搜档网
当前位置:搜档网 › 三角函数和三角恒等变换知识点及题型分类总结

三角函数和三角恒等变换知识点及题型分类总结

三角函数和三角恒等变换知识点及题型分类总结
三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结

1、任意角。

2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角.

第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度.

5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 .

6、弧度制与角度制的换算公式

7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S=

8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是

()

220r r x y =+>,则sin y r α=

,cos x r α=,()tan 0y

x x

α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限

余弦为正.

10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .

11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式:

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.

()5sin cos 2π

αα??-=

???,cos sin 2παα??

-= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???.

口诀:奇变偶不变,符号看象限.

重要公式

⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);

⑹()tan tan tan 1tan tan αβ

αβαβ

++=

-(()()tan tan tan 1tan tan αβαβαβ+=+-).

二倍角的正弦、余弦和正切公式: ⑴

sin 22sin cos ααα

=.(2)

2222cos2cos sin 2cos 112sin ααααα

=-=-=-(2

cos 21cos 2αα+=

,2

1cos 2sin 2

αα-=).⑶2

2tan tan 21tan ααα=-. 辅助角公式

()22sin cos sin ααα?A +B =A +B +,其中tan ?B =

A

. 13、函数sin y x =的图象上所有点 得到函数()sin y x ω?=A +的图象. 14.函数()()sin 0,0y x ω?ω=A +A >>的性质: ①振幅:A ;②周期:2π

ω

T =

;③频率:12f ωπ

=

=T ;④相位:x ω?+;⑤初相:?. 函数()sin y x B ω?=A ++,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =

-,()max min 12y y B =+,()21122

x x x x T =-<. 15、正弦函数、余弦函数和正切函数的图象与性质: sin y x =

cos y x =

tan y x =

图象

定义域 值域

最值

周期性 奇偶性

单调性

对称性

性 质

三角函数题型分类总结

一、求值

1、sin 330?= tan 690° = o

585sin =

2、(1)α是第四象限角,12

cos 13

α=

,则sin α= (2)若4sin ,tan 05

θθ=->,则cos θ= . (3)α是第三象限角,2

1)sin(=

-πα,则αcos = )25cos(απ

+= 3、(1)已知5

sin ,5

α=

则44sin cos αα-= . (2)设(0,)2

π

α∈,若3sin 5α=

,则2cos()4

π

α+= . (3)已知3(

,),sin ,25π

απα∈=则tan()4

π

α+= 4.下列各式中,值为

2

3

的是( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5. (1) sin15cos75cos15sin105+= (2) cos 43cos77sin 43cos167o

o

o

o

+= 。 (3)sin163sin 223sin 253sin313+= 。 6.(1) 若sin θ+cos θ=

1

5

,则sin 2θ= (2)已知3

sin()45

x π-=,则sin 2x 的值为

(3) 若2tan =α ,则

α

αα

αcos sin cos sin -+=

7.若角α的终边经过点(1

2)P -,,则αcos = tan 2α= 8.已知3

cos(

)2

2

π

?+=

,且||2π?<,则tan ?=

9.若

cos 22

π2sin 4αα=-

?

?- ?

?

?,则cos sin αα+=

10.下列关系式中正确的是( )

A .0

sin11cos10sin168<< B .0

sin168sin11cos10<< C .0

sin11sin168cos10<< D .0

sin168cos10sin11<<

11.已知5

3

)2cos(=

-

π

α,则αα22cos sin -的值为 ( )

A .257

B .2516-

C .259

D .25

7-

12.已知sin θ=-1312,θ∈(-2π,0),则cos (θ-4

π

)的值为 ( )

A .-

2627 B .2627 C .-26217 D .26

217 13.已知f (cosx )=cos3x ,则f (sin30 ( )

A .1

B .

2

3

C .0

D .-1 14.已知sin x -sin y = -32,cos x -cos y = 3

2

,且x ,y 为锐角,则tan(x -y )的值是 ( ) A .

5142 B . -5142 C .±5142 D .28

14

5± 15.已知tan160o =a ,则sin2000o

的值是 ( )

A.a 1+a 2

B.-a 1+a 2

C.11+a 2

D.-1

1+a

2

16.若02,sin 3cos απαα≤≤>,则α的取值范围是: ( ) (A),32ππ??

