搜档网
当前位置:搜档网 › 高一三角函数题型总结材料

高一三角函数题型总结材料

高一三角函数题型总结材料
高一三角函数题型总结材料

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13

5

sin =α求αcos 、αtan 、αcot 的值

2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值

2.一个式子如果满足关于αsin 和αcos 的①分式 ②齐次式 可以实现αtan 之间的转化

例题:1.已知sin 2cos 5,tan 3sin 5cos αα

ααα-=-+那么的值为_____________.

2.已知2tan =α,则1.α

αα

αcos sin cos sin -+=_____________.

2.

α

αα

α2

2cos sin cos sin -=_____________.

3.1cos sin +αα=_____________.(“1”的代换)

3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos

方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2

1

,求①αsin .αcos ②αcos -αsin

4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133

π= ;

1.已知sin α=4

5

,且α为第二象限角,那么tan α的值等于 ( )

(A)3

4

(B)43

- (C)43

(D)4

3

-

2.已知sin αcos α=8

1,且4π<α<2π

,则cos α-sin α的值为 ( )

(A)2

3

(B)4

3

(C) (D)±

2

3

3.设是第二象限角,则

sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1-

4.若tan θ=

3

1,π<θ<3

2π,则sin θ·cos θ的值为 ( )

(A)±3

10

(B)

3

10

5.已知

sin cos 2sin 3cos αα

αα-+=5

1,则tan α的值是 ( )

(A)±83 (B)83

(C)83-

(D)无法确定

*

6.若α是三角形的一个内角,且sin α+cos α=

3

2

,则三角形为 ( ) (A)钝角三角形

(B)锐角三角形 (C)直角三角形 (D)等腰三角形

三角函数诱导公式

诱导公式可概括为把

απ

±?k 2

的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数,

α相当锐角)

口诀“奇变偶不变,符号看象限。”其中奇偶是指2

π

的奇数倍还是偶数倍,变与不变指函数名称的变化。

公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

公式二:=-)sin(α =-)cos(α =-)tan(α (可根据奇偶函数记忆) 公式三:=-)sin(απ =-)c o s (απ =-)tan(απ (两角互补) 公式四:=+)sin(απ =+)c o s (απ =+)tan(απ 公式五:=-)2sin(απ

=-)2

c o s (απ

(两角互余,实现αs i n 与α

c o s 的转化) 公式六:=+)2sin(απ

=+)2

c o s (απ

两角互补的应用:=π65sin

π32cos = =π4

3

tan 三角形内角中:=+)sin(B A =+)c o s (C B =+)t a n (C A 两角互余应用:sin )4

cos(=+απ( ) cos )23

sin(

=-απ

( )

奇偶性质应用:=-)cos(πα )2

3

2s i n (πα-

三角函数诱导公式练习题

1.若(),2,5

3

cos παππα<≤=

+则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5

4

-

2.sin (-6

π

19)的值是( ) A .

2

1 B .-

2

1 C .

2

3 D .-

2

3 3.3、sin 34π·cos 625π·tan 4

5π的值是

A .-

4

3 B .

4

3 C .-

4

3

D .

4

3

4.若cos (π+α)=-5

10

,且α∈(-2π,0),则tan (2π3+α)的值为( )

A .-

3

6

B .

3

6 C .-

2

6 D .

2

6 5.设A 、B 、C 是三角形的三个内角,下列关系恒成立的是( ) A .cos (A +B )=cos C B .sin (A +B )=sin C C .tan (A +B )=tan C D.sin 2B A +=sin 2

C

6.已知()2

1

sin -

=+πα,则()πα7cos 1+的值为 ( )

A .

332 B . -2 C . 332- D . 3

3

2± 7.若1

sin()22

π

α-=-,则tan(2)πα-=________.

8.如果A 为锐角,2

1

)sin(-=+A π,那么=-)cos(A π ________. 9.sin

2(3

π

-x )+sin 2(6

π+x )= .

10.α是第四象限角,,则αsin 等于________.

