数值越小,原子越易失去一个电子,金属性越强,第一电离能数值越小大,原子越难失去一个电子,非金属性越强

要点诠释:核外电子排布、元素的性质与电离能的关系

①第一电离能与原子的核外电子排布的关系

对于同一周期的元素从左到右第一电离能并不是呈直线上升,有些元素原子的电离能出现反常,这是什么原因造成的呢?

第一电离能的变化与元素原子的核外电子排布有关,通常情况下,当原子核外的电子排布的能量相等的轨道上形成全空,半满,全满的结构时,原子的能量较低,原子较稳定,则该原子比较难失去电子,故第一电离能较大。

在元素周期表中第IIA族与第V A族元素出现反常。比如Be的价电子排布为2s2,是全充满结构,比较稳定,而B的价电子排布为2s22p1,不如Be稳定,因此失去第一个电子B比Be容易,第一电离能小。镁的第一电离能比铝的大,磷的第一电离能比硫的大,Mg:1s22s22p63s2P:1s22s22p63s23p3。那是因为镁原子、磷原子最外层能级中,电子处于半满或全满状态,相对比较稳定,失电子较难。如此相同观点可以解释N的第一电离能大于O,Mg的第一电离能大于Al。

②第一电离能与金属的活泼性的联系

第一电离能数值越小,原子越易失去一个电子,金属性越强。比如碱金属的第一电离能均较小,易失去一个电子,故碱金属都较活泼。

③电离能与元素化合价的关系

气态原子失去一个电子生成+1价气态阳离子所需要的能量叫做第一电离能,常用符I1表示。由+1价气态阳离子再失去一个电子形成+2价气态阳离子所需要的能量称为第二电离能,常用符I2表示。依次还有第三、第四电离能等。原子的逐级电离能是越来越大的,原因是离子的电荷正值越来越大,离子半径越来越小,所以失

电子,所以钠通常显+1价;而镁的第一、二电离能均较低,第三电离能突跃升高,说明镁易失去2个电子,第三个电子难失去,故显+2价;同理,铝的第一、二、三电离能均较低,说明铝较易失去三个电子,显+3价,而第四电离能突跃升高,说明铝难失去第四个电子。

3、电负性:(可以作为判断金属性和非金属性强弱的依据)

㈠概念:用于描述不同元素的原子对键合电子吸引力的大小,电负性越大的原子对键合电子的吸引力越大。其中键合电子指原子中用于形成化学键的电子。

㈡元素的电负性变化规律:随着核电荷数的递增,元素的电负性呈周期性变化

①同周期:从左到右,元素的电负性逐渐增大。即金属性逐渐减弱,非金属性逐渐增强。

②同主族:从上到下,元素的电负性逐渐减小。即金属性逐渐增强,非金属性逐渐减弱。

【小结】电负性越大,对电子吸引能力越强,越容易得电子,元素的非金属性越强。

要点诠释:元素的性质与电负性的关系:

①元素的电负性与元素的金属性和非金属性的关系

电负性数值越大,元素的非金属性越强,金属性越弱;电负性数值越小,元素的金属性越强,非金属性越弱。一般来说电负性大于1.8的元素为非金属元素。电负性最大的元素为氟,电负性最小的为铯,而当元素的电负性在1.8左右时,该元素一般既有金属性又有非金属性。

②电负性与化合物类型的关系

一般认为:如果两个成键元素间的电负性差值大于1.7,他们之间容易形成离子键,相应的化合物为离子化合物,如果两个成键元素间的电负性差值小于 1.7,那么他们之间通常形成共价键,相应的化合物为共价化合物。

③电负性与元素的化合价的关系

在化合物中,电负性数值较小的元素的化合物中吸引键合电子的能力较弱,元素的化合价为正价,电负性数值较大的元素在化合物中吸引键合电子的能力较强,元素的化合价为负值。由于氟是所有元素中电负性数值最大的元素,所以在氟的化合物中,氟一定显示负价,没有正价。

④对角线规则

在元素周期表中,某些元素与右下方的主族元素的有些性质是相似的,被称为对角线规则。

锂、镁在空气中燃烧产物都是碱性氧化物,B和Al的氢氧化物都是两性氢氧化物,硼和硅的含氧酸均为弱酸,由此可以看出对角线规则是合理的。这是因为这些处于对角线的元素的电负性数值相差不大,得失电子的能力相差不大,故性质相似,值得注意的是,并不是所有处于对角线的元素的性质都相似的。

要点三:关于微粒半径大小比较的方法

1、同周期元素的原子(稀有气体除外),随核电荷数的增加,半径逐渐减小

例如,Na >Mg >Al >Si >P >S >Cl

2、同主族元素的原子,随核电荷数的增加,半径逐渐增大

例如,半径:Li <Na <K <Rb <Cs

半径:F <Cl <Br <I

3、带相等电荷数的同主族元素的离子,随核电荷数的增加,半径逐渐增大

例如,半径:Li+<Na+<K+<Rb+<Cs+

F-<Cl-<Br-<I-

4、同种元素的原子或单核离子,化合价越高,半径越小

例如,半径:Fe3+<Fe2+<Fe

5、具有相同电子层结构的原子或离子,核电荷数越大,半径越小

例如,半径:S2->Cl->K+>Ca2+

【典型例题】

类型一:原子结构、元素所在周期表中的位置与元素的性质的关系

例题1元素的原子结构决定其性质和在周期表中的位置。下列说法正确的是()

