搜档网
当前位置:搜档网 › 王镜岩《生物化学》笔记(整理版)第一章

王镜岩《生物化学》笔记(整理版)第一章

王镜岩《生物化学》笔记(整理版)第一章
王镜岩《生物化学》笔记(整理版)第一章

导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白

质的概念和重要性?

1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953

年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的

生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含

量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋

白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能

来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多

数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生

物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学

的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。

第一节蛋白质的分子组成

一、蛋白质的元素组成

经元素分析,主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。

各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质

的大致含量。

每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%)

二、蛋白质的基本组成单位——氨基酸

蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白

质组成单体或构件分子。存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅

20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。

(一)氨基酸的结构通式

组成蛋白质的20种氨基酸有共同的结构特点:

1.氨基连接在α- C上,属于α-氨基酸(脯氨酸为α-亚氨基酸)。

2.R是側链,除甘氨酸外都含手性C,有D-型和L-型两种立体异构体。天然蛋白质中的氨基酸都是L-型。

注意:构型是指分子中各原子的特定空间排布,其变化要求共价键的断裂和重新

形成。旋光性是异构体的光学活性,是使偏振光平面向左或向右旋转的性质,(-)表示左旋,(+)表示右旋。构型与旋光性没有直接对应关系。

(二)氨基酸的分类

1.按R基的化学结构分为脂肪族、芳香族、杂环、杂环亚氨基酸四类。

2.按R基的极性和在中性溶液的解离状态分为非极性氨基酸、极性不带电荷、极性带负电荷或带正电荷的四类。

带有非极性R(烃基、甲硫基、吲哚环等,共9种):甘(Gly)、丙(Ala)、

缬(Val)、亮(Leu)、异亮(Ile)、苯丙(Phe)、甲硫(Met)、脯(Pro)、色(Trp)

带有不可解离的极性R(羟基、巯基、酰胺基等,共6种):丝(Ser)、苏(Thr)、天胺(Asn)、谷胺(Gln)、酪(Tyr)、半(Cys)

带有可解离的极性R基(共5种):天(Asp)、谷(Glu)、赖(Lys)、精(Arg)、组(His),前两个为酸性氨基酸,后三个是碱性氨基酸。

蛋白质分子中的胱氨酸是两个半胱氨酸脱氢后以二硫键结合而成,胶原蛋白中的羟脯

氨酸、羟赖氨酸,凝血酶原中的羧基谷氨酸是蛋白质加工修饰而成。

(三)氨基酸的重要理化性质

1.一般物理性质

α-氨基酸为无色晶体,熔点一般在200 oC以上。各种氨基酸在水中的溶解度差别很

大(酪氨酸不溶于水)。一般溶解于稀酸或稀碱,但不能溶解于有机溶剂,通常酒精能把

氨基酸从其溶液中沉淀析出。

芳香族氨基酸(Tyr、Trp、Phe)有共轭双键,在近紫外区有光吸收能力,Tyr、Trp

的吸收峰在280nm,Phe在265 nm。由于大多数蛋白质含Tyr、Trp残基,所以测定蛋白质

溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速简便的方法。

2.两性解离和等电点(isoelectric point, pI)

氨基酸在水溶液或晶体状态时以两性离子的形式存在,既可作为酸(质子供体),又可作为碱(质子受体)起作用,是两性电解质,其解离度与溶液的pH有关。

在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势和程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。氨基酸的pI是由α-羧基和α-氨基的

解离常数的负对数pK1和pK2决定的。计算公式为:pI=1/2(pK1+ pK2)。

若1个氨基酸有3个可解离基团,写出它们电离式后取兼性离子两边的pK值的平均值,即为此氨基酸的等电点(酸性氨基酸的等电点取两羧基的pK值的平均值,碱性氨基酸的等电点取两氨基的pK值的平均值)。

3.氨基酸的化学反应

氨基酸的化学反应是其基团的特征性反应。重要的有:

(1)茚三酮反应

所有具有自由α-氨基的氨基酸与过量茚三酮共热形成蓝紫色化合物(脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质)。用分光光度法可定量测定微量的氨基酸。蓝紫色化

合物的最大吸收峰在570nm波长处,黄色在440nm波长下测定。吸收峰值的大小与氨基酸

释放的氨量成正比。

(2)与2,4-二硝基氟苯(DNFB)的反应

在弱碱性溶液中,氨基酸的α-氨基很容易与DNFB作用生成稳定的黄色2,4-二

硝基苯氨基酸(DNP-氨基酸),这一反应在蛋白质化学的研究史上起过重要作用,Sanger

等人应用它测定胰岛素一级结构。

多肽顺序自动分析仪是根据相类似的原理设计的,即利用多肽链N端氨基酸的α-氨基与异硫氰酸苯酯PITC反应(Edman降解法)。

三、肽(peptide)

1.肽键与肽链

一个氨基酸的α-羧基和另一个氨基酸的α-氨基脱水形成的酰胺键称为肽键。由氨基

酸通过肽键相连而成的化合物称为肽。肽键及其两端的α-碳原子相连所形成的长链骨架,即…Cα—C—N—Cα—C—N—Cα—C—N—Cα…称为多肽主链,—CαCN—是重复单位。肽键是蛋白质分子中的主要共价键。多肽链的方向性是从N末端指向C末端。

肽分子中不完整的氨基酸称为氨基酸残基。肽按其序列从N端到C端命名。一般10肽以下属寡肽,10肽以上为多肽。

2.生物活性肽

(1)谷胱甘肽(glutathione,GSH)

是由Glu、Cys、Gly组成的一种三肽,又叫γ-谷氨酰半胱氨酰甘氨酸(含γ-肽键)。Cys的-SH是主要功能基团,GSH是一种抗氧化剂,是某些酶的辅酶,可保护蛋白质分子中

的-SH免遭氧化,保护巯基蛋白和酶的活性。在GSH过氧化物酶的作用下,GSH还原细胞内产生的H2O2,生成H2O,2分子GSH被氧化成GSSG,后者在GSH还原酶催化下,又生成GSH。

(2)多肽类激素和神经肽

人体内有许多激素属寡肽或多肽,如下丘脑—垂体分泌的催产素(9肽)、加压素(9肽)、促肾上腺皮质激素(ACTH,39肽)等。催产素和加压素结构仅第3、第8位两个氨

基酸残基不同,前者使平滑肌收缩,有催产和使乳腺泌乳的作用;后者能使小动脉收缩,

增高血压,也有减少排尿的作用。

神经肽是在神经传导过程中起信号转导作用的肽类。如脑啡肽(5肽)、β-内啡肽(31肽)、强啡肽(17肽)等。随着脑科学的发展,会发现更多的生物活性肽。

第二节蛋白质的分子结构

蛋白质是生物大分子,结构比较复杂,人们用4个层次来描述,包括蛋白质的一级、

二级、三级和四级结构。一级结构描述的是蛋白质的线性(或一维)结构,即共价连接的

氨基酸残基的序列,又称初级或化学结构。二级以上的结构称高级结构或构象(conformation)。

一、蛋白质的一级结构(primary structure)

