搜档网
当前位置:搜档网 › 立体几何中的最值问题(二)

立体几何中的最值问题(二)

立体几何中的最值问题(二)
立体几何中的最值问题(二)

立体几何中的截面(解析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ... 是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ A C B D

分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为 BC BF BE V ??= 2 1 水是定值,又BC 是定值,所以BE ·BF 是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A . 21 B .87 C .12 11 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为 8 7 12121211=???- =V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211 112121311=????-=V , 故选C 。 例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值. C 1 A B C D A 1 D 1 B 1 E G F 图(1) C 1 A B C D A 1 D 1 B 1 E G F 图(2)

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

高考数学玩转压轴题专题4.4立体几何中最值问题

专题4.4 立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解。 二.解题策略 类型一距离最值问题 AB=,若线段DE上存在点P 【例1】如图,矩形ADFE,矩形CDFG,正方形ABCD两两垂直,且2 ⊥,则边CG长度的最小值为() 使得GP BP A. 4 B. 43 C. D. 23 【答案】D

又22002B G a (,,),(,,),所以2,2,,,2,.2 2ax ax BP x GP x a ???? =--=-- ? ?????u u u r u u u r () 24022ax ax PB PG x x a ?? =-++-= ??? u u u n r u u u r .显然0x ≠且2x ≠.所以22 1642a x x =--. 因为()0,2x ∈,所以(]2 20,1x x -∈.所以当221x x -=, 2a 取得最小值12.所以a 的最小值为23. 故选D. 【指点迷津】利用图形的特点,建立空间直角坐标系,设CG 长度为a 及点P 的坐标,求BP GP u u u r u u u r 与的坐标, 根据两向量垂直,数量积为0,得到函数关系式22 16 42a x x = --,利用函数求其最值。 举一反三 1、如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,点E 、F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是_____。 【答案】 3254 2?? ??

立体几何中的最值与动态问题

2 5 立体几何中的最值问题 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在 试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线段BD、SC 上移动,则P、Q 两点的最短距离为() A. B. 5 5 C. 2 D. 1 解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当 OQ 最小时,PQ 最小。过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。又P 在BD 上运动,且当P 运动 5 到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。故选B。 5 图 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。 解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B 作BE//CD 交平面α 于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。故CD ≥ 3 。 2 5 2 5 2 5 3

图 2 三、展成平面求最值 例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a,AC=BD=b,AD=BC=c。平面α分别截棱AB、BC、CD、DA 于点P、Q、R、S,则四边形PQRS 的周长的最小值是() A. 2a B. 2b C. 2c D. a+b+c 图3-1 解析:如图3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且AB=CD,AC=BD, AD=BC,所以,A 与A’、D 与D’在四面体中是同一点,且AD // BC // A' D' ,AB // CD' ,A、C、A’共 线,D、B、D’共线,AA'=DD' = 2BD 。又四边形PQRS 在展开图中变为折线S’PQRS,S’与S 在四面体中是同一点。因而当P、Q、R 在S’S 上时,S ' P +PQ +QR +RS 最小,也就是四边形PQRS 周长最小。又S ' A =SA',所以最小值L =SS '=DD' = 2BD = 2b 。故选B。 图3-2 四、利用向量求最值 例4. 在棱长为1 的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的最小值为。 解析:以A 为坐标原点,分别以AB、AD、AE 所在直线为x,y,z 轴,建立如图 4 所示的空间直角坐标 →→ 系,则B(1,0,0),G(1,1,1)。根据题意设P(x,0,x),则BP=(x-1,0,x),GP=(x-1,-1,x-1),那么

立体几何动态问题专题

立体几何的动态问题 立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。 动点轨迹问题 空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。很少有题目会脱离这三个方向。(注意:阿波罗尼斯圆,圆锥曲线第二定义) 1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB =30°,则点P的轨迹是( ) A.直线 B.抛物线C.椭圆 D.双曲线的一支 式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α内有一动点满足∠=π 6 ,若动 点C的轨迹为椭圆,则θ的取值范围为________. 3.(2015春?龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题: ①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线; ②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆; ③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆; ④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线; ⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线. 其中真命题的个数为() A.4 B.3 C.2 D.1