A.按电子排布,可把周期表里的元素划分成5个区,Zn元素属于d区

B.多电子原子中,在离核较近的区域内运动的电子能量较高

C.P、S、Cl的第一电离能、电负性和最高价氧化物对应的水化物的酸性均依次增大或增强

D.某同学给出的Fe原子的3d能级电子排布图为:,此排布图违反了洪特规则

【思路点拨】仔细挖掘原子结构的信息才能更好地掌握原子结构与其性质的关系,在掌握元素周期律的同时更好记住一些个例。

【答案】D

【解析】Zn为ds区元素,A项错误;多电子原子中,离核越近的电子能量越低,B项错误;P原子的3p 轨道处于半满状态,导致其第一电离能大于s原子,C项错误;根据洪特规则电子的自旋发现应该相同,故D 正确。

【总结升华】核外电子排布与族的划分:

⑴主族与0族元素价电子全部排布在最外层的ns或np轨道(Ⅰ~ⅡA族元素价电子主要填充ns轨道,为s区;ⅢA~0族元素价电子主要填充nsnp轨道,为p区元素),价电子数即为主族序数。

⑵过渡元素:价电子排布为(n-1)d1~10ns2。由于电子相对于ⅡA族主要填充内层,对物质性质影响较小,故过渡元素均为金属,性质变化跨度相对较小;且ⅢB~ⅦB族的价电子数目仍然与族序数相同。ⅠB~ⅡB族的ns轨道分别为1个或2个电子。

举一反三:

【变式1】前四周期元素中,基态原子中未成对电子数与其所在周期数相同的元素种类数为()A.3种 B.4种 C.5种 D.6种

答案:5种

类型二:原子或离子半径大小的比较

例题2 判断半径大小并说明原因:

1)Sr 与Ba2)Ca 与Sc

【思路点拨】原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是核电荷数。电子层数越多,原子半径越大;电子层数相同时,核电荷数越大,原子半径越小。

【答案】(1)Ba>Sr(2)Ca>Sc

【解析】Sr 与Ba属于同一主族元素,并且同族元素Ba比Sr多一电子层,所以Ba> Sr

Ca 与Sc属于同周期元素,并且Sc核电荷数多,所以Ca>Sc

【总结升华】同周期中,从左向右,分两个方面看: ①核电荷数增大,对核外电子吸引力增大,原子半径减小,②核外电子数增加,之间排斥力增大,原子半径增大。这是一对矛盾,应以①为主。

同族中半径变化,自上而下:①核电荷数增大,对电子吸引力增大,原子半径减小,②核外电子数增多,电子层增加,原子半径增大。这是一对矛盾,应以②为主

举一反三:

【变式1】下列元素原子半径排列顺序正确的是()

A、Mg>B>Si>Ar

B、Ar>Mg>Si>B

C、Si>Mg>B>Ar

D、B>Mg>Si>Ar

【答案】B先比较电子层数,B元素原子半径最小,再比较核电荷数

类型三:主族元素电离能的变化与核外电子排布的关系

例题3 比较硼、氮、氧第一电离能大小,并说明理由

【思路点拨】判断第一电离能大小的方法,可以根据元素所在周期表中的相对位置,同周期、同主族变化规律来比较,另外特别注意第一电离能的变化与元素原子的核外电子排布有密切关系,有些元素原子的电离能出现反常。

【答案】第一电离能:N>O>B

【解析】硼: 电子结构为: [He]2s2p1,失去2p1的一个电子,达到2s2全充满的稳定结构,所以,I1比较小。N 氮:电子结构为: [He] 2s2p3,2p3为半充满结构,比较稳定,不易失去其上的电子,I1突然增大。

O 氧:电子结构为: [He] 2s2p4,失去2p4的一个电子,即可达到2p3半充满稳定结构,所以I1有所降低。(反而小于氮的第一电离能)

【总结升华】从光谱实验结果总结出来的洪特规则有两方面的含义:一是电子在原子核外排布时,将尽可能分占不同的轨道,且自旋平行;洪特规则的第二个含义是对于同一个电子亚层,当电子排布处于全满(s2、p6、d10、f14)、半满(s1、p3、d5、f7)、全空(s0、p0、d0、f0)时体系能量最低,比较稳定。

举一反三:

【变式1】下列有关稀有气体的叙述不正确的是()

A、各原子轨道电子均已填满

B、其原子与同周期IA、IIA族阳离子具有相同的核外电子排布

C、化学性质非常不活泼

D、同周期中第一电离能最大

【答案】B稀有气体个轨道均填满,达到稳定结构,因此A的叙述正确。与V A、VIA、VIIA族阴离子(得到电子达到饱和)的电子排布相同,还和下一周期IA、IIA族阳离子(失去最外层电子)的电子排布相同,因此B的叙述不正确

类型四:元素电负性的周期性变化

例题4 将下列原子按电负性降低的次序排列,并解释理由:

As、F、S、Ca、Zn

【思路点拨】判断电负性大小的方法,可以根据元素所在周期表中的相对位置,同周期、同主族变化规律来比较

【答案】F>S>As>Zn>Ca

【解析】同周期:从左到右,元素的电负性逐渐增大。同主族:从上到下,元素的电负性逐渐减小。

【总结升华】元素电负性的周期性变化是原子结构周期性变化的体现,可以通过电负性对元素的种类、化合价及成键是化学键的性质作出判断。

举一反三:

【变式1】(2016 营口期中)下列图示中横坐标是表示元素的电负性数值,纵坐标表示同一主族的五种元素的序数的是()

A.B.