1953年,英国科学家F. Sanger首先测定了胰岛素(insulin)的一级结构,有51个

氨基酸残基,由一条A链和一条B链组成,分子中共有3个二硫键,其中两个在A、B链之间,另一个在A链内。

蛋白质的一级结构测定或称序列分析常用的方法是Edman降解和重组DNA法。Edman

降解是经典的化学方法,比较复杂。首先要纯化一定量的待测蛋白质,分别作分子量测定、氨基酸组成分析、N-末端分析、C-末端分析;要应用不同的化学试剂或特异的蛋白内切酶

水解将蛋白质裂解成大小不同的肽段,测出它们的序列,对照不同水解制成的两套肽段,

找出重叠片段,最后推断蛋白质的完整序列。重组DNA法是基于分子克隆的分子生物学方法,比较简单而高效,不必先纯化该种蛋白质,而是先要得到编码该种蛋白质的基因(DNA 片段),测定DNA中核苷酸的序列,再按三个核苷酸编码一个氨基酸的原则推测蛋白质的

完整序列。这两种方法可以相互印证和补充。

目前,国际互联网蛋白质数据库已有3千多种一级结构清楚。蛋白质一级结构是空间

结构和特异生物学功能的基础。

二、蛋白质的二级结构(secondary structure)

蛋白质的二级结构是指其分子中主链原子的局部空间排列,是主链构象(不包括侧链

R基团)。

构象是分子中原子的空间排列,但这些原子的排列取决于它们绕键的旋转,构象不同

于构型,一个蛋白质的构象在不破坏共价键情况下是可以改变的。但是蛋白质中任一氨基

酸残基的实际构象自由度是非常有限的,在生理条件下,每种蛋白质似乎是呈现出称为天

然构象的单一稳定形状。

20世纪30年代末,L.Panling 和R.B.Corey应用X射线衍射分析测定了一些氨基酸

和寡肽的晶体结构,获得了一组标准键长和键角,提出了肽单元(peptide unit)的概念, 还提出了两种主链原子的局部空间排列的分子模型(α-螺旋)和(β-折叠)。

1.肽单位

肽键及其两端的α-C共6个原子处于同一平面上,组成了肽单位(所在的平面称肽键平面)。

肽键C—N键长为0.132nm,比相邻的单键(0.147nm)短,而较C=N双键(0.128nm)长,有部分双键的性质,不能自由旋转。肽键平面上各原子呈顺反异构关系,肽键平面上的O、H以及2个α-碳原子为反式构型(trans configuration)。

主链中的Cα—C和Cα—N单键可以旋转,其旋转角φ、ψ决定了两个相邻的肽键平面相对关系。由于肽键平面的相对旋转,使主链可以以非常多的构象出现。事实上,肽链在构象上受到很大限制,因为主链上有1/3不能自由旋转的肽键,另外主链上有很多侧链R的影响。蛋白质的主链骨架由许多肽键平面连接而成。

2.α-螺旋(α-helix)

α-螺旋是肽键平面通过α-碳原子的相对旋转形成的一种紧密螺旋盘绕,是有周期的一种主链构象。其特点是:

①螺旋每转一圈上升3.6个氨基酸残基,螺距约0.54nm(每个残基上升0.15nm,旋转100O)。

②相邻的螺圈之间形成链内氢键,氢键的取向几乎与中心轴平行。典型α-螺旋一对氢键O与N之间共有13个原子(3.613),前后间隔3个残基。

③螺旋的走向绝大部分是右手螺旋,残基侧链伸向外侧。R基团的大小、荷电状态及形状均对α-螺旋的形成及稳定有影响。

3.β-折叠(β-pleated sheet)

β-折叠是一种肽链相当伸展的周期性结构。

①相邻肽键平面间折叠成110O角,呈锯齿状。

②两个以上具β-折叠的肽链或同一肽链内不同肽段相互平行排列,形成β-折叠片层,其稳定因素是肽链间的氢键。

③逆向平行的片层结构比顺向平行的稳定。

α-螺旋和β-折叠是蛋白质二级结构的主要形式。毛发中的α-角蛋白和蚕丝中的丝心蛋白是其典型,在许多球蛋白中也存在,但所占比例不一样。

胶原蛋白中存在的螺旋结构不同于一般的α-螺旋,是由3条具有左手螺旋的链相互缠绕形成右手超螺旋分子。链间氢键以及螺旋和超螺旋的反向盘绕维持其稳定性。

4.β-转角(β-turn)

为了紧紧折叠成球蛋白的紧密形状,多肽链180O回折成发夹或β-转角。其处由4个

连续的氨基酸残基构成,常有Gly和Pro存在,稳定β-转角的作用力是第一个氨基酸残基羰基氧(O)与第四个氨基酸残基的氨基氢(H)之间形成的氢键。β-转角常见于连接反平行β-折叠片的端头。

5.无规卷曲(random coil)

多肽链的主链呈现无确定规律的卷曲。典型球蛋白大约一半多肽链是这样的构象。

6.超二级结构和结构域

超二级结构和结构域是蛋白质二级至三级结构层次的一种过渡态构象。

超二级结构指蛋白质中两个或三个具有二级结构的肽段在空间上相互接近,形成一特

殊的组合体,又称为模体(motif)。通常有αα,ββ,βαβ等,例如钙结合蛋白质中的螺旋-环-螺旋模序及锌指结构。

结构域是球状蛋白质的折叠单位,是在超二级结构基础上进一步绕曲折叠有独特构象

和部分生物学功能的结构。对于较小的蛋白质分子或亚基,结构域和三级结构是一个意思,即这些蛋白质是单结构域的;对于较大的蛋白质分子或亚基,多肽链往往由两个或两个以

上的相对独立的结构域缔合成三级结构。

三、蛋白质的三级结构(tertiary structure)

指一条多肽链中所有原子的整体排布,包括主链和侧链。维系三级结构的作用力主要

是次级键(疏水相互作用、静电力、氢键等)。在序列中相隔较远的氨基酸疏水侧链相互

靠近,形成“洞穴”或“口袋”状结构,结合蛋白质的辅基往往镶嵌其内,形成功能活性

部位,而亲水基团则在外,这也是球状蛋白质易溶于水的原因。1963年Kendrew等从鲸肌

红蛋白的X射线衍射图谱测定它的三级结构(153个氨基酸残基和一个血红素辅基,相对

分子质量为17800)。由A→H 8段α-螺旋盘绕折叠成球状,氨基酸残基上的疏水侧链大

都在分子内部形成一个袋形空穴,血红素居于其中,富有极性及电荷的则在分子表面形成

亲水的球状蛋白。

四、蛋白质的四级结构 (quaternary structure)

有些蛋白质的分子量很大,由2条或2条以上具有独立三级结构的多肽链通过非共价键相互结合而成,称为蛋白质的四级结构。构成四级结构的每条多肽链称为亚基(subunit),亚基单独存在时一般没有生物学功能,构成四级结构的几个亚基可以相同或不同。如血红蛋白(hemoglobin,Hb) 是由两个α-亚基和两个β-亚基形成的四聚体(α2β2)。