??? (B),3ππ?? ??? (C)4,

33ππ

?? ??? (D)3,32

ππ

??

???

17.已知cos (α-

6π)+sin α=

的值是则)6

7sin(,354π

α- ( ) (A )-

532 (B )5

32 (C)-54 (D) 54

18.若,5sin 2cos -=+a a 则a tan = ( ) (A )21 (B )2 (C )2

1

- (D )2-

二.最值

1.函数()sin cos f x x x =最小值是= 。

2.① 函数x x x f cos sin )(-=的最大值为 。 ② 函数f (x )=3sin x +sin(π

2+x )的最大值是

③ 若函数()(13tan )cos f x x x =+,02

x π

≤<

,则()f x 的最大值为

3. 函数()cos22sin f x x x =+的最小值为 最大值为 。

4. 函数22cos sin 2y x x =+的最小值是 . 5.已知函数()2sin (0)f x x ωω=>在区间,34ππ??

-

???

?上的最小值是2-,则ω的最小值等于 6将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正

值是 A .

6π7 B .3π C .6π D .2

π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1

B .2

C .3

D .2

8.函数y=sin (

2

π

x+θ)cos (

2

πx+θ)在x=2时有最大值,则θ的一个值是( )

A .4

π B .2

π C .3

2π D .4

9.函数2()sin 3sin cos f x x x x =+在区间,42ππ??

????

上的最大值是( ) A.1

B.

13

2

+ C.

3

2

D.1+3

三.单调性 1.函数]),0[()26

sin(2ππ

∈-=x x y 为增函数的区间是( ).

A. ]3,

0[π

B. ]127,12[ππ

C. ]6

5,3[π

π D. ],65[ππ 2.函数sin y x =的一个单调增区间是( )

A .ππ??- ?44??,

B .3ππ?? ?44??

C .3π??π ?2??

D .32π??

π

?2??

3.函数()sin 3cos ([,0])f x x x x π=-∈-的单调递增区间是 ( ) A .5[,]6ππ--

B .5[,]66ππ--

C .[,0]3π-

D .[,0]6

π- 4.函数22cos y x =的一个单调增区间是 ( ) A .(,)44ππ

-

B .(0,)2π

C .3(,)44

ππ

D .(,)2ππ

5.若函数f (x)同时具有以下两个性质:①f (x)是偶函数,②对任意实数x ,都有f (x +4

π)= f (x -4

π),则f (x)的解析式可以是

( )

A .f (x)=cosx

B .f (x)=cos(2x 2

π

+) C .f (x)=sin(4x 2

π

+

) D .f (x) =cos6x

四.周期性

1.下列函数中,周期为

2

π

的是( ) A .sin

2x y = B .sin 2y x = C .cos 4

x

y = D .cos 4y x = 2. ()cos 6f x x πω??

=-

??

?

的最小正周期为

5

π

,其中0ω>,则ω= 3.(1)函数x x x f cos sin )(=的最小正周期是 . (2)函数)(1cos 22R x x y ∈+=的最小正周期为 . 4.函数1)4

(cos 22

--

x y 是 ( )

A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为

2

π的奇函数 D. 最小正周期为2π

的偶函数

5.函数2

(sin cos )1y x x =++的最小正周期是 . 五.对称性 1.函数sin(2)3

y x π

=+图像的对称轴方程可能是( )

A .6

x π

=-

B .12

x π

=-

C .6

x π

=

D .12

x π

=

2.下列函数中,图象关于直线3

π

=x 对称的是( )

A )3

2sin(π

-

=x y B )6

2sin(π

-

=x y C )62sin(π

+

=x y D )6

2sin(π

+=x y

3.函数πsin 23y x ??

=+

??

?

的图象( ) A.关于点π03?? ???,对称 B.关于直线π4x =对称C.关于点π04?? ???