C.D.

【答案】B

【解析】同主族自上而下原子半径增大,原子对键合电子的吸引力减小,元素的电负性减弱,即同主族随原子序数的增大,电负性降低,选项中符合变化规律的为B中所示图象,故选B。

(完整版)第一章原子结构与性质知识点归纳

第一章 原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 2.位、构、性关系的图解、表解与例析 (1)元素在周期表中的位置、元素的性质、元素原子结构之间存在如下关系: 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除外),排成一个 纵行 周期(7个横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 性质递变 原子半径 主要化合价 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④ 结 构

(2)核外电子排布遵循的三个原理: a.能量最低原理b.泡利原理c.洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a.原子结构简图b.电子排布式c.轨道表示式5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 1.先推断元素在周期表中的位置。 2.一般说,族序数—2=本族非金属元素的种数(1 A族除外)。 3.若主族元素族序数为m,周期数为n,则: (1)m/n<1时为金属,m/n值越小,金属性越强: (2)m/n>1时是非金属,m/n越大,非金属性越强;(3)m/n=1时是两性元素。

(完整版)原子结构与性质知识点总结与练习

第一章原子结构与性质 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。 能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 说明:构造原理并不是说4s能级比3d能级能量低(实际上4s能级比3d能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,

一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3 的轨道式为或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K :[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二.原子结构与元素周期表 1.原子的电子构型与周期的关系 (1)每周期第一种元素的最外层电子的排布式为ns1。每周期结尾元素的最外层电子排布式除He 为1s2外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的电子排布跟其他周期不同。 (2)一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量相同的能级,而是能量相近的能级。 2.元素周期表的分区 (1)根据核外电子排布 ①分区 ②各区元素化学性质及原子最外层电子排布特点 ↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

原子结构与性质知识点归纳

第一章原子结构与性质知识点归纳 山东临沂市莒南三中(276600) 张琛 山东省烟台市蓬莱四中(265602) 马彩红 1原子结构 电子的吸引 外) 电负性逐渐减小 电负性增大 主要化合价 正价+1到+7 负价-4到 最高正价等于族序数(F 、O 除 元素性质 金属性逐渐减弱,非金属性逐 金属性逐渐增强,非金属性逐 渐增强 渐减弱,第一电离能逐渐减小, 原 2?位、构、性 质子 核电荷 决定元素种 系的图解、表解与例析_?近似相对原子 (1原元素持中中子置、元素的性质子种素原子位原子不特下关系: 子决定主族元素的化学 原子的电子式 子结构最高正价=8- F 原子纟逐渐增多 电子层数递增,最外层电子数 相同 原子核对外 逐渐增强 逐渐减弱 -1 电离能增大, 层 :电子排 同主族:从上到下 同主族:从上 位置 电子层结构 电子层数主族序数最= 递增 外 电 T *子 及化左 核电荷数 」到下一同周期::从左至负价

核外电 1族(18〈 个) 非金属性 ②副族(第I B 族一第% B 族共七 子是分能层排 3.元素的结构和性质的递变规律 随着原子序数递增 ①原子结构呈周期性变化序数递增的顺序从左到右排列 排②原则子半径呈周期性变化层数相同的元素排成一个横行 个横行)②长周期(第四、五、六周期) 厂金属性强 元素性质 Y 主要化主族(第I A 族—第% A 族共七验标志 元素周 、-③元素主要化合价 周期,7①外层变化第同的元三周别别)除外) 性质递变^原子半径 弱判断实

电子排布表示式:a .原子结构简图 b ?电子排布式c ?轨道表示式 5.原子核外电子运动状态的描述:电子云 6 .确定元素性质的方法 1 .先推断元素在周期表中的位置。 2 .一般说,族序数一2二本族非金属元素的种数(1 A 族 除外) 3 .若主族元素族序数为 m 周期数为n 贝y : (1)m/n<1 时为金属,m/n 值越小,金属性越强: ⑵m/n>1 时是非金属,m/n 越大,非金属性越强; ⑶m/n=1时是两性元素 ⑵核外电子 排布遵循的三 个原理: a .能量最低 原 理 b .泡 利 原 理 c .洪特规则及 洪特规则特例 (3)原子核外 布的,每个能层又分为不同的能级