五、蛋白质分子中的化学键

蛋白质的一级结构是由共价键形成的,如肽键和二硫键。而维持空间构象稳定的是非共价的次级键。如氢键、盐键、疏水键、范德华引力等。

第三节蛋白质结构与功能的关系

一、蛋白质一级结构与功能的关系

(一)一级结构是空间构象的基础

20世纪60年代初,美国科学家C.Anfinsen进行牛胰核糖核酸酶的变性和复性实验,提出了蛋白质一级结构决定空间结构的命题。

核糖核酸酶由124个氨基酸残基组成,有4对二硫键。用尿素和β-巯基乙醇处理该酶溶液,分别破坏次级键和二硫键,肽链完全伸展,变性的酶失去催化活性;当用透析方法去除变性剂后,酶活性几乎完全恢复,理化性质也与天然的酶一样。

概率计算表明,8个半胱氨酸残基结合成4对二硫键,可随机组合成105种配对方式,而事实上只形成了天然酶的构象,这说明一级结构未破坏,保持了氨基酸的排列顺序就可能回复到原来的三级结构,功能依然存在。

(二)种属差异

大量实验结果证明,一级结构相似的多肽或蛋白质,其空间结构和功能也相似,不同种属的同源蛋白质有同源序列,反映其共同进化起源,通过比较可以揭示进化关系。

例如哺乳动物的胰岛素,其一级结构仅个别氨基酸差异(A链5、6、10位,B链30位),它们对生物活性调节糖代谢的生理功能不起决定作用。

从各种生物的细胞色素C(cytochrome c ) 的一级结构分析,可以了解物种进化间的关系。进化中越接近的生物,它们的细胞色素c的一级结构越近似。

(三)分子病

分子病是指机体DNA分子上基因缺陷引起mRNA分子异常和蛋白质生物合成的异常,进而导致机体某些功能和结构随之变异的遗传病。在1904年,发现镰刀状红细胞贫血病。大约化费了40多年才清楚患病原因,患者的血红蛋白(HbS)与正常人的(HbA)相比,仅β-链的第6位上,Val取代了正常的Glu。目前全世界已发现有异常血红蛋白400种以上。

二、蛋白质空间结构与功能的关系

蛋白质的空间结构是其生物活性的基础,空间结构变化,其功能也随之改变。肌红蛋

白(Mb)和血红蛋白(Hb)是典型的例子。

肌红蛋白(Mb)和血红蛋白(Hb)都能与氧进行可逆的结合,氧结合在血红素辅基上。然而Hb是四聚体分子,可以转运氧;Mb是单体,可以储存氧,并且可以使氧在肌肉内很

容易地扩散。它们的氧合曲线不同,Mb为一条双曲线,Hb是一条 S型曲线。在低p(O2)下,肌红蛋白比血红蛋白对氧亲和性高很多,p(O2)为2.8torr(1torr≈133.3Pa)时,肌红蛋白

处于半饱和状态。在高p(O2)下,如在肺部(大约100torr)时,两者几乎都被饱和。其差异形成一个有效的将氧从肺转运到肌肉的氧转运系统。

Hb未与氧结合时,其亚基处于一种空间结构紧密的构象(紧张态,T型),与氧的亲

和力小。只要有一个亚基与氧结合,就能使4个亚基间的盐键断裂,变成松弛的构象(松

弛态,R型)。T型和R型的相互转换对调节Hb运氧的功能有重要作用。一个亚基与其配

体结合后能促进另一亚基与配体的结合是正协同效应,其理论解释是Hb是别构蛋白,有别构效应。

第四节蛋白质的理化性质

蛋白质的理化性质和氨基酸相似,有两性解离及等电点、紫外吸收和呈色反应。作为

生物大分子,还有胶体性质、沉淀、变性和凝固等特点。要了解和分析蛋白质结构和功能

的关系就要利用其特殊的理化性质,采取盐析、透析、电泳、层析及离心等不损伤蛋白质

空间构象的物理方法分离纯化蛋白质。

一、蛋白质的高分子性质

蛋白质的相对分子质量在1万~100万,其颗粒平均直径约为4.3 nm(胶粒范围是

1~100nm)。准确可靠的测定方法是超离心法,蛋白质的相对分子质量可用沉降系数(S)

表示。

在球状蛋白质三级结构形成时,亲水基团位于分子表面,在水溶液中与水起水合作用,因此,蛋白质的水溶液具有亲水胶体的性质。颗粒表面的水化膜和电荷是其稳定的因素,

调节pH至pI、加入脱水剂等,蛋白质即可从溶液中沉淀出来。

透析法是利用蛋白质不能透过半透膜的性质,去掉小分子物质,达到纯化的目的。

大小不同的蛋白质分子可以通过凝胶过滤分开。又称分子筛层析。

二、蛋白质的两性解离

蛋白质和氨基酸一样是两性电解质,在溶液中的荷电状态受pH值影响。当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为该蛋白质的等电点。pH>pI时,该蛋白质颗粒带负电荷,反之则带正电荷。在人体体液中多数蛋白质的等电点接近pH5,所以在生理pH7.4环境下,多数蛋白质