,对称 D.关于直线π3x =对称 4.如果函数3cos(2)y x φ=+的图像关于点4(

,0)3

π

中心对称,那么φ的最小值为 ( ) (A)6π (B) 4π (C) 3π (D) 2

π

六.图象平移与变换

1.函数y =cos x (x ∈R)的图象向左平移

个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 2.将函数sin 2y x =的图象向左平移4

π

个单位, 再向上平移1个单位,所得图象的函数解析式是

3.将函数y=sinx 的图象向左平移?(0 ≤?<2π)的单位后,得到函数y=sin ()6

x π

-的图象,则?

等于

4.将函数 y = 3 cos x -sin x 的图象向左平移 m (m > 0)个单位,所得到的图象关于y 轴对称,则 m 的最小正值是 ( )

A. π6

B. π

3 C. 2π3 D. 5π6

七.图象

1.下列函数中,图象的一部分如右图所示的是( )

(A )sin 6y x π??=+

??? (B )sin 26y x π??=- ???

(C )cos 43y x π??=- ??? (D )cos 26y x π?

?=- ??

?

2.已知函数()2sin()f x x ωφ=+的图像如图所示,则

712

f π??= ???

。 3.已知函数y =sin(ωx +φ)? ????ω>0,|φ|<π2的部分图象如图所示,则 ( )

A .ω=1,φ=π6

B .ω=1,φ=-π

6

C .ω=2,φ=π

6

D .ω=2,φ=-π

6

4.已知函数f (x )=A sin(x +φ)(A >0,0<φ<π),x ∈R 的最大值是1,其图象经过点M ?

??

??π3,12.

(1)求f (x )的解析式;

(2)已知α,β∈?

????0,π2,且f (α)=35,f (β)=1213,求f (α-β)的值.

5.已知函数f (x )=12sin2x sin φ+cos 2

x cos φ-12sin ? ????π2+φ(0<φ<π),其图象过点? ??

??π6,12.

(1)求φ的值;

(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的1

2

,纵坐标不变,得到函数y =g (x )的图

象,求函数g (x )在?

?????0,π4上的最大值和最小值.

八.综合

1. 已知函数))(2

sin()(R x x x f ∈-

,下面结论错误..

的是 A. 函数)(x f 的最小正周期为2π B. 函数)(x f 在区间[0,2

π

]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数 2.函数)3

2sin(3)(π

-

=x x f 的图象为C , 如下结论中正确的是 ①图象C 关于直线π12

11

=

x 对称; ②图象C 关于点)0,32(π对称; ③函数12

5,12()(π

π-在区间x f )内是增函数;

④由x y 2sin 3=的图象向右平移3

π

个单位长度可以得到图象C.

3.已知函数()2sin()f x x ω?=+对任意x 都有()()66

f x f x ππ

+=-,则()6f π等于( )

A 、2或0

B 、2-或2

C 、0

D 、2-或0

九.解答题

1.已知函数()sin(),f x x ω?=+其中0ω>,||2

π?< (I )若cos

cos,sin

sin 0,4

4

π

π

??3-=求?的值; (Ⅱ)在(I )的条件下,若函数()f x 的图像的相邻两条对称轴之间的距离等于

3

π

,求函数()f x 的解析式;并求最小正实数m ,使得函数()f x 的图像象左平移m 个单位所对应的函数是偶函数。

2.已知函数2

π

()sin 3sin sin 2

f x x x x ωωω??

=++ ??

?

(0ω>)的最小正周期为π.

(Ⅰ)求ω的值;

(Ⅱ)求函数()f x 在区间2π03??????

,上的取值范围.

3.知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是

2

π

. (Ⅰ)求ω的值;

(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.

4.已知向量)cos ,sin 3(x x a = ,)cos ,(cos x x b = ,记函数b a x f

?=)(。

(1)求函数)(x f 的最小正周期;

(2)求函数)(x f 的最大值,并求此时x 的值。

5.已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02

A π

ω?>><<)的周期为π,且图象上一

个最低点为2(

,2)3

M π

-. (Ⅰ)求()f x 的解析式;(Ⅱ)当[0,]12

x π

∈,求()f x 的最值.