完整版原子结构与性质知识点总结与练习

第一章原子结构与性质 ?原子结构 1?能级与能层 加:也瓦子的总十轨ift 呈哦讳醪 mW L1+ wpFfe 詆上 各隐级上的廉「孰直養副」枳|睡緘丄宇牛 佩址」一-牛 * + b +*-r ⑴相同题上㈱子執坦能量的高低; WS 畀卩M?i 『 ② 形状相R 的尙子報说能卡的髙低: 农2令触靭…… ③ 同橋层内用状相同而伸屛方向 不同的廉了蜿ifi 的昶章和专'如 即“ 2i 如即勘道仰能楚4A 零 3. 原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基 轨道(能级),叫做构造原理。 J ◎⑥?金 ? ◎⑥、⑥、⑥ ⑥⑥⑥? ?i/ 能级交错:由构造原理可知,电子先进入 说明:构造原理并不是说 4s 能级比3d 能级能 量低(实际上 4s 能级比3d 能级能量高),而是指这样顺 序填充电子可以使整个原子的能量最低。 也就是说,整个原子的能量不能机械地看做是各电子所处轨道的 能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量 最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。 换言之, 态原子的电子按右图顺序填入核外电子运动 4s 轨道,后进入3d 轨道,这种现象叫能级交错。

一个轨道里最多只能容纳两个电子, 且电旋方向相反 (用“TJ”表示),这个原理称为泡利(Pauli )原理 (4) 洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道, 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。 即 p0、dO 、fO 、p3、d5、f7、p6、d10、f14 时,是较稳定状态。 前36号元素中,全空状态的有 4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、 15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有 10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1) 电子排布式 ① 用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K : 1s22s22p63s23p64s1。 ② 为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相 应稀有气体 的元素符号外加方括号表示,例如 K : [Ar]4s1。 (2) 电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 帀冋戸冋河丽FW1 In 2 驶 2fi 3* 3|> 二.原子结构与元素周期表 1. 原子的电子构型与周期的关系 (1) 每周期第一种元素的最外层电子的排布式为 ns1。每周 期结尾元素的最外层电子排布式除 He 为1s2 外,其余为ns2np6。He 核外只有2个电子,只有1个s 轨道,还未出现p 轨道,所以第一周期结尾元素的 电子排布跟其他周期不同。 (2) 一个能级组最多所容纳的电子数等于一个周期所包含的元素种类。但一个能级组不一定全部是能量 相同的能级,而 是能量相近的能级。 2. 元素周期表的分区 (1)根据核外电子排布 ① 分区 这个规则叫洪特( Hund )规则。比如, f J J J fJ I f p3的轨道式为 而且自旋方向相同,

原子结构与元素的性质说课稿

《原子结构与元素的性质》说课设计 高二年级化学组xx 一、教学分析: (一)分析教材 本节课是在必修2第一章《物质结构元素周期律》,选修3第一章第一节《原子结构》基础上进一步认识原子结构与元素性质的关系。在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。按照课程标准要求比较系统而深入地介绍了原子结构与元素性质的关系,为后阶段学习元素周期律和分子结构奠定了基础。尽管本节内容比较抽象,学生学起来有困难,但教科书在内容编排上注重了由易到难层层深入,能够激发和保持学生的学习兴趣。 (二)分析学生 1、知识技能方面:学生已学习了原子结构及元素周期表的相关知识和元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性变化等知识,为学习本节奠定了一定的知识基础。 2、学法方面:在必修2第一章《物质结构元素周期律》的学习过程中已经初步掌握了理论知识的学习方法——逻辑推理法、抽象思维法、总结归纳法,具有一定的学习方法基础。根据以上两个分析,我确定本课教学目标如下 二、教学目标: (一)知识与技能目标 1、了解元素原子核外电子排布的周期性变化规律。 2、进一步认识元素周期表与原子结构的关系。 (二)过程与方法目标通过问题探究和讨论交流,进一步掌握化学理论知识的学习方法──结构决定性质。

(三)情感态度与价值观目标学生在问题探究的过程中,同时把自己融入科学活动和科学思维中,体验科学研究的过程和认知的规律性,在认识上和思想方法上都得到提升。根据以上两个分析,我确定了本节课的教学重点和难点:(四)教学的重点和难点 1、教学重点:元素的原子结构与元素周期表的关系 2、教学难点:元素周期表的分区为了有用地达成教学目标,突出教学重点,突破难点,我准备采用以下教学策略,下面说教学策略的设计 三、教学策略: (一)教学模式 在建构主义学习理论指导下,采用“复习引入——自主探究——合作交流——巩固练习”的教学模式。 (二)教学方法与手段讲授法与讨论法相结合,其中运用多媒体等教学手段。 (三)教学流程图 教学策略是有针对性的,必须把例外的教学策略运用到相应的教学环节中,要想使一堂课优化,只有把有用的教学策略恰当地运用到优化的教学过程中,才能更有用地达成教学目标下面,我重点说教学过程的设计。 四、说教学过程 (一)创设情境,温故导新1.创设情景:展示门捷列夫的第一张元素周期表和例外形式排列的几种元素周期表,激发学生学习的兴趣,扩展学生知识面。 2.温故导新:通过复习元素周期表的结构如何?元素的原子结构与元素在周期表中的位置有什么关系等问题?很自然的导入新课。 (二)活动探究、探索新知为了让学生参与活动探究,使生疏的化学概念变得栩栩如生,易于理解,同时也使学生对化学学习,尤其是微观领域的学习