解离成阴离子。少量蛋白质,如鱼精蛋白、组蛋白的pI偏于碱性,称碱性蛋白质,而胃蛋白酶和丝蛋白为酸性蛋白。

三、蛋白质的变性、沉淀和凝固

蛋白质在某些理化因素的作用下,空间结构被破坏,导致理化性质改变,生物学活性

丧失,称为蛋白质的变性(denaturation)。

蛋白质变性的本质是多肽链从卷曲到伸展的过程,不涉及一级结构的改变(如加热破

坏氢键,酸碱破坏盐键等)。变性作用不过于剧烈,是一种可逆反应,去除变性因素,有

些蛋白质原有的构象和功能可恢复或部分恢复,称为复性(denaturation)。

蛋白质变性的主要表现是失去生物学活性,如酶失去催化能力、血红蛋白失去运输氧

的功能、胰岛素失去调节血糖的生理功能等。变性蛋白溶解度降低,易形成沉淀析出;易

被蛋白水解酶消化。蛋白质变性具有重要的实际意义。

蛋白质自溶液中析出的现象,称为蛋白质的沉淀。盐析、有机溶剂、重金属盐、生物

碱试剂都可沉淀蛋白质。盐析沉淀蛋白质不变性,是分离制备蛋白质的常用方法。如血浆

中的清蛋白在饱和的硫酸铵溶液中可沉淀,而球蛋白则在半饱和硫酸铵溶液中发生沉淀。

乙醇、丙酮均为脱水剂,可破坏水化膜,降低水的介电常数,使蛋白质的解离程度降低,

表面电荷减少,从而使蛋白质沉淀析出。低温时,用丙酮沉淀蛋白质,可保留原有的生物

学活性。但用乙醇,时间较长则会导致变性。重金属盐(Hg2+、Cu2+、Ag+),生物碱(如三彔乙酸、苦味酸、鞣酸)与蛋白质结合成盐而沉淀,是不可逆的。

蛋白质变性不一定沉淀(如强酸、强碱作用变性后仍然能溶解于强酸、强碱溶液中,

将pH调至等电点,出现絮状物,仍可溶解于强酸、强碱溶液,加热则变成凝块,不再溶解)。凝固是蛋白质变性发展的不可逆的结果。沉淀的蛋白质不一定变性(如盐析)。

四、蛋白质的紫外吸收和呈色反应

蛋白质含芳香族氨基酸,在280nm波长处有特征性吸收峰,用于定量测定。

蛋白质分子中的多种化学基团具有特定的化学性能,与某些试剂产生颜色反应,可用

于定性、定量分析。如蛋白质分子中含有许多和双缩脲结构相似的肽键,在碱性溶液与硫

酸铜反应产生红紫色络合物(双缩脲反应)。酪氨酸含酚基,与米伦试剂生成白色沉淀,

加热后变红色。Folin-酚试剂与酪氨酸反应生成蓝色。色氨酸与乙醛酸反应,慢慢注入浓

硫酸,出现紫色环。

第五节蛋白质的分类

自然界蛋白质分布广泛,种类繁多,有1012~1013种。目前仍无法按蛋白质的化学结

构进行精确的分类,一般按蛋白质的分子形状、分子组成、生物功能进行分类。

1.按分子形状分为球状蛋白质和纤维状蛋白质。

2.按分子组成分为简单蛋白质和结合蛋白质。

简单蛋白质完全水解的产物仅为α-氨基酸。这类蛋白质按其溶解度等理化性质分为7类。包括清蛋白、球蛋白、醇溶蛋白、谷蛋白、精蛋白、组蛋白和硬蛋白。

结合蛋白质由简单蛋白质和非蛋白质(辅基)组成。根据辅基的不同,这类蛋白质可

分为5类。如核蛋白、糖蛋白、脂蛋白、色蛋白和磷蛋白。

细胞核中的核蛋白是DNA与组蛋白结合而成,细胞质中的核糖体是RNA与蛋白质组成的,已知的病毒也是核蛋白。免疫球蛋白是一类糖蛋白,由蛋白质与糖以共价键相连而成;脂蛋白由蛋白质与脂类通过非共价键相连,存在生物膜和动物血浆中。

3.按蛋白质功能分为活性蛋白质和非活性蛋白质。

活性蛋白质包括有催化功能的酶、有调节功能的激素、有运动、防御、接受和传递信

息的蛋白质以及毒蛋白、膜蛋白等。胶原、角蛋白、弹性蛋白、丝心蛋白等是非活性蛋白质。

生物化学王镜岩(第三版)课后习题解答

第一章糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分为单糖,1个单体;寡糖,含2-20个单体;多糖,含20个以上单体。同多糖是指仅含一种单糖或单糖衍生物的多糖,杂多糖指含一种以上单糖或加单糖衍生物的多糖。糖类与蛋白质或脂质共价结合形成的结合物称复合糖或糖复合物。 单糖,除二羟丙酮外,都含有不对称碳原子(C*)或称手性碳原子,含C*的单糖都是不对称分子,当然也是手性分子,因而都具有旋光性,一个C*有两种构型D-和L-型或R-和S-型。因此含n个C*的单糖有2n个旋光异构体,组成2n-1对不同的对映体。任一旋光异构体只有一个对映体,其他旋光异构体是它的非对映体,仅有一个C*的构型不同的两个旋光异构体称为差向异构体。 单糖的构型是指离羧基碳最远的那个C*的构型,如果与D-甘油醛构型相同,则属D系糖,反之属L 系糖,大多数天然糖是D系糖Fischer E论证了己醛糖旋光异构体的立体化学,并提出了在纸面上表示单糖链状立体结构的Fischer投影式。许多单糖在水溶液中有变旋现象,这是因为开涟的单糖分子内醇基与醛基或酮基发生可逆亲核加成形成环状半缩醛或半缩酮的缘故。这种反应经常发生在C5羟基和C1醛基之间,而形成六元环吡喃糖(如吡喃葡糖)或C5经基和C2酮基之间形成五元环呋喃糖(如呋喃果糖)。成环时由于羰基碳成为新的不对称中心,出现两个异头差向异构体,称α和β异头物,它们通过开链形式发生互变并处于平衡中。在标准定位的Hsworth式中D-单糖异头碳的羟基在氧环面下方的为α异头物,上方的为β异头物,实际上不像Haworth式所示的那样氧环面上的所有原子都处在同一个平面,吡喃糖环一般采取椅式构象,呋喃糖环采取信封式构象。 单糖可以发生很多化学反应。醛基或伯醇基或两者氧化成羧酸,羰基还原成醇;一般的羟基参与成脂、成醚、氨基化和脱氧等反应;异头羟基能通过糖苷键与醇和胺连接,形成糖苷化合物。例如,在寡糖和多糖中单糖与另一单糖通过O-糖苷键相连,在核苷酸和核酸中戊糖经N-糖苷键与心嘧啶或嘌呤碱相连。 生物学上重要的单糖及其衍生物有Glc, Gal,Man, Fru,GlcNAc, GalNAc,L-Fuc,NeuNAc (Sia),GlcUA 等它们是寡糖和多糖的组分,许多单糖衍生物参与复合糖聚糖链的组成,此外单糖的磷酸脂,如6-磷酸葡糖,是重要的代谢中间物。 蔗糖、乳糖和麦芽糖是常见的二糖。蔗糖是由α-Glc和β- Fru在两个异头碳之间通过糖苷键连接而成,它已无潜在的自由醛基,因而失去还原,成脎、变旋等性质,并称它为非还原糖。乳糖的结构是Gal β(1-4)Glc,麦芽糖是Glcα(1-4)Glc,它们的末端葡萄搪残基仍有潜在的自由醛基,属还原糖。环糊精由环糊精葡糖基转移酶作用于直链淀粉生成含6,7或8个葡萄糖残基,通过α-1,4糖苷键连接成环,属非还原糖,由于它的特殊结构被用作稳定剂、抗氧化剂和增溶剂等。 淀粉、糖原和纤维素是最常见的多糖,都是葡萄糖的聚合物。淀粉是植物的贮存养料,属贮能多糖,是人类食物的主要成分之一。糖原是人和动物体内的贮能多糖。淀粉可分直链淀粉和支链淀粉。直链淀粉分子只有α-1,4连键,支链淀粉和糖原除α-1,4连键外尚有α-1,6连键形成分支,糖原的分支程度比支链淀粉高。纤维素与淀粉、糖原不同,它是由葡萄糖通过β-1.4糖苷键连接而成的,这一结构特点使纤维素具有适于作为结构成分的物理特性,它属于结构多糖。 肽聚糖是细菌细胞壁的成分,也属结构多糖。它可看成由一种称胞壁肽的基本结构单位重复排列构成。胞壁肽是一个含四有序侧链的二糖单位,G1cNAcβ(1-4)MurNAc,二糖单位问通过β-1,4连接成多糖,链相邻的多糖链通过转肽作用交联成一个大的囊状分子。青霉素就是通过抑制转肽干扰新的细胞壁形成而起抑菌作用的。磷壁酸是革兰氏阳性细菌细胞壁的特有成分;脂多糖是阴性细菌细胞壁的特有成分。 糖蛋白是一类复合糖或一类缀合蛋白质。许多内在膜蛋白质和分泌蛋白质都是糖蛋白。糖蛋白和糖脂中的寡糖链,序列多变,结构信息丰富,甚至超过核酸和蛋白质。一个寡糖链中单糖种类、连接位置、异