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

高考题历年三角函数题型总结

高考题历年三角函数题 型总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高考题历年三角函数题型总结 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

三角恒等变换问题(典型题型)

三角恒等变换问题 三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。 例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 2 3 αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221 cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36 αβαβ+-= 化简得,59sin()72 βα-=- 即59sin()72 αβ-= 方法评析:式的变换包括: 1、tan(α±β)公式的变用 2、齐次式 3、 “1”的运用(1±sin α, 1±cos α凑完全平方) 4、两式相加减,平方相加减 5、一串特殊的连锁反应(角成等差,连乘)

例2 (角的变换---已知角与未知角的转化) 已知7sin()24 25π αα-= =,求sin α及tan()3 π α+. 解:由题设条件,应用两角差的正弦公式得 )cos (sin 22)4sin(1027ααπα-=-=,即5 7 cos sin =-αα ① 由题设条件,应用二倍角余弦公式得 故5 1sin cos -=+αα ② 由①和②式得5 3sin =α,5 4cos -=α, 于是3 tan 4 α=- 故3 tan()34πα-+=== 方法评析: 1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到. 2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形. 例3(合一变换---辅助角公式)

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

三角恒等变换(测试题及答案)

三角恒等变换测试题 第I 卷 一、选择题(本大题共12个小题,每小题5分,共60分) 1、cos 24cos36cos66cos54? ? ? ? -的值为( ) A 0 B 12 C D 1 2 - 2.3cos 5α=- ,,2παπ?? ∈ ??? ,12sin 13β=-,β是第三象限角,则=-)cos(αβ( ) A 、3365- B 、6365 C 、5665 D 、1665 - 3. 函数sin cos y x x =+的最小正周期为( ) A. 2 π B. π C. 2π D. 4π 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为( ) A 47 - B 47 C 18 D 18- 5.βα,都是锐角,且5sin 13α=,()4 cos 5 αβ+=-,则βsin 的值是( ) A 、3365 B 、1665 C 、5665 D 、6365 6.,)4,43(ππ- ∈x 且3cos 45x π?? -=- ??? 则cos2x 的值是( ) A 、725- B 、2425- C 、2425 D 、7 25 7. 函数4 4 sin cos y x x =+的值域是( ) A []0,1 B []1,1- C 13,22?????? D 1,12?? ???? 8. 已知等腰三角形顶角的余弦值等于5 4 ,则这个三角形底角的正弦值为( ) A 1010 B 1010- C 10103 D 10 103- 9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像( ) A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12 π 个单位

(完整word)2018年高考数学总复习三角恒等变换

第三节 三角恒等变换 考纲解读 会用向量的数量积推导出两角差的余弦公式. 能利用两角差的余弦公式导出两角差的正弦,正切公式. 能利用两角差的余弦公式导出两角和的正弦,余弦,正切公式,导出二倍角的正弦,余弦,正切公式,了解它们的内在联系. 能利用上述公式进行简单的恒等变换(包括导出积化和差,和差化积,半角公式,但对这三种公式不要求记忆). 命题趋势探究 高考必考,在选择题,填空题和解答题中都有渗透,是三角函数的重要变形工具.分值与题型稳定,属中下档难度. 考题以考查三角函数式化简,求值和变形为主. 化简求值的核心是:探索已知角与未知角的联系,恒等变换(化同角同函). 知识点精讲 常用三角恒等变形公式 和角公式 sin()sin cos sin cos αβαβαβ+=+ cos()cos cos sin sin αβαβαβ+=- tan tan tan()1tan tan αβ αβαβ ++= - 差角公式 sin()sin cos sin cos αβαβαβ-=- cos()cos cos sin sin αβαβαβ-=+ tan tan tan()1tan tan αβ αβαβ --= + 倍角公式 sin 22sin cos ααα= 2222cos 2cos sin 2cos 112sin ααααα=-=-=- 22tan tan 21tan α αα =- 降次(幂)公式 2211cos 21cos 2sin cos sin 2;sin ;cos ;222 αα ααααα-+=== 半角公式 sin 2 2α α==