高中化学选修3知识点全部归纳(物质的结构与性质)

高中化学选修3知识点全部归纳(物质的结构与性质) 第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7。 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、P ②.元素电离能的运用: a. 用来比较元素的金属性的强弱. I1越小,金属性越强,表征原子失电子能力强弱. b .电离能是原子核外电子分层排布的实验验证. 分析原子核外电子层结构,如某元素的I n+1?I n,则该元素的最外层电子数为n。 (3).元素电负性的周期性变化. 元素的电负性:元素的原子在分子中吸引电子对的能力叫做该元素的电负性。 随着原子序数的递增,元素的电负性呈周期性变化:同周期从左到右,主族元素电负性逐渐增大;同一主族从上到下,元素电负性呈现减小的趋势. 电负性的运用: a.确定元素类型(一般>1.8,非金属元素;<1.8,金属元素). b.确定化学键类型(两元素电负性差值>1.7,离子键;<1.7,共价键). c.判断元素价态正负(电负性大的为负价,小的为正价).

原子结构与元素的性质高考总复习

原子结构与元素的性质 1.原子核外电子排布与周期的划分 周期外围电子排布 各周期增加的能级元素种数ⅠA族0族最外层最多容纳电子数 一1s11s221s2 二2s12s22p682s、2p8 三3s13s23p683s、3p8 四4s14s24p684s、3d、4p18 五5s15s25p685s、4d、5p18 六6s16s26p686s、4f、5d、6p32 七7s187s、5f、6d(未完)…… (2)观察分析上表,讨论原子核外电子排布与周期划分的关系 ①元素周期系形成的原因:元素原子核外电子排布发生周期性的变化。 ②元素周期系的形成过程 ③元素周期系的特点:每一周期(除第一周期外)从碱金属元素开始,到稀有气体元素结束,外围电子排布从n s1递增至n s2n p6;元素周期系的周期不是单调的,而是随周期序号的递增逐渐增多,同时,金属元素的数目也逐渐增多。 2.原子核外电子排布与族的划分 族数ⅠAⅡAⅢAⅣAⅤAⅥAⅦA 价电子排布式n s1n s2n s2n p1n s2n p2n s2n p3n s2n p4n s2n p5 列数121314151617 价电子数1234567 副族元素21Sc22Ti23V24Cr25Mn29Cu30Zn 族数ⅢBⅣBⅤBⅥBⅦBⅠBⅡB 价电子排布式3d14s23d24s23d34s23d54s13d54s23d104s13d104s2 价电子数目34567 (3)依据上述表格,讨论族的划分与原子核外电子排布的关系 ①同主族元素原子的价层电子排布完全相同,价电子全部排布在n s或n s n p轨道上。价电子数与族序数相同。 ②稀有气体的价电子排布为1s2或n s2n p6。 ③过渡元素(副族和Ⅷ族)同一纵行原子的价层电子排布基本相同。价电子排布为(n-1)d1~10n s1~2,ⅢB~ⅦB族的价电子数与族序数相同,第ⅠB、ⅡB族和第Ⅷ族不相同。

选修3第一章原子结构与性质知识总结

第一章 原子结构与性质知识点归纳 2.位、构、性关系的图解、表解与例析 同位素(两个特性)

3.元素的结构和性质的递变规律 4.核外电子构成原理 (1)核外电子是分能层排布的,每个能层又分为不同的能级。 (2)核外电子排布遵循的三个原理: a .能量最低原理 b .泡利原理 c .洪特规则及洪特规则特例 (3)原子核外电子排布表示式:a .原子结构简图 b .电子排布式 c .轨道表示式 5.原子核外电子运动状态的描述:电子云 6.确定元素性质的方法 第二章 分子结构与性质复习 随着原子序数递增 ① 原子结构呈周期性变化 ② 原子半径呈周期性变化 ③ 元素主要化合价呈周期性变化 ④ 元素的金属性与非金属形呈周期性变化 ⑤ 元素原子的第一电离能呈周期性变化 ⑥ 元素的电负性呈周期性变化 元素周期律 排列原则 ① 按原子序数递增的顺序从左到右排列 ② 将电子层数相同的元素排成一个横行 ③ 把最外层电子数相同的元素(个别除 外),排成一个纵行 周期 (7个 横行) ① 短周期(第一、二、三周期) ② 长周期(第四、五、六周期) ③ 不完全周期(第七周期) 元 素 周 期 表 族(18 个纵行) ① 主族(第ⅠA 族—第ⅦA 族共七个) ② 副族(第ⅠB 族—第ⅦB 族共七个) ③ 第Ⅷ族(第8—10纵行) ④结 构