立体几何中的动点问题

立体几何中的动点问题 1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C 2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ?的面积为()x f ,则()x f 的图象大致是A

3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C 4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π 5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命 题: ①三棱锥PC D A 1-的体积不变; ②//1P A 平面1ACD ; ③1BC DP ⊥; ④平面⊥1PDB 平面1ACD ; 其中正确的命题序号是_______①②④

6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______22 7、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C .A 双曲线的一支(一部分) .B 圆弧(一部分) .C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系 设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t 则N M ,中点?? ? ??2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

高中数学复习提升专题05 立体几何中最值问题(第三篇)(原卷版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第三篇 立体几何 专题05 立体几何中最值问题 类型 对应典例 利用侧面展开图求最值 典例1 利用目标函数求最值 典例2 利用基本不等式求最值 典例3 【典例1】【河南省非凡吉创联盟2020届调研】 如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,33PA =,点C 是圆柱底面圆周上的点. (1)求三棱锥P ABC -体积的最大值; (2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2 π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【典例3】【北京市昌平区2020届模拟】

如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G . (I )证明:AD ∥平面EFGH ; (II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值. 【针对训练】 1. 【广东省佛山市第一中学2020届月考】 如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==. (1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 2.【安徽省安庆市2020届模拟】 如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,3AB EB == (1)求证:DE ⊥平面ADC ; (2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.

立体几何中的最值问题(一)

2 5 2 5 2 5 3 3 立体几何中的最值问题(一) 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常 常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO⊥平面ABCD 于O,SO=2,底面边长为,点P、Q 分别在线 段BD、SC 上移动,则P、Q 两点的最短距离为() A. B. C. 2 D. 1 5 5 解析:如图1,由于点P、Q 分别在线段BD、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动, 当OQ 最小时,PQ 最小。过O 作OQ⊥SC,在Rt△SOC 中,OQ = 中。又P 在BD 上运动,且当 5 P 运动到点O 时,PQ 最小,等于OQ 的长为,也就是异面直线BD 和SC 的公垂线段的长。故选B。 5 图 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB⊥CD,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为。 解析:如图2,过点B 作平面α的垂线,垂足为O,连结AO,则∠BAO=30°。过B 作BE//CD 交平 面α于E,则BE=CD。连结AE,因为AB⊥CD,故AB⊥BE。则在Rt△ABE 中,BE=AB·tan∠BAE≥AB·tan ∠BAO=3·tan30°= 。故CD ≥。 2 5

图 2 三、展成平面求最值 例 3. 如图 3-1,四面体 A-BCD 的各面都是锐角三角形,且 AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱 AB 、BC 、CD 、DA 于点 P 、Q 、R 、S ,则四边形 PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图 3-1 解析:如图 3-2,将四面体的侧面展开成平面图形。由于四面体各侧面均为锐角三角形,且 AB=CD , AC=BD ,AD=BC ,所以,A 与 A’、D 与 D’在四面体中是同一点,且 AD // BC // A ' D ' , AB // CD ', A 、C 、A’共线,D 、 B 、D’共线, AA ' = DD ' = 2BD 。又四边形 PQRS 在展开图中变为折线 S’PQRS , S’与 S 在四面体中是同一点。因而当 P 、Q 、R 在 S’S 上时, S ' P + PQ + QR + RS 最小,也就是四边形 PQRS 周长最小。又 S ' A = SA ',所以最小值 L = SS ' = DD ' = 2BD = 2b 。故选 B 。 图 3-2 四、利用向量求最值 例 4. 在棱长为 1 的正方体 ABCD-EFGH 中,P 是 AF 上的动点,则 GP+PB 的最小值为 。