13

12

cos =α

三角函数图像及其性质

1.正弦函数、余弦函数、正切函数的图像

三角函数图像变换

函数图象平移变换:

即:“左加,右减” 针对x 变化

即“上加,下减” 在等号右侧加或者减

函数图像伸缩变换:

如果x 扩大到原来A 倍(A>0)x A x 1

→ 针对x 的变化 如果y 扩大到原来A 倍(A>0)y A

y 1

→ 针对y 的变化

可理解为“针对y x ,的相反变化”

图像变换一:左右平移

1、把函数R x x y ∈=,sin 图像上所有的点向左平移4

π

个单位,所得函数的解析式为 _________

2、把函数R x x y ∈=,c os 图像上所有的点向右平移5

π

个单位,所得函数的解析式为 _________

图像变换二:纵向伸缩

3、对于函数R x x y ∈=,sin 3的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或”纵”)坐标______(伸长或缩短)为原来的______而得到的图像。

4、由函数R x x y ∈=,s i n 4的图像得到R x x y ∈=,s i n 的图像,应该是将函数

R x x y ∈=,s i n 4上所有点的______(“横”或“纵”)坐标______(“伸长”或“缩短”)

为原来的______(横坐标不变)而得到的图像。

图像变换三:横向伸缩

5、对于函数R x x y ∈=,3sin 的图像是将R x x y ∈=,sin 的图像上所有点的______(“横”或“纵”)坐标______(“伸长”或“缩短”)为原来的______(纵坐标不变)而得到的图像。

图像变换四:综合变换

6、用两种方法将函数x y sin =的图像变换为函数)3

2sin(π

+=x y 的图像

解:方法一:

x y sin =??

???→?)(x y 2sin =????→?)()32sin(6(2sin ππ+=?????

?

+=x x y

方法二:

x y sin =??

??→?)

()3

sin(π

+=x y ????→

?)

()3

2sin(π

+=x y

总结:方法一: 先伸缩后平移()A →→?ω 方法二:先平移后伸缩()A →→ω?

7、用两种方法将函数x y 2sin =的图像变换为函数)4

sin(π

+=x y 的图像

方法一:

x y 2sin =??

???→?)(x y sin =????→?)()4

sin(π

+=x y

方法二:

x y 2sin =??

??→?)

()4

2sin()8(2sin π

π+=+=x x y ????→?)

(

1.要得到函数)4

2sin(3π

+=x y 的图象,只需将函数x y 2sin 3=的图象( )

(A )向左平移

4π个单位 (B )向右平移4π

个单位 (C )向左平移8π个单位 (D )向右平移8

π

个单位

2.将函数y=sin3x 的图象作下列平移可得y=sin(3x+

6

π

)的图象 (A) 向右平移 6π 个单位 (B) 向左平移6π

个单位

(C )向右平移18π 个单位 (D )向左平移18

π

个单

3.将函数sin y x =的图象上每点的横坐标缩小为原来的1

2

(纵坐标不变),再把所

得图象向左平移6π

个单位,得到的函数解析式为( )

()sin 26A y x π??

=+

??

?()sin 23B y x π??=+ ??? ()sin 26x C y π??=+ ??? ()s i n 212x D y π??=+ ???

4.把函数x y cos =的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移4

π

个单位长度,得到新的函数图象,那么这个新函数的解析式为

(A )??? ?

?+=42cos πx y (B )???

??+=42cos πx y (C )x y 2sin = (D )x y 2sin -=

不同名三角函数图像的平移问题:化同名,①利用ααπ

cos )2

sin(=-,ααcos )cos(=-一

定正弦化余弦。②把x 系数变成“1”再进行平移。

5.为了得到函数)6

2sin(π+=x y 的图象,可以将函数x y 2cos =的图象( )

(A)向右平移6π个单位长度 (B)向右平移3π

个单位长度 (C)向左平移6π个单位长度 (D)向左平移3

π

个单位长度

6.为得到函数πcos 23y x ??

=+ ??

?

的图像,只需将函数sin 2y x =的图像( ) A .向左平移

12个长度单位

B .向右平移

12个长度单位 C .向左平移5π

6

个长度单位

D .向右平移5π

6

个长度单位

7.为了得到函数)6

2sin(π

-=x y 的图象,可以将函数x y 2cos =的图象( )

A .向右平移

个单位长度 B .向右平移

个单位长度 C .向左平移6π

个单位长度

D .向左平移3

π

个单位长度

根据图像求三角函数表达式

)sin(?ω+=x A y 三角函数一般表达式:

2

)

()(min max x f x f A -=

T

π

ω2=

?:代图像上已知点坐标(注意是图像上向上的点还是向下的点,

最好代入图像的最高点或者最低点) 1.