生物化学笔记(整理版)1

《生物化学》绪论 生物化学可以认为是生命的化学,是研究微生物、植物、动物及人体等的化学组成和生命过程中的化学变化的一门科学。 生命是发展的,生命起源,生物进化,人类起源等,说明生命是在发展,因而人类对生命化学的认识也在发展之中。 20世纪中叶直到80年代,生物化学领域中主要的事件: (一)生物化学研究方法的改进 a. 分配色谱法的创立——快捷、经济的分析技术由Martin.Synge创立。 b. Tisellius用电泳方法分离血清中化学构造相似的蛋白质成分。吸附层析法分离蛋白质及其他物质。 c. Svedberg第一台超离心机,测定了高度复杂的蛋白质。 d. 荧光分析法,同位素示踪,电子显微镜的应用,生物化学的分离、纯化、鉴定的方法向微量、快速、精确、简便、自动化的方向发展。 (二)物理学家、化学家、遗传学家参加到生命化学领域中来 1. Kendrew——物理学家,测定了肌红蛋白的结构。 2. Perutz——对血红蛋白结构进行了X-射线衍射分析。 3. Pauling——化学家,氢键在蛋白质结构中以及大分子间相互作用的重要性,认为某些protein具有类似的螺旋结构,镰刀形红细胞贫血症。 (1.2.3.都是诺贝尔获奖者) 4.Sanger―― 生物化学家 1955年确定了牛胰岛素的结构,获1958年Nobel prize化学奖。1980年设计出一种测定DNA内核苷酸排列顺序的方法,获1980年诺贝尔化学奖。 5.Berg―― 研究DNA重组技术,育成含有哺乳动物激素基因的菌株。 6.Mc clintock―― 遗传学家发现可移动的遗传成分,获1958年诺贝尔生理奖。 7.Krebs―― 生物化学家 1937年发现三羧酸循环,对细胞代谢及分生物的研究作出重要贡献,获1953年诺贝尔生理学或医学奖。 8.Lipmann―― 发现了辅酶A。 9. Ochoa——发现了细菌内的多核苷酸磷酸化酶 10.Korberg——生物化学家,发现DNA分子在细菌内及试管内的复制方式。(9.10.获1959年的诺贝尔生理医学奖) 11.Avery―― 加拿大细菌学家与美国生物学家Macleod,Carty1944年美国纽约洛克菲勒研究所著名实验。肺炎球菌会产生荚膜,其成分为多糖,若将具荚膜的肺炎球菌(光滑型)制成无细胞的物质,与活的无荚膜的肺炎球菌(粗糙型)细胞混合 ->粗糙型细胞也具有与之混合的光滑型的荚膜->表明,引起这种遗传的物质是DNA 1 / 29

王镜岩《生物化学》课后习题详细解答

生物化学(第三版)课后习题详细解答 第三章氨基酸 提要 α-氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们.蛋白质中的氨基酸都是L型的.但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质生物合成后由相应是基本氨基酸(残基)经化学修饰而成.除参与蛋白质组成的氨基酸外,还有很多种其他氨基酸存在与各种组织和细胞中,有的是β-、γ-或δ—氨基酸,有些是D型氨基酸。 氨基酸是两性电解质。当pH接近1时,氨基酸的可解离基团全部质子化,当pH在13左右时,则全部去质子化.在这中间的某一pH(因不同氨基酸而异),氨基酸以等电的兼性离子(H3N+CHRCOO-)状态存在。某一氨基酸处于净电荷为零的兼性离子状态时的介质pH称为该氨基酸的等电点,用pI表示。 所有的α—氨基酸都能与茚三酮发生颜色反应。α—NH2与2,4-二硝基氟苯(DNFB)作用产生相应的DNP-氨基酸(Sanger反应);α—NH2与苯乙硫氰酸酯(PITC)作用形成相应氨基酸的苯胺基硫甲酰衍生物( Edman反应).胱氨酸中的二硫键可用氧化剂(如过甲酸)或还原剂(如巯基乙醇)断裂.半胱氨酸的SH基在空气中氧化则成二硫键.这几个反应在氨基酸荷蛋白质化学中占有重要地位。 除甘氨酸外α—氨基酸的α-碳是一个手性碳原子,因此α-氨基酸具有光学活性.比旋是α-氨基酸的物理常数之一,它是鉴别各种氨基酸的一种根据. 参与蛋白质组成的氨基酸中色氨酸、酪氨酸和苯丙氨酸在紫外区有光吸收,这是紫外吸收法定量蛋白质的依据。核磁共振(NMR)波谱技术在氨基酸和蛋白质的化学表征方面起重要作用。 氨基酸分析分离方法主要是基于氨基酸的酸碱性质和极性大小。常用方法有离子交换柱层析、高效液相层析(HPLC)等。 习题 1。写出下列氨基酸的单字母和三字母的缩写符号:精氨酸、天冬氨酸、谷氨酰氨、谷氨酸、苯丙氨酸、色氨酸和酪氨酸。[见表3-1]

王镜岩生物化学名词解释#精选.

生物化学名词解释 1 .氨基酸( i ):是含有一个碱性氨基( H 2)和一个酸性羧基()的有机化合物,氨基一般连在α -碳上。氨基酸是蛋白质的构件分子 2.必需氨基酸( i ):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3.非必需氨基酸(n i d):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 4.等电点():使氨基酸处于兼性离子状态,在电场中不迁移(分子的静电荷为零)的值。 5.茚三酮反应():在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。 6.层析() :按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分开的技术。 7.离子交换层析( n):一种用离子交换树脂作支持剂的层析技术。 8.透析():利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。 9.凝胶过滤层析(,):也叫做分子排阻层析/凝胶渗透层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白

质或其它分子混合物的层析技术。 10.亲合层析():利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 11.高压液相层析():使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 12.凝胶电泳():以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 13聚丙烯酰氨凝胶电泳():在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 14.等电聚焦电泳():利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个梯度,电泳时,每种蛋白质迁移到它的等电点()处,即梯度为某一时,就不再带有净的正或负电荷了。 1 5.双向电泳():等电聚焦电泳和的组合,即先进行等电聚焦电泳(按照)分离,然后再进行(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 1 6 降解():从多肽链游离的 N 末端测定氨基酸残基的序列的过程。N 末端氨基酸残基被苯异硫氰酸酯()修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

王镜岩生物化学名词解释.