高中数学立体几何中的最值问题、内接外切、球面距离

立体几何中的最值问题、内接外切、球面距离 1. 一条长为2,a b 的三条线段,则ab 的最大值为 A B C . 52 D .3 【答案】C 【解析】构造一个长方体,让长为2的线段为体对角线,由题意知2222221,1,3a y b x x y =+=++=,即22222325a b x y +=++=+= ,又2252a b ab =+≥,所以5 2 ab ≤ ,当且仅当a b =时取等号,所以选C. 2. 四棱锥P ABCD -的三视图如右图所示,四棱锥P ABCD -的五个顶点都在一 个球面上,E 、F 分别是棱AB 、CD 的中点,直线EF 被球面所截得的线段长为该球表面积为 A.12p B.24p C.36p D.48p 【答案】A 3. 若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =, 60BAC ∠=?,则球O 的表面积为 ( ) A .64π B .16π C .12π D .4π 【答案】B 【解析】因为1AB =,2AC =,60BAC ∠=?,所以2212212cos603BC =+-??= ,所以BC =。所 以90ABC ∠= ,即ABC ?为直角三角形。因为三棱锥S ABC -的所有顶点都在球O 的球面上,所以斜边AC 的中点是截面小圆的圆心'O ,即小圆的半径为122 r AC = =.,因为,OA OS 是半径,所以三角形AOS 为等 腰三角形,过O 作OM SA ⊥,则M 为中点,所以1'22 OO AM SA == ==所以半径

2OA ====,所以球的表面积为2416R ππ=,选B. 4. 已知正四棱柱ABCD-A 1B 1C 1D 1的高为323 p ,则A 、B 两点的球面距离为____________. 【答案】 23 π 【解析】因为正四棱柱外接球的体积为 323p ,所以343233 R p p =,即外接球的半径为2R =,所以正四棱柱的体对角线为24R =,设底面边长为x ,则 22 2 )2) 4+=,解得底面边长2x =。所以三角形AOB 为正三角形,所以 3 AOB π ∠= ,所以A 、B 两点的球面距离为 23 3 R π π = . 5. 设A 、B 、C 、D 为球O 上四点,若AB 、AC 、AD 两两互相垂直,且AB AC =2AD =,则A 、D 两点间的球面距离 。 【答案】 23 π 【解析】因为AB 、AC 、AD 两两互相垂直,所以分别以AB 、AC 、AD 为棱构造一个长方体,在长方体的体对角线为 球的直径,所以球的直径24R = ==,所以球半径为2R =,在正三角形AOD 中, 3 AOD π ∠= ,所以A 、D 两点间的球面距离为 23 3 R π π= . 6. 如图,某三棱锥的三视图都是直角边为2的等腰直角三角形,则该三棱锥的外接球的体积是

立体几何动点问题

1 A 1.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=2 2 , 则下列结论中错误 ..的个数是( ) (1) AC⊥BE. (2) 若P为AA1上的一点,则P到平面BEF的距离为2 2 . (3) 三棱锥A-BEF的体积为定值. (4) 在空间与DD1,AC,B1C1都相交的直线有无数条. (5) 过CC1的中点与直线AC1所成角为40?并且与平面BEF所成角为50?的直线有2条. A.0 B.1 C.2 D.3 2.如图,正方体的棱长为1,线段上有两个动点 ,且 2 2 = EF,则下列结论中错误 ..的是() A.B.∥平面 C.三棱锥的体积为定值 D.△AEF与△BEF的面积相等 3.关于图中的正方体1 1 1 1 D C B A ABCD-,下列说法正确的有 ___________________. ①P点在线段BD上运动,棱锥1 1 D AB P-体积不变; ②P点在线段BD上运动,二面角 A D B P- - 1 1不变; ③一个平面 α截此正方体,如果截面是三角形,则必为锐角三角形; ④一个平面 α截此正方体,如果截面是四边形,则必为平行四边形; ⑤平面 α截正方体得到一个六边形(如图所示),则截面α在平面 1 1 D AB 与平面1 BDC 间平行移动时此六边形周长先增大,后减小。 4、如图,正方体1111 ABCD A BC D - 的棱长为1,P为BC的中点,Q为线段1 CC 上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是___________(写 出所有正确命题的编号). ①当 1 2 CQ << 时,S为四边形; ②当 1 2 CQ= 时,S不为等腰梯形; ③当 3 4 CQ= 时,S与11 C D 的交点R满足 1 1 3 C R= ; 1 1 1 1 D C B A ABCD- 1 1 D B F E, BE AC⊥EF ABCD BEF A-