2.下列函数中,图像的一部分如右图所示的是( )

(A )sin()6y x π

=+ (B )cos(2)6y x π=-

(C )cos(4)3y x π=- (D )sin(2)6y x π=-

3.已知函数()??

?

?

?

<>+=2,0sin π?ω?ωx y 的部分图象如右

上图所示,则( ) A. 6

,1π

?ω== B. 6

,1π

?ω-

==

C. 6,2π

?ω=

= D. 6

,2π

?ω-

==

4.下列函数中,图象的一部分如右图所示的是

A.sin 6y x π??=+ ???

B.sin 26y x π?

?=- ???

C.cos 43y x π??=- ???

D.cos 26y x π?

?=- ??

?

5.函数()?ω+=x A y sin 的一个周期内的图象如下图, 求y 的解析式。(其中 π?πω<<->>,0,0A )

6.已知函数)sin(?ω+=x A y (0>A , 0ω>,π?<||)的一段图

象如图所示,求函数的解析式;

三角函数的奇偶性问题:)3sin(π

+

=x y 非奇非偶函数 )2

sin(π

+=x y 偶函数 )sin(π+=x y 奇函数

正弦型或者余弦型函数例如:)sin(?ω+=x A y 如果具有奇偶性,?必须是2

π

的整数倍。 总结:)sin(?ω+=x y 1.)12(2

+=k π

?=

ππ

k +2

)(Z k ∈(奇数倍变) 函数是偶函数

2.k 2.2

π

?=

=πk )(Z k ∈ (偶数倍不变)函数是奇函数

三角函数奇偶性题型--------)sin()(m x x f += 当m 是

2

π

整数倍具有奇偶性 例题:1.)3

2cos()(π

+

=x x f 向左平移m (0>m )个单位满足表达式)()(x f x f -=-则m

的最小值为_________ 2.)4

sin(2?π

ω++

=

x y )2

,0(π

?ω<

>最小正周期为π,)()(x f x f =-求函数

表达式_________

求)sin(?ω+=x A y (0>ω)的增减区间,对称轴方程等:利用换元法

求增区间:设t x =+?ω换元注意换元的“等价性”令

)(22

22

Z k k x k ∈+≤

+≤+-

ππ

?ωππ

解出x 范围即可;

求对称轴方程:)(2

Z k k x ∈+=+ππ

?ω解出x 范围即可;

其他同理

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

高考题历年三角函数题型总结

高考题历年三角函数题 型总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高考题历年三角函数题型总结 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠.

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

三角函数题型分类总结

专题 三角函数题型分类总结 三角函数公式一览表 ............................................................................................................... 错误!未定义书签。 一 求值问题 ........................................................................................................................................................... - 1 - 练习 ................................................................................................................................................................. - 1 - 二 最值问题 ........................................................................................................................................................... - 2 - 练习 ................................................................................................................................................................. - 3 - 三 单调性问题 ....................................................................................................................................................... - 3 - 练习 ................................................................................................................................................................. - 3 - 四.周期性问题 ........................................................................................................................................................ - 4 - 练习 ................................................................................................................................................................. - 4 - 五 对称性问题 ....................................................................................................................................................... - 5 - 练习 ................................................................................................................................................................. - 5 - 六.图象变换问题 .................................................................................................................................................... - 6 - 练习 ................................................................................................................................................................. - 7 - 七.识图问题 ......................................................................................................................................................... - 7 - 练习 ................................................................................................................................................................. - 9 - 一 求值问题 类型1 知一求二 即已知正余弦、正切中的一个,求另外两个 方法:根据三角函数的定义,注意角所在的范围(象限),确定符号; 例 4 s i n 5 θ=,θ是第二象限角,求cos ,tan θθ 类型2 给值求值 例1 已知2tan =θ,求(1) θ θθθsin cos sin cos -+;(2)θθθθ2 2cos 2cos .sin sin +-的值. 练习 1、sin 330?= tan 690° = o 585sin = 2、(1)α是第四象限角,12 cos 13 α=,则sin α= (2)若4 sin ,tan 05 θθ=- >,则cos θ= . (3)已知△ABC 中,12 cot 5 A =-,则cos A = . (4) α是第三象限角,2 1)sin(=-πα,则αcos = )25cos(απ += 3、(1) 已知5 sin ,5 α= 则44sin cos αα-= .