生物化学名词解释 1 .氨基酸(am i no acid):是含有一个碱性氨基(-N H 2)和一个酸性羧基(-COOH)的有机化合物,氨基一般连在α -碳上。氨基酸是蛋白质的构件分子 2.必需氨基酸(essential am i no acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3.非必需氨基酸(n onessential am i no aci d):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 4.等电点(pI,isoel ectric poi nt):使氨基酸处于兼性离子状态,在电场中不迁移(分子的静电荷为零)的 pH 值。 5.茚三酮反应(ninhydrin reacti on ):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。 6.层析(ch rom at og raphy) :按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分开的技术。 7.离子交换层析(ion-exc hange colum n):一种用离子交换树脂作支持剂的层析技术。 8.透析(dialysis):利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。 9.凝胶过滤层析(gel filtration ch rom at og raphy, GPC):也叫做分子排阻层析/凝胶渗透层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 10.亲合层析(affinity chrom atog raph ):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 11.高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 12.凝胶电泳(gel elect roph oresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 13.SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE 只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 14.等电聚焦电泳(IEF):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个 pH 梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度为某一 pH 时,就不再带有净的正或负电荷了。 1 5.双向电泳(tw o-dim ension al electroph orese):等电聚焦电泳和 SDS-PAGE 的组合,即先进行等电聚焦电泳(按照 pI)分离,然后再进行 SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 1 6.Edm an 降解(Edm an deg radation ):从多肽链游离的 N 末端测定氨基酸残基的序

[考研]生物化学笔记

第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。 1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的

王镜岩《生物化学》笔记(整理版)第一章

导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白 质的概念和重要性? 1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953 年测出胰岛素的一级结构。佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。 蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的 生物大分子(biomacromolecule)。蛋白质是生命活动所依赖的物质基础,是生物体中含 量最丰富的大分子。 单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋 白质,人体干重的45%是蛋白质。生命是物质运动的高级形式,是通过蛋白质的多种功能 来实现的。新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多 数是蛋白质。生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。生 物的运动、生物体的防御体系离不开蛋白质。蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。随着蛋白质工程和蛋白质组学 的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。 第一节蛋白质的分子组成 一、蛋白质的元素组成 经元素分析,主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。 各种蛋白质的含氮量很接近,平均为16%。因此,可以用定氮法来推算样品中蛋白质 的大致含量。

生物化学笔记(完整版)

第一章绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。 5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 第二章蛋白质的结构与功能 一、氨基酸: 1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。 2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。 二、肽键与肽链: 肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO -NH-)。氨基酸分子在参与形成肽键之后,由于脱水而结构不完整,称为氨基酸残基。每条多肽链都有两端:即自由氨基端(N端)与自由羧基端(C端),肽链的方向是N端→C端。 三、肽键平面(肽单位): 肽键具有部分双键的性质,不能自由旋转;组成肽键的四个原子及其相邻的两个α碳原子处在同一个平面上,为刚性平面结构,称为肽键平面。 四、蛋白质的分子结构:

生物化学知识点汇总(王镜岩版)

生物化学知识点汇总(王镜岩版)

————————————————————————————————作者:————————————————————————————————日期:

生物化学讲义(2003) 孟祥红 绪论(preface) 一、生物化学(biochemistry)的含义: 生物化学可以认为是生命的化学(chemistryoflife)。 生物化学是用化学的理论和方法来研究生命现象。 1、生物体是有哪些物质组成的?它们的结构和性质如何?容易回答。 2、这些物质在生物体内发生什么变化?是怎样变化的?变化过程中能量是怎样转换的?(即这些物质在生物体 内怎样进行物质代谢和能量代谢?)大部分已解决。 3、这些物质结构、代谢和生物功能及复杂的生命现象(如生长、生殖、遗传、运动等)之间有什么关系?最复 杂。 二、生物化学的分类 根据不同的研究对象:植物生化;动物生化;人体生化;微生物生化 从不同的研究目的上分:临床生物化学;工业生物化学;病理生物化学;农业生物化学;生物物理化学等。 糖的生物化学、蛋白质化学、核酸化学、酶学、代谢调控等。 三、生物化学的发展史 1、历史背景:从十八世下半叶开始,物理学、化学、生物学取得了一系列的重要的成果(1)化学方面 法国化学家拉瓦锡推翻“燃素说”并认为动物呼吸是像蜡烛一样的燃烧,只是动物体内燃烧是缓慢不发光的 燃烧——生物有氧化理论的雏形 瑞典化学家舍勒——发现了柠檬酸、苹果酸是生物氧化的中间代谢产物,为三羧酸循环的发现提供了线索。 (2)物理学方面:原子论、x-射线的发现。 (3)生物学方面:《物种起源——进化论》发现。 2、生物化学的诞生:在19世纪末20世纪初,生物化学才成为一门独立的科学。 德国化学家李比希: 1842年撰写的《有机化学在生理与病理学上的应用》一书中,首次提出了新陈代谢名词。另一位是德国医生霍佩赛勒: 1877年他第一次提出Biochemie这个名词英文译名是Biochemistry(orBiologicalchemistry)汉语翻译成 生物化学。 3、生物化学的建立: 从生物化发展历史来看,20世纪前半叶,在蛋白质、酶、维生素、激素、物质代谢及生物氧化方面有了长足 进步。成就主要集中于英、美、德等国。 英国,代表人物是霍普金斯——创立了普通生物化学学派。

复旦大学生物化学笔记完整版

复旦大学生物化学笔记完整版 第一篇生物大分子的结构与功能 第一章氨基酸和蛋白质 一、组成蛋白质的20种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸酸性氨基酸:天冬氨酸、谷氨酸 碱性氨基酸:赖氨酸、精氨酸、组氨酸 其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 属于亚氨基酸的是:脯氨酸 含硫氨基酸包括:半胱氨酸、蛋氨酸 注意:在识记时可以只记第一个字,如碱性氨基酸包括:赖精组 二、氨基酸的理化性质 1、两性解离及等电点 氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。 2、氨基酸的紫外吸收性质 芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。 3、茚三酮反应 氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。 三、肽 两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。 多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。 人体内存在许多具有生物活性的肽,重要的有: 谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。 四、蛋白质的分子结构 1、蛋白质的一级结构:即蛋白质分子中氨基酸的排列顺序。 主要化学键:肽键,有些蛋白质还包含二硫键。 2、蛋白质的高级结构:包括二级、三级、四级结构。

第3章 脂类 王镜岩《生物化学》第三版笔记(打印版)