sin 1cos tan .21cos sin a α αα α-= =+ 辅助角公式 sin cos ),tan (0),b a b ab a ααα??+=+=≠角?的终边过点(,)a b ,特殊 地,若sin cos a b αα+=,则tan .b a α= 常用的几个公式 sin cos );4π ααα±=± sin 2sin();3 π ααα=± cos 2sin();6 π ααα±=± 题型65 两角和与差公式的证明 题型归纳及思路提示 思路提示 推证两角和与差公式就是要用这两个单角的三角函数表示和差角的三角公式,通过余弦定理或向量数量积建立它们之间的关系,这就是证明的思路. 例4.33 证明 (1):cos()cos cos sin sin ;C αβαβαβαβ++=- (2)用C αβ+证明:sin()sin cos sin S cos αβαβαβαβ++=+ (3)用(1)(2)证明tan tan :tan().1tan tan T αβαβ αβαβ +++= - 解析(1)证法一:如图4-32(a )所示,设角,αβ-的终边交单位圆于 12(cos .sin ),(cos(),sin()),P P ααββ--,由余弦定理得 2 221212122()PP OP OP OP OP cos αβ=+-?+ 22[cos cos()][sin sin()]22cos()αβαβαβ?--+--=-+ 22(cos cos sin sin )22cos()αβαβαβ?--=-+ :cos()cos cos sin sin .C αβαβαβαβ+?+=- 证法二:利用两点间的距离公式. 如图4-32(b )所示12(1,0),(cos ,sin ),(cos(),sin(),A P P αααβαβ++ 3(cos(),sin()),P ββ--由231;OAP OP P ???得,213.AP PP =故

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

三角恒等变换中的综合问题

三角恒等变换中的综合问题 新课标的理念就是将学生由单纯的知识接受者转变为学习的主人,注重的是学生能力的培养,高考命题突出以能立意,加强了对知识综合性和应用性的考查,故常常在知识的交汇处命题,对于三角恒等变换中涉及的题型较多,学习时应理清基本题型,特别是具有典型性的题型,掌握这些基本题型解题的通性和通法,关于三角恒等变换的综合问题归纳起来主要有以下几类: 1 三角函数式的化简 解决这类问题常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角名称的变化,尽量减少函数的名称。常用方法有:异名函数化为同名函数,异角化为同角,异次化为同次,切弦互化,特殊角的三角函数与特殊值的互化,或通过函数互化创造条件。 例1、化简其中,α∈(π,2π),分析:题中的角有α和,故必须实行角的统一 解原式= = == ∵α∈(π,2π) ∴<<π, ∴cos<0∴原式=cosα 点评:这类问题着重抓住角的统一或函数名称的统一,通过观察角、函数名,项的次数等,找到突破口,利用切化弦、升幂、降幂、逆用公式等手段将其化简。 练习:已知函数f(x)= ①求f(x)的定义域(答案:f(x)的定义域为x|x≠kπ+,k∈Z;②设α是第四象限的角,且tanα=-,求f(α)的值(答案:) 2 三角函数的求值 求值题常见的类型及解法。 2.1 给角求值:解题时,要认真观察,结合和差化积,积化和差,升降幂公式转化为特殊角并且消去非特殊角的三角函数而求解,主要有下面一些方法:①特殊值代换法:如=sin30°,=cos30°,=sin45°=cos45°;②拼角,拆角法:通过拼(拆)角来寻找特殊角和非特殊角的联系。③常见变化换法,在求值过程中,常见的变换方法有常值代换,切割化弦,收缩变换,降幂与升幂,和差化积,积化和差,以及化异角为同角,化异名为同名,化异次为同次。

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

三角恒等变换各种题型归纳分析

三角恒等变换基础知识及题型分类汇总 /4的两倍,3α是 “二倍角”的

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换(利用辅助角公式结合正余弦的和角差角公式进行变形) 例1 方法:角不同的时候,能合一变换吗? .cos sin ,,cos sin .cos sin cos sin )(;cos sin cos sin )(.cos )(;cos )(; sin )(;sin )(.x x x x x 2203132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθθθθα α<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,54cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,2 4,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==??? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπαπα????? ??-??? ??---?-?-???72cos 36cos )2(;125cos 12cos )1(.34cos 4sin )3(;23tan 23tan 1)2(;2cos 2sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.124422πππααπαααα求值:化简下列各式:求下列各式的值:.)70sin(5)10sin(3.3.2cos )31(2sin )31(,.212 cos 312sin .1的最大值求大值有最大值?并求这个最取何值时当锐角?++?+=-++-x x y θθθππ

相关主题