1、微粒间的相互作用 (2)共价键的知识结构 2.分子构型与物质性质 (1)微粒间的 相互作用 σ键 π键 按成键电子云 的重叠方式 极性键 非极性键 一般共价键 配位键 离子键 共价键 金属键 按成键原子 的电子转移方式 化学键 范德华力 氢键 分子间作用力 本质:原子之间形成共用电子对(或电子云重叠) 特征:具有方向性和饱和性 σ键 特征 电子云呈轴对称 (如s —s σ键、 s —p σ键、p —p σ键) π键 特征 电子云分布的界面对通过键轴的一个平面对称(如p —p π键) 成键方式 共价单键—σ键 共价双键—1个σ键、1个π键 共价叁键—1个σ键、2个π键 规律 键能:键能越大,共价键越稳定 键长:键长越短,共价键越稳定 键角:描述分子空间结构的重要参数 用于衡量共价键的稳定性 键参数 共 价 键

第二节原子结构与元素的性质

第二节原子结构与元素的性质

教学步骤、内容 教学方法、手段、 师生活动 [引入]我们明白元素性质是由元素原子结构决定的,那具体阻碍哪些性质呢? [讲]元素的性质指元素的金属性和非金属性、元素的要紧化合价、原子半径、 元素的第一电离能和电负性。 [学与咨询]元素周期表中,同周期的主族元素从左到右,最高化合价和最低 化合价、金属性和非金属性的变化规律是什么? [投影小结]同周期主族元素从左到右,元素最高化合价和最低化合价逐步升 高,金属性逐步减弱,非金属性逐步增强。 [讲]元素的性质随核电荷数递增发生周期性的递变,称为元素周期律。元素 周期律的内涵丰富多样,下面,我们来讨论原子半径、电离能和电负性的周期 性变化。 [板书]二、元素周期律 1、原子半径 [投影]观看图1—20分析: [学与咨询]1.元素周期表中同周期主族元素从左到右,原子半径的变化趋 势如何?应如何明白得这种趋势? 2.元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应 如何明白得这种趋势? [小结]同周期主族元素从左到右,原子半径逐步减小。其要紧缘故是由于核 电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子 后电子间斥力增大带来原子半径增大的趋势。 同主族元素从上到下,原子半径逐步增大。其要紧缘故是由于电子能层增 加,电子间的斥力使原子的半径增大。 [讲]原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是 核电荷数。明显电子的能层数越大,电子间的负电排斥将使原子半径增大,因

此同主族元素随着原子序数的增加,电子层数逐步增多,原子半径逐步增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,因此同周期元素,从左往右,原子半径逐步减小。 [咨询]那么,粒子半径大小的比较有什么规律呢? [投影小结]1、原子半径大小比较:电子层数越多,其原子半径越大。当电子层数相同时,随着核电荷数增加,原子半径逐步减小。最外层电子数目相同的原子,原子半径随核电荷数的增大而增大 2、核外电子排布相同的离子,随核电荷数的增大,半径减小。 3、同种元素的不同粒子半径关系为:阳离子<原子<阴离子,同时价态越高的粒子半径越小。 [过渡]那么,什么叫电离能呢,电离能与元素的金属性间有什么样的关系呢?[板书]2、电离能 〔1〕定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能. ①常用符号I表示,单位为KJ?mol-1 ②意义:通常用电离能来表示原子或离子失去电子的难易程度。[讲]原子为基态原子,保证失去电子时消耗能量最低。电离能用来表示原子或分子失去电子的难易程度。电离能越大,表示原子或离子越难失电子;电离能越小,表示原子或离子易失电子, [点击试题]Na元素的I1=496 KJ·mol-1,那么Na (g) -e-→Na +(g) 时所需最低能量为 . [板书]〔2〕元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。 [讲]气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的〝气态〞〝基态〞〝电中性〞〝失去一个电子〞等差不多上保证〝最低能量〞的条件。 [投影] [咨询]读图l—21。碱金属原子的第一电离能随核电荷数递增有什么规律呢? [讲]从图l—2l可见,每个周期的第一个元素(氢和碱金属)第一电离能最小,最后一个元素(稀有气体)的第一电离能最大;同族元素从上到下第一电离能变小(如He、Ne、Ar、Kr、Xe、Rn的第一电离能依次下降,H、Li、Na、K、Rb、

原子结构与元素性质

第二节原子结构与元素的性质 一、元素周期表的编排原则 1.将电子层数相同的元素按原子序数递增的顺序从左到右排成横行。 2.把最外层电子数相同的元素(个别例外)按电子层数递增的顺序从上到下排成纵行。 二、周期表的结构 周期:具有相同的电子层数的元素按照原子序数递增的顺序排成一个横行。 主族:由短周期和长周期元素共同构成的族。 副族:仅由长周期元素构成的族。 1.核外电子排布与族序数之间的关系 可以按照下列方法进行判断:按电子填充顺序由最后一个电子进入的情况决定,具体情况如下:

(3)进入(n -1)d ①(n -1)d 1~5为ⅢB~ⅦB ?族数=[(n -1)d +n s]电子数 ②(n -1)d 6~8为Ⅷ ③(n -1)d 10为ⅠB、ⅡB ?族数=n s 的电子数 ④进入(n -2)f ? ?????????4f ——La 系元素5f ——Ac 系元素ⅢB 2. 3.(1)主族(ⅠA~ⅦA)和副族ⅠB、ⅡB 的族序数=原子最外层电子数(n s +n p 或n s)。 (2)副族ⅢB~ⅦB 的族序数=最外层(s)电子数+次外层(d)电子数。 (3)零族:最外层电子数等于8或2。 (4)Ⅷ族:最外层(s)电子数+次外层(d)电子数。若之和分别为8、9、10,则分别是Ⅷ族第1、2、3列。 1.同周期,从左到右,原子半径依次减小。 2.同主族,从上到下,原子或同价态离子半径均增大。 3.阳离子半径小于对应的原子半径,阴离子半径大于对应的原子半径,如r (Na +)

4.电子层结构相同的离子,随核电荷数增大,离子半径减小,如r(S2-)>r(Cl-)>r(K+)>r(Ca2+)。 5.不同价态的同种元素的离子,核外电子多的半径大,如r(Fe2+)>r(Fe3+),r(Cu+)>r(Cu2+)。 特别提醒 在中学要求的畴可按“三看”规律来比较微粒半径的大小 “一看”能层数:当能层数不同时,能层越多,半径越大。 “二看”核电荷数:当能层数相同时,核电荷数越大,半径越小。 “三看”核外电子数:当能层数和核电荷数均相同时,核外电子数越多,半径越大。 七、电离能 1.第一电离能 (1)每个周期的第一个元素(氢和碱金属)第一电离能最小,稀有气体元素原子的第一电离能最大,同周期中自左至右元素的第一电离能呈增大的趋势。 (2)同主族元素原子的第一电离能从上到下逐渐减小。 2.逐级电离能 (1)原子的逐级电离能越来越大 首先失去的电子是能量最高的电子,故第一电离能较小,以后再失去电子都是能级较低的电子,所需要的能量多;同时,失去电子后离子所带正电荷对电子吸引更强,从而电离能越来越大。 (2)金属元素原子的电离能与其化合价的关系 一般来讲,在电离能较低时,原子失去电子形成阳离子的价态为该元素的常见价态。如Na的第一电离能较小,第二电离能突然增大(相当于第一电离能的10倍),故Na的化合价为+1,而Mg在第三电离能、Al在第四电离能发生突变,故Mg、Al的化合价分别为+2、+3。 八、元素电负性的应用 1.元素的金属性和非金属性及其强弱的判断 (1)金属的电负性一般小于 1.8,非金属的电负性一般大于 1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性则在1.8左右,它们既有金属性,又有非金属性。 (2)金属元素的电负性越小,金属元素越活泼;非金属元素的电负性越大,非金属元素越活泼。 (3)同周期自左到右,电负性逐渐增大,同主族自上而下,电负性逐渐减小。 (4)电负性较大的元素集中在元素周期表的右上角。 2.化学键的类型的判断 一般认为:如果两个成键元素原子间的电负性差值大于1.7,它们之间通常形成离子键;如果两个成键元素原子间的电负性差小于1.7,它们之间通常形成共价键。

原子结构与元素的性质时优秀教案

第二节原子结构与元素地性质 第三课时 【学习目标】 1.能说出元素电负性地涵义,能应用元素地电负性说明元素地某些性质 2.能根据元素地电负性资料,解释元素地“对角线”规则,列举实例予以说明 3.能从物质结构决定性质地视角解释一些化学现象,预测物质地有关性质 4.进一步认识物质结构与性质之间地关系,提高分析问题和解决问题地能力 【学习过程】 【课前预习】 1. 叫键合电子;我们用电负性描述. 2.电负性地大小可以作为判断元素金属性和非金属性强弱地尺度. 地电负性一般小于1.8,地电负性一般大于1.8,而位于非金属三角区边界地“类金属”地电负性则在1.8左右,他们既有性又 有性. 【知识梳理】 【复习】1.什么是电离能?它与元素地金属性、非金属性有什么关系? 2.同周期元素、同主族元素地电离能变化有什么规律? (3)电负性: 【思考与交流】1. 什么是电负性?电负性地大小体现了什么性质?阅读教材p20页表同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧地非金属性与氯地非金属性哪个强? 【科学探究】 1.根据数据制作地第三周期元素地电负性变化图,请用类似地方法制作IA、VIIA元素 地电负性变化图. 2.电负性地周期性变化示例