第三章脂类 提要 一、概念 脂类、类固醇、萜类、多不饱和脂肪酸、必需脂肪酸、皂化值、碘值、酸价、酸败、油脂的硬化、甘油磷脂、鞘氨醇磷脂、神经节苷脂、脑苷脂、乳糜微粒 二、脂类的性质与分类单纯脂、复合脂、非皂化脂、衍生脂、结合脂 单纯脂 脂肪酸的俗名、系统名和缩写、双键的定位 三、油脂的结构和化学性质 (1)水解和皂化脂肪酸平均分子量=3×56×1000÷皂化值 (2)加成反应碘值大,表示油脂中不饱和脂肪酸含量高,即不饱和程度高。 (3)酸败 蜡是由高级脂肪酸和长链脂肪族一元醇或固醇构成的酯。 四、磷脂(复合脂) (一)甘油磷脂类 最常见的是卵磷脂和脑磷脂。卵磷脂是磷脂酰胆碱。脑磷脂是磷脂酰乙醇胺。 卵磷脂和脑磷脂都不溶于水而溶于有机溶剂。磷脂是兼性离子,有多个可解离基团。在弱碱下可水解,生成脂肪酸盐,其余部分不水解。在强碱下则水解成脂肪酸、磷酸甘油和有机碱。磷脂中的不饱和脂肪酸在空气中易氧化。 (二)鞘氨醇磷脂 神经鞘磷脂由神经鞘氨醇(简称神经醇)、脂肪酸、磷酸与含氮碱基组成。脂酰基与神经醇的氨基以酰胺键相连,所形成的脂酰鞘氨醇又称神经酰胺;神经醇的伯醇基与磷脂酰胆碱(或磷脂酰乙醇胺)以磷酸酯键相连。 磷脂能帮助不溶于水的脂类均匀扩散于体内的水溶液体系中。 非皂化脂 (一)萜类是异戊二烯的衍生物 多数线状萜类的双键是反式。维生素A、E、K等都属于萜类,视黄醛是二萜。天然橡胶是多萜。 (二)类固醇都含有环戊烷多氢菲结构 固醇类是环状高分子一元醇,主要有以下三种: 动物固醇胆固醇是高等动物生物膜的重要成分,对调节生物膜的流动性有一定意义。胆固醇还是一些活性物质的前体,类固醇激素、维生素D3、胆汁酸等都是胆固醇的衍生物。 植物固醇是植物细胞的重要成分,不能被动物吸收利用。 1,酵母固醇存在于酵母菌、真菌中,以麦角固醇最多,经日光照射可转化为维生素D2。 2.固醇衍生物类 胆汁酸是乳化剂,能促进油脂消化。 强心苷和蟾毒它们能使心率降低,强度增加。 性激素和维生素D 3. 前列腺素 结合脂 1.糖脂。它分为中性和酸性两类,分别以脑苷脂和神经节苷脂为代表。 脑苷脂由一个单糖与神经酰胺构成。 神经节苷脂是含唾液酸的糖鞘脂,有多个糖基,又称唾液酸糖鞘脂,结构复杂。 2.脂蛋白 根据蛋白质组成可分为三类:核蛋白类、磷蛋白类、单纯蛋白类,其中单纯蛋白类主要有水溶性的血浆脂蛋白和脂溶性的脑蛋白脂。血浆脂蛋白根据其密度由小到大分为五种: 乳糜微粒主要生理功能是转运外源油脂。 极低密度脂蛋白(VLDL) 转运内源油脂。 低密度脂蛋白(LDL) 转运胆固醇和磷脂。 高密度脂蛋白(HDL) 转运磷脂和胆固醇。

王镜岩生化真题名词解释整理汇总情况

王镜岩——生物化学名词解释(2013年~2002年) 【2013年】 1.寡聚蛋白质(oligomeric protein):两条或两条以上具有三级结构的多肽链组成的蛋白质。(也称多聚蛋白质)。如:血红蛋白(两条α链,两条β链)、己糖激酶(4条α链)。附:仅由一条多肽链构成的蛋白质称为单体蛋白质。如:溶菌酶和肌红蛋白【第三章蛋白质】(上159) 2.酶的转换数(turnover number,TN):即K3,又称催化常数(catalytic constant,K cat)是指在一定条件下每秒钟每个酶分子转换底物的分子数。(通常来表示酶的催化效率) 附:[ 或每秒钟每微摩尔酶分子转换底物的微摩尔数] ,大多数酶对它们的天然底物的转换数的变化围是每秒1到104(上321)【第四章酶】 3.糖的变旋现象(mutarotation):是当一种旋光异构体,如糖溶于水中转变为几种不同的旋光异构体的平衡混合物时,发生的旋光变化的现象。【第一章糖类】(上8;2013、2008) 4.油脂的酸值(acid number):是指中和1g油脂中的游离脂肪酸所消耗KOH 的毫克数。【第二章脂类和生物膜】(上95) 5.激素受体:位于细胞表面或细胞,结合特异激素并引发细胞响应的蛋白质。【第六章维生素、激素和抗生素】 6.乙醛酸循环(glyoxylic acid cycle ,GAC):是一种被修改的三羧酸循环,在两种循环中具有某些相同的酶和产物,但代谢途径不同,在乙醛酸循环中乙酰CoA首先和草酰乙酸缩合成柠檬酸,然后转变为异柠檬酸,再裂解为琥珀酸和乙醛酸,在这一循环中产生乙醛酸,故称乙醛酸循环。【第八章糖代谢】(这个循环除两步由异柠檬酸裂合酶和苹果酸合酶催化的反应外,其他的反应都和“柠檬酸循环”相同。)(2013、2012) 资料2:又称三羧酸循环支路,该途径在动物体不存在,只存在于植物和微生物中,主要在乙醛酸循环体中和线粒体中进行。乙醛酸循环从草酰乙酸与乙酰CoA缩合形成柠檬酸开始,柠檬酸经异构化生成异柠檬酸,与TCA循环不同的是异柠檬酸经异柠檬酸裂解酶裂解为琥珀酸和乙醛酸。乙醛酸与另一分子乙酰CoA在苹果酸合酶的催化下形成苹果酸,最后生成草酰乙酸。该途径中含有两种特异的酶:异柠檬酸裂解酶和苹果酸合酶,其总反应式为:2乙酰CoA+2NAD++FAD →草酰乙酸+2CoASH+2NADH+2H++FADH2。 7.丙酮酸脱氢酶系: 8.呼吸链:由一系列可作为电子载体的酶复合体和辅助因子构成,可将来自还原型辅酶或底物的电子传递给有氧代谢的最终的电子受体分子氧(也称呼吸电子传递链)【第七章代谢总论、生物氧化和生物能学】(2013、2011) 9.化学渗透学说(chemiosnotic theory):电子经呼吸链传递的同时,可将质子从膜的基质面排到膜外,造成膜外的电化学梯度,此梯度贮存的能量致使质子顺梯度回流,并使P 与ADP生成ATP。【第七章代谢总论、生物氧化和生物能学】 10.半乳糖血症(galactosemia):人类的一种基因型遗传代谢缺陷,是由于缺乏1—磷酸半乳糖尿酰转移酶,导致婴儿不能代谢奶汁中乳糖分解生成的半乳糖。【第八章糖代谢】(2013、2011) 11.退火(annealing):热变性的DNA,在缓慢冷却条件下重新形成双链的过程。[ 将热变性的DNA骤然冷却至低温时,DNA不可能复性。] 退火温度=Tm—25℃【第五章核酸化

生物化学笔记 考试重点

第一章蛋白质的结构与功能 一、蛋白质的概念 蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物。 二、蛋白质的生物学意义 1.蛋白质是生物体重要的组成成分 分布广:所有器官、组织都含有蛋白质;细胞的各个部分都含有蛋白质。 含量高:蛋白质是细胞内最丰富的有机分子,占人体干重的45%。 2. 蛋白质有重要的生物学功能 1)作为生物催化剂(酶);2)代谢调节作用;3)免疫保护作用;4)物质的转运和储存;5)运动与支持作用;6)参与细胞间信息传递。 第一节蛋白质的分子组成 1.蛋白质的元素组成 主要含有碳、氢、氧、氮及硫。有些蛋白质还含有磷、铁、铜、锌、锰、钴及钼等。 2.蛋白质元素组成的特点 蛋白质的含氮量接近,平均为16%。测定生物样品含氮量可推算出蛋白质大致含量。100克样品中蛋白质的含量(g%)=每克样品含氮克数×6.25 ×100 3.蛋白质的基本组成单位 氨基酸是蛋白质的基本组成单位。自然界存在300余中氨基酸,组成蛋白质的氨基酸仅有20种,且均为L- α- 氨基酸(除甘氨酸外)。 4.氨基酸的分类 1). 非极性疏水性氨基酸2). 极性中性氨基酸3). 酸性氨基酸4). 碱性氨基酸 5.非极性疏水性氨基酸:甘氨酸丙氨酸缬氨酸亮氨酸异亮氨酸苯丙氨酸脯氨酸 中性极性氨基酸:色氨酸丝氨酸酪氨酸半胱氨酸甲硫氨酸蛋氨酸天冬酰胺苏氨酸谷胺酰胺 酸性氨基酸:天冬氨酸谷氨酸 碱性氨基酸:赖氨酸精氨酸组氨酸 6.氨基酸的理化性质 1)两性解离及等电点 氨基酸是两性电解质,其解离方式及带电状态取决于其所处溶液的酸碱度。 等电点:在某一pH条件下,氨基酸解离成阳离子和阴离子的数量相等,分子呈电中性,此时溶液的pH称为该氨基酸的等电点。 2)氨基酸的紫外吸收 酪氨酸、色氨酸含有共轭双键,具有吸收紫外光的特性,在280nm处有最大吸收峰。蛋白质在280nm处的紫外吸收与浓度成正比,可用于蛋白质的定量分析。 7.氨基酸与多肽 氨基酸通过肽键相连接的形成多肽链。 1)肽键:一分子氨基酸的α-羧基与另一分子的α-氨基,脱水缩合形成的酰胺键(-CO-NH-)称为肽键。 肽键是蛋白质中的主要化学键 一条多肽链含有2个游离的末端(氨基末端羧基末端) 多肽链的序号从N端计算,书写时将N端写于左侧,用H2N-或H-表示;C端用-COOH 或-OH表示。 氨基酸残基:肽链中的氨基酸分子因形成肽键失去部分基团,称为氨基酸残基。

王镜岩-生物化学(第三版)配套练习及详解

生物化学学习指导及习题 1

第一章蛋白质化学 I 主要内容 一、蛋白质的生物学意义 蛋白质是生物体内最为重要的有机化学物质之一,它几乎参与了生物体所有的生命活动,如生物体的构成、机体的运动、化学催化、机体的免疫保护、生物遗传信息的传递与表达等等,可以说蛋白质是一切生命活动的重要支柱,没有蛋白质就没有生命现象的存在,因此,蛋白质化学是生物化学中一个重要的研究方面。 二、蛋白质的元素组成 蛋白质是由C、H、O、N、S等几种元素构成,其中C 50-55%、H 6-8%、O 20-30%、N 15-17%、S 0-4%,且含量基本相同,因此通过测定蛋白质样品中元素含量就可以推测出样品中蛋白质的含量。 三、蛋白质的氨基酸组成 (一)氨基酸的结构及特点 一般的蛋白质都是由20种氨基酸构成,这些氨基酸都是在蛋白质的合成过程中直接加进去的,并有专门的遗传密码与其对应,这些构成蛋白质的基本氨基酸称为天然氨基酸(通用氨基酸)。天然氨基酸具有如下特点: 1. 20种天然氨基酸均有专门的遗传密码与其对应,它们在蛋白质的合成中是直接加上去的。 2. 除甘氨酸外,其它氨基酸至少含有一个手性碳原子。 3. 除脯氨酸外,其它氨基酸均为 -氨基酸。 4. 氨基酸虽有D、L–型之分,但存在于天然蛋白质中的氨基酸均为L-型氨基酸。 (二)天然氨基酸的分类 2

1.根据氨基酸分子中氨基和羧基的相对数量进行分类 2.根据氨基酸分子结构分类 3.根据氨基酸侧链基团极性分类 氨基酸根据其侧链基团在近中性的pH条件下是否带电荷以及带电荷的种类分成四类:非极性氨基酸、极性不带电荷氨基酸、极性带正电荷氨基酸、极性带负电荷氨基酸。 (三)稀有蛋白质氨基酸 这部分主要是指虽然在蛋白质中有所存在,含量却较少的一类氨基酸。蛋白质中的稀有氨基酸是在蛋白质合成后的加工过程中通过化学的方法在天然氨基酸的基础上增加某些基团而形成的。 (四)非蛋白质氨基酸 非蛋白质氨基酸是细胞中不参与天然蛋白质合成的一类氨基酸。 (五)氨基酸的重要理化性质 1. 一般理化性质 2. 氨基酸的酸碱性质与等电点 3. 氨基酸的主要化学性质 (1)茚三酮反应 (2)桑格反应(Sanger reaction) (3)埃德曼反应(Edman reaction ) 3

王镜岩版生物化学总复习习题

生物化学各章复习题 第 3 章氨基酸 回答问题 : 1. 什么是蛋白质的酸水解、碱水解和酶水解,各有何特点? 2. 写出 20 种基本氨基酸的结构、三字母缩写和单字母缩写。 3. 甘氨酸、组氨酸和脯氨酸各有何特点? 4. 什么是氨基酸的等电点?写出下了列氨基酸的结构、解离过程,并计算等电点:缬氨酸、谷氨酸和精氨酸。 5. 在多肽的人工合成中,氨基酸的氨基需要保护,有哪些反应可以保护氨基? 6. Sanger 试剂、 Edman 试剂分别是什么?与氨基酸如何反应,此反应有何意义? 7. 试写出半胱氨酸与乙撑亚胺的反应,此反应有何意义? 8. 写出氧化剂和还原剂打开胱氨酸二硫键的反应。 9. 蛋白质有紫外吸收的原因是什么,最大吸收峰是多少? 10. 什么是分配定律、分配系数?分配层析的原理是什么? 11. 什么是 HPLC? 12. 课本 P156,15 题。 第 4 、 5 章蛋白质的共价结构,三维结构 一.名词解释: 单纯蛋白(举例),缀合蛋白(举例),辅基,配体,蛋白质的一、二、三、四级结构,超二级结构,结构域,

肽平面(酰胺平面),谷胱甘肽(结构式),对角线电泳,完全水解,部分水解,同源蛋白质,不变残基,可变残基, α - 螺旋β - 折叠,膜内在蛋白,脂锚定膜蛋白,蛋白质的变性与复性,单体,同聚体,杂多聚蛋白 二.回答问题: 1. 试举例说明蛋白质功能的多样性? 2. 那些实验能说明肽键是