三角函数基础题型归类(一)

2 - α , 例 1. (1)求值: cos600 ; (2)化简: cos 2( π 精品资料 欢迎下载 三角函数基础题型归类(一) 1、运用诱导公式化简与求值: 要求:掌握 2k π + α , π + α , -α , π - α , π π 2 + α 等诱导公式. 记忆口诀:奇变偶不变,符号看象限. π -α )+cos 2( +α ) 4 4 1 3π 练 1 (1)若 cos(π +α )= - , 2 2 <α <2π , 则 sin(2π -α )等于 . (2)若 f (cos x) = cos3 x ,那么 f (sin30 ?) 的值为 . 17 (3)sin( - π )的值为 . 6 (4) 2、运用同角关系化简与求值: sin α 要求:掌握同角二式( s in 2 α + cos 2 α = 1 , tan α = ),并能灵活运用. 方法:平方法、切弦互化. cos α 例 2 (1)化简 sin x 1 + sin x 1 - ; (2)已知 sinx+cosx = , 且 0

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

高一三角函数题型总结

1.已知角围和其中一个角的三角函数值求任意角三角函数值 方法:?画直角三角形 ?利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的?分式 ?齐次式 可以实现αtan 之间的转化 例题:1.已知sin 2cos 5,tan 3sin 5cos αα ααα-=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2. α αα α2 2cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换) 3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求?αsin .αcos ?αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-23 6π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)4 3 (D)4 3- 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) (A)2 3 (B)4 3 (C) (D)± 2 3 3.设是第二象限角,则 sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1- 4.若tan θ= 3 1,π<θ<3 2π,则sin θ·cos θ的值为 ( ) (A)±3 10 (B) 3 10 5.已知 sin cos 2sin 3cos αααα-+=5 1 ,则tan α的值是 ( ) (A)±83 (B)83 (C)83 - (D)无法确定 * 6.若α是三角形的一个角,且sin α+cos α= 3 2 ,则三角形为 ( ) (A)钝角三角形 (B)锐角三角形 (C)直角三角形 (D)等腰三角形

(推荐)高一三角函数题型总结

题型总结 1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:画直角三角形 利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2.一个式子如果满足关于αsin 和αcos 的分式 齐次式 可以实现αtan 之间的转化 例题:1.已知 sin 2cos 5,tan 3sin 5cos ααααα -=-+那么的值为_____________. 2.已知2tan =α,则1.α αα αcos sin cos sin -+=_____________. 2.α αα α22cos sin cos sin -=_____________. 3.1cos sin +αα=_____________.(“1”的代换)

3.已知三角函数αsin 和αcos 的和或差的形式求αsin .αcos 方法:等式两边完全平方(注意三角函数中判断正负利用角的范围进行取舍) 例题:已知πα<∠<0,αsin +αcos =2 1 ,求αsin .αcos αcos -αsin 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 13 3 π= ; 练习题 1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α= 8 1,且4π<α< 2π ,则cos α-sin α的值为 ( ) (A) 2 3 (B)4 3 (C)3 (D)± 2 3