【归纳与总结】 1. 金属元素越容易失电子,对键合电子地吸引能力越,电负性越小,其金属性越;非金属元素越容易得电子,对键合电子地吸引能力 越,电负性越,其非金属性越强;故可以用电负性来度量金属性与非金属性地强弱.周期表从左到右,元素地电负性逐渐变;周期表从上到下,元素地电负性逐渐变. 2. 同周期元素从左往右,电负性逐渐增,表明金属性逐渐减弱,非金属性逐渐增.同主族元素从上往下,电负性逐渐减,表明元素地金属性逐渐减弱,非金属性逐渐增强. 【思考】对角线规则:某些主族元素与右下方地主族元素地有些性质相似,被称为对角线原则.请查阅电负性表给出相应地解释? 3. 在元素周期表中,某些主族元素与右下方地主族元素地性质有些相似,被称为“对角线规则”.查阅资料,比较锂和镁在空气中燃烧地产物,铍和铝地氢氧化物地酸碱性以及硼和硅地含氧酸酸性地强弱,说明对角线规则,并用这些元素地电负性解释对角线规则. 4. 对角线规则 【典题解悟】 例题1.下列有关电负性地说法中正确地是() A.主族元素地电负性越大,元素原子地第一电离能一定越大. B.在元素周期表中,元素电负性从左到右越来越大 C.金属元素电负性一定小于非金属元素电负性. D.在形成化合物时,电负性越小地元素越容易显示正价 解析:电负性地变化规律: (1)同一周期,从左到右,元素电负性递增. (2)同一主族,自上而下,元素电负性递减.(3)副族元素地电负性变化趋势和主族类似.主族元素原子地电离能、电负性变化趋势基本相同,但电离能有特例,如电负性:O >N,但第一电离能:N>O,A错误.B、C选项没有考虑过渡元素地情况. 答案:D 例2.能够证明电子在核外是分层排布地事实是() A、电负性 B、电离能 C、电子亲和能 D、电势能 【当堂检测】 1. 电负性地大小也可以作为判断金属性和非金属性强弱地尺度下列关于电负性地变化规律正确地 是()

物质结构与性质知识点总结

高中化学物质结构与性质知识点总结 一.原子结构与性质. 一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布.

(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式.

高中化学选修《物质结构与性质》知识点提纲-苏教版

【给力资源!】 【高中化学选修《物质结构与性质》知识点提纲,苏教版】 一.原子结构与性质. 一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式.

知识讲解_原子结构与元素的性质_基础

原子结构与元素的性质 编稿:宋杰审稿:于冬梅 【学习目标】 1、进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系; 2、知道外围电子排布和价电子层的涵义,认识周期表中各区、周期、族元素的原子核外电子排布的规律; 3、掌握原子半径的变化规律; 4、了解元素电离能的涵义,能应用元素的电离能说明元素的某些性质、主族元素电离能的变化与核外电子排布的关系; 5、了解元素电负性的涵义,能应用元素的电负性说明元素的某些性质,根据元素的电负性资料,解释元素的“对角线”规则; 6、认识原子结构与元素周期系的关系,形成有关物质结构的基本观念,认识物质的结构与性质之间的关系,提高分析问题和解决问题的能力。 【要点梳理】 【高清课堂:原子结构与性质#原子结构与周期表】要点一:原子结构与周期表 1、元素周期系:(元素的原子核外电子的排布发生周期性的重复的结果) 随着元素原子的核电荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,这就是元素周期系中的一个个周期。这也是原子核外电子排布规律中为什么最外层的电子数不超过8个电子的原因。 2、元素周期表:(体现元素原子结构、元素性质的周期性变化) ⑴元素周期表的结构 在第一周期中元素只有一个电子层即第一个能层,而第一能层只有一个能级,该能级最多只容纳2个电子,所以第一周期只有两种元素。因此元素周期系的发展就像螺壳上的螺纹一样螺旋上升的。 ⑵、原子结构与元素在周期表中的位置关系(元素在周期表中的位置由原子结构决定) 原子核外电子层数决定元素所在的周期: 周期序数=原子核外电子层数; 原子的价电子总数决定元素所在的族,周期表上的外围电子排布称为“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化,“价电子”即与元素化合价有关的电子,元素周期表的每个纵列的价电子层上电子总数相同,对于主族元素,价电子指的就是最外层电子,所以: 主族元素其族序数=价电子数=最外层电子数。 而副族元素的族序数不等于其最外层电子数,其族序数跟核外电子的排布有关。 要点诠释:价电子数与族序数的关系 S区元素价电子特征排布为nS1~2,价电子数等于族序数。d区元素价电子排布特征为(n-1)d1~10ns1~2,价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。 外围电子总数决定排在哪一族如:29Cu3d104s1,10+1=11尾数是1所以,是IB。

高中化学选修3物质结构与性质全册知识点总结

高中化学 选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s 、p 、d 、f ,能 量由低到高依次为s 、p 、d 、f 。 ③任一能层,能级数等于能层序数。 ④s 、p 、d 、f ……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 :能层的序数)。 n (22n 每能层所容纳的最多电子数是:

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分 布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式 的主要依据之一。 (3)不同能层的能级有交错现象,如E (3d )>E (4s )、E (4d )>E (5s )、E (5d )>E (6s )、E (6d )>E (7s )、E (4f )>E (5p )、E (4f )>E (6s )等。原 子轨道的能量关系是:ns <(n-2)f < (n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目 对应着每个周期的元素数目。 ;最 2 n 2根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于 最低能量状态 的原子称为 基态原子 。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子 跃迁至较高能级时的状态。处于激发态的原子称为激发态原子 。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定 元素。 3、电子云与原子轨道

高中化学物质结构与性质期末复习资料(知识点总结)

第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化:

重点高中化学选修3物质结构与性质全册知识点总结

重点高中化学选修3物质结构与性质全册知识点总结

————————————————————————————————作者:————————————————————————————————日期:

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

相关主题