高中数学立体几何动点和折叠问题-含答案

立体几何折叠动点问题 1.(2020?湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( ) A . B .36 C .24 D . 2.(2020?德阳模拟)ABC ?是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( ) A B C D 3.(2020?德阳模拟)ABC ?是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ?折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为( ) A . B C .3 D .2 4.(2020春?江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ?中,6AB =,8AC =,AB AC ⊥, D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截 面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π

5.(2020春?沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为1 6,则球O 的表面积为( ) A .32 π B .2π C . 94 π D . 83 π 6.(2020春?五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=?, 且三棱锥O ABC -,则球O 的体积为( ) A .24π B .48π C . D . 7.(2020?东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且1111 2 C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12 B . 16 C .4 D . 43 8.(2020?江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=?,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( ) A . B . C . D .

立体几何中的最值问题答案

立体几何中的最值问题 一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 解析: (1)从侧面到N ,如图1,沿棱柱的侧棱AA 1剪开,并展开,则MN =22AN AM +=22)12(1++=10 (2)从底面到N 点,沿棱柱的AC 、BC 剪开、展开,如图2. 则MN =??-+120cos 222AN AM AN AM =2 1 312)3(122???++= 34+ ∵34+<10 ∴min MN =34+. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

解析:(1)作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得MP ∥NQ ,且MP=NQ ,即MNQP 是平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1, ∴2==BF AC , 21,21a BQ a CP = =, 即2 a BQ CP ==, ∴= +-==22)1(BQ CP PQ MN )20(2 1 )22()2 ( )2 1(222<<+- =+- a a a a (2)由(1)知: 2 2 22= = MN a 时,当,的中点时,分别移动到即BF AC N M ,, 2 2的长最小,最小值为 MN (3)取MN 的中点G ,连接AG 、BG ,∵AM=AN,BM=BN ,∴AG ⊥MN,BG ⊥MN , ∴∠AGB 即为二面角α的平面角。又 4 6 ==BG AG ,所以由余弦定理有 314 6 4621 )46 ()46( cos 22-=? ?-+= α。故所求二面角)3 1 arccos(-=α。 例3. 如图,边长均为a 的正方形ABCD 、ABEF 所在的平面所成的角为)2 0(π θθ<<。点M 在AC 上,点N 在BF 上,若AM=FN ,(1)求 证:MN//面BCE ; (2)求证:MN ⊥AB; A

2014高考理科立体几何难建系和动点问题(考前必做的立几大题)

学生姓名 年级 授课时间 教师姓名 课时 2 1.(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))如图四棱锥P ABCD -902,ABC BAD BC AD PAB ∠=∠==?,与PAD ?都是等边三角形 (I)证明:; PB CD ⊥ (II)求二面角A PD C --的大小 (2012年高考(四川理))如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC . (Ⅰ)求直线PC 与平面ABC 所成角的大小; (Ⅱ)求二面角B AP C --的大小. (2012年高考(辽宁理)) 如图,直三棱柱///ABC A B C -,90BAC ∠=, /,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点. (Ⅰ)证明:MN ∥平面//A ACC ; (Ⅱ)若二面角/A MN C --为直二面角,求λ的值 .

(2012年高考(北京理))如图1,在Rt△ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC,AB 上的点, 且DE∥BC,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C⊥CD,如图2. (1)求证:A 1C⊥平面BCDE; (2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由. (2012年高考(安徽理))平面图形111ABB AC C 如图4所示,其中11BB C C 是矩 形,12,4BC BB ==,AB AC ==1111A B AC ==现将该平面图形分别沿 BC 和11B C 折叠,使ABC ?与111A B C ?所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题 . (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长; (Ⅲ)求二面角1A BC A --的余弦值.