高考三角函数重要题型总结

1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域。 2.已知函数2()sin sin()(0)2f x x x x πωωωω=+f 的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数f (x )在区间[0,23 π]上的取值范围. 3.(本小题满分12分)已知向量(sin ,cos ),(1,2)m A A n ==-,且0.m n =g (Ⅰ)求tan A 的值; (Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域. 4..(本小题满分13分)已知函数()sin()(00π)f x A x A ??=+><<,,x ∈R 的最 大值是1,其图像经过点π1 32M ?? ???,. (1)求()f x 的解析式; (2)已知π02αβ??∈ ??? ,,,且3()5f α=,12()13f β= ,求()f αβ-的值. 5. 已知函数2()sin cos cos 2.222 x x x f x =+- (Ⅰ)将函数()f x 化简成sin()(0,0,[0,2))A x B A ω???π++>>∈的形式,并指出()f x 的周期; (Ⅱ)求函数17()[, ]12 f x ππ在上的最大值和最小值 6..已知函数x x x x f sin 2 sin 2cos )(22+-=. (I )求函数)(x f 的最小正周期; (II )当)4,0(0π ∈x 且524)(0=x f 时,求)6 (0π+x f 的值。 7.已知1tan 3 α=-,cos β=,(0,)αβπ∈ (1)求tan()αβ+的值; (2)求函数())cos()f x x x αβ=-++的最大值. 8.已知函数())cos()f x x x ω?ω?=+-+(0π?<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2 . (Ⅰ)求π8f ?? ???的值; (Ⅱ)将函数()y f x =的图象向右平移π 6 个单位后,得到函数()y g x =的图象,

三角函数总结经典例题

第三章 三角函数 3.1任意角三角函数 一、知识导学 1.角:角可以看成由一条射线绕着端点从一个位置旋转到另一个位置所形成的几何图形.角的三要素是:顶点、始边、终边.角可以任意大小,按旋转的方向分类有正角、负角、零角. 2.弧度制:任一已知角α的弧度数的绝对值r l = α,其中l 是以α作为圆心角时所对圆弧的长,r 为圆的半径.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.用“弧度”做单位来度量角的制度叫做弧度制. 3.弧度与角度的换算:rad π2360=ο ;rad 1745.01801≈=π ο ;1ο ο 30.57180≈?? ? ??=πrad .用弧度为单位表示角的 大小时,弧度(rad )可以省略不写.度()ο 不可省略. 4.弧长公式、扇形面积公式:,r l α= 2||2 1 21r lr S α= =扇形,其中l 为弧长,r 为圆的半径.圆的周长、面积公式是弧长公式和扇形面积公式中当πα2=时的情形. 5.任意角的三角函数定义:设α是一个任意大小的角,角α终边上任意一点P 的坐标是()y x ,,它与原点的距离是 )0(>r r ,那么角α的正弦、余弦、正切、余切、正割、余割分别是 y r x r y x x y r x r y ====== ααααααcsc ,sec ,cot ,tan ,cos ,sin .这六个函数统称为三角函数. 三角函数 定义域 x y sin = R x y cos = R x y tan = ? ?????∈+≠Z k k x x ,2π π x y cot = {}Z k k x x ∈≠,π x y sec = ? ?????∈+≠Z k k x x ,2π π x y csc = {}Z k k x x ∈≠,π 7.三角函数值的符号:各三角函数值在第个象限的符号如图所示(各象限注明的函数为正,其余为负值) 可以简记为“一全、二正、三切、四余”为正. 二、疑难知识导析

三角函数和三角恒等变换知识点及题型分类总结

三角函数知识点总结 1、任意角。 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 3、与角α终边相同的角的集合为 4、 叫做1弧度. 5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 6、弧度制与角度制的换算公式 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则L= . S= 8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是 () 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限 余弦为正. 10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、同角三角函数的基本关系:(1) ;(2) 。 12、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ???.()6sin cos 2παα??+= ???,cos sin 2παα??+=- ???. 口诀:奇变偶不变,符号看象限. 重要公式 ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-).

高考题历年三角函数题型总结

高考题历年三角函数题型总结 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .

必修四三角函数和三角恒等变换知识点及题型分类的总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定()*n n α ∈N 所在象限的方法:先把各象限均分n 等份, 再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 220r r x y =+>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

三角函数典型例题剖析与规律总结

三角函数典型例题剖析与规律总结 一:函数的定义域问题 1. 求函数1sin 2+=x y 的定义域。 分析:要求1sin 2+= y 的定义域,只需求满足01sin 2≥+x 的x 集合,即只需求出满足 2 1 sin -≥x 的x 值集合,由于正弦函数具有周期性,只需先根据问题要求,求出在一个周 期上的适合条件的区间,然后两边加上πk 2()Z k ∈即可。 解:由题意知需01sin 2≥+x ,也即需21sin - ≥x ①在一周期?? ????-23,2ππ上符合①的角为??????-67,6ππ,由此可得到函数的定义域为????? ? +-672,62ππππk k ()Z k ∈ 小结:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。(2)若函数是分式函数,则分母不能为零。(3)若函数是偶函数,则被开方式不能为负。(4)若函数是形如()()1,0log ≠>= a a x f y a 的函数,则其定义域由()x f 确定。 (5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。 二.函数值域及最大值,最小值 (1)求函数的值域 例。求下列函数的值域 (1)x y 2sin 23-= (2)2sin 2cos 2 -+= x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。 解:(1) 12sin 1≤≤-x ∴[]5,151∈∴≤≤y y (2) ()[]. 0,4,1sin 11sin 1sin 2sin 2sin 22 22 cos -∈∴≤≤---=-+-=-+=y x x x x x x y 评注:一般函数的值域求法有:观察法,配方法判别式法,反比例函数法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。 (2)函数的最大值与最小值。 例。求下列函数的最大值与最小值 (1)x y sin 211- = (2)??? ??≤≤-??? ? ? +=6662sin 2πππx x y (3)4sin 5cos 22 -+=x x y (4)?? ?? ??∈+-=32,31cos 4cos 32 ππx x x y

高中数学三角函数知识点与题型总结

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?????? ,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ? ?????=-+ +++ ? ? ?? ????? . 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1 ()1sin 22 g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点, 当02y = ,0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω? ???=+ +--∈ ? ?? ?? ?R ,(其中0ω>),(I )求函数()f x 的值域; (II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为 π 2 ,求函数()y f x =的单调增区间. (理)若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间. 【相关高考2】(全国Ⅱ)在ABC △中,已知内角A π = 3 ,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求函数()y f x =的最大值. 3.三角函数求值 例3(四川)已知cos α= 71,cos(α-β)=14 13,且0<β<α<2π ,(Ⅰ)求tan2α的值;(Ⅱ)求β.

三角函数题型总结-教师版

高三数学三角函数题型大全 一、求值化简型 1、公式运用 〖例〗(2004淄博高考模拟题)(1)已知tan α=3,求:αα22co s 4 1 s i n 32+的值。 (2)已知tan α+sin α=m, tan α-sin α=n (),2 Z k k ∈≠ π α, 求证:n m n m +-= αco s . (1)解:24112cos 812cos 3181)1cos 2(8131)sin 21(31cos 41sin 322222++-=+-++--=+αααααα 24 112cos 812cos 3181)1cos 2(8131)sin 21(31cos 41sin 322 222++-=+-++--=+αααααα 24 11 2cos 812cos 3181)12cos 2(8131++-=+-++ ααα=++--=24 11sin cos sin cos 2452 22 2 αααα=++--=2411sin cos sin cos 245222 2αααα2411tan 1tan 122++-αα85= (2)证明:两式相加,得α ααcos sin 2tan =+=n m 两式相减,得2sin n m -=α 所以 n m n m n m +-= +=ααsin 2cos 〖举一反三〗(2004.湖南理)(本小题满分12分) 1、已知1cot tan sin 2),2 ,4(,41)24 sin( )24 sin(2--+∈= -?+αααπ πααπ απ 求的值. 解:由)24cos( )24sin( )24 sin( )24 sin( απ απ απ απ +?+=-?+ ,4 1 4cos 21)42sin(21==+=ααπ 得 .214cos =α 又.12 5),2,4(π αππα= ∈所以 于是 α αααααααααα2sin 2cos 22cos cos sin cos sin 2cos 1cot tan sin 2222 -+ -=-+-=--+ .32 5)322 3()6 5cot 26 5(cos )2cot 22(cos =---=+-=+-=ππαα 2、(2013年西城二模)如图,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,)62ππ ∈(α.将角α的终边按逆时针方向旋转 3 π ,交单位圆于点B .记),(),,(2211y x B y x A . (Ⅰ)若3 1 1= x ,求2x ; (Ⅱ)分别过,A B 作x 轴的垂线,垂足依次为,C D .记△AOC 的面积为1S ,△BOD 的面积为2S .若122S S =,求角α的值.

相关主题