数学高考题型专题讲解44---立体几何中最值问题

数学高考题型专题讲解44 ---立体几何中最值问题 一.方法综述 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练. 立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体, 涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解. 二.解题策略 类型一距离最值问题 【例1】【河南省焦作市2019届高三三模】在棱长为4的正方体ABCD﹣A1B1C1D1中,点E、F分别在棱AA1和AB上,且C1E⊥EF,则|AF|的最大值为() A.B.1 C.D.2 【答案】B 【解析】 以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系如图所示,则C1(4,4,4),设E(0,0,z),z∈[0,4],F(x,0,0),x∈[0,4],则|AF|=x.=(4,4,4﹣z),=(x,0,﹣z).因为C1E⊥EF,

所以,即:z2+4x﹣4z=0,x=z﹣. 当z=2时,x取得最大值为1.|AF|的最大值为1. 故选:B. 【指点迷津】建立空间直角坐标系,求出坐标,利用C 1E⊥EF,求出|AF|满足的关系式,然后求出最大值即可.利用向量法得到|AF|的关系式是解题的关键,故选D. 【举一反三】 1、【江西省吉安市2019届高三上学期期末】若某几何体的三视图如图所示,则该几何体的最长棱的棱长为 A.B.C.D. 【答案】A 【解析】 解:根据三视图知,该几何体是一个正四棱锥,画出图形如图所示;

高考数学压轴专题(易错题)备战高考《空间向量与立体几何》易错题汇编附答案

数学《空间向量与立体几何》期末复习知识要点 一、选择题 1.已知正方体1111A B C D ABCD -的棱1AA 的中点为E ,AC 与BD 交于点O ,平面α过点E 且与直线1OC 垂直,若1AB =,则平面α截该正方体所得截面图形的面积为( ) A . 64 B . 62 C . 32 D . 34 【答案】A 【解析】 【分析】 根据正方体的垂直关系可得BD ⊥平面11ACC A ,进而1BD OC ⊥,可考虑平面BDE 是否为所求的平面,只需证明1OE OC ⊥即可确定平面α. 【详解】 如图所示,正方体1111ABCD A B C D -中,E 为棱1AA 的中点, 1AB =,则2113122OC =+=,2113424OE =+=,2 119244 EC =+=, ∴22211OC OE EC +=,1OE OC ∴⊥;又BD ⊥平面11ACC A , 1BD OC ∴⊥,且OE BD O =I ,1OC ∴⊥平面BDE , 且1136 222BDE S BD OE ?= =??= g , 即α截该正方体所得截面图形的面积为6 . 故选:A . 【点睛】 本题考查线面垂直的判定,考查三角形面积的计算,熟悉正方体中线面垂直关系是解题的关键,属于中档题. 2.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )

A . 132 π B .7π C . 152 π D .8π 【答案】B 【解析】 【分析】 画出几何体的直观图,利用三视图的数据求解表面积即可. 【详解】 由题意可知:几何体是一个圆柱与一个1 4 的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为: 221 41212274 ππππ??+??+?=. 故选:B . 【点睛】 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 3.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面.. 1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )

高三数学立体几何中的最值问题复习

突破立体几何之《立体几何中的最值问题》 考点动向 高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练. 例1如图6-1,在直三棱柱111ABC A B C -中,底面为直角三角形, 1906ACB AC BC CC ∠==== ,,. P 是1BC 上一动点,则1CP PA +的最小值 为 . 解析 考虑将立体几何问题通过图形变换,转化为平面几何问题解答. 解 连结1A B ,沿1BC 将1CBC △展开与 11A BC △在同一个平面内,如图6-2所示,连1AC ,则1AC 的长度就是所求的最小值.通过计 算可得1190AC C ∠=?,又145BC C ∠=?故11135AC C ∠=?, 由余弦定理可求得1AC =. 例2 如图6-3,在四棱锥P ABCD -中, PA ⊥底面A B C D ,DAB ∠为直角, 2A B C D A D C D A B ==,∥,E F ,分别为 PC CD ,的中点. (I )试证:CD ⊥平面BEF ; (II )设PA k AB = ,且二面角E BD C --的平面角大于30?,求k 的取值范围. 解析 对(I ),可以借助线面垂直的判定定理,或者借助平面的法向量及直线的方向 A 1 A 1 1 图6-1 A C P B 1 A 1 C 1 B 图6-2 C C 图6-3

相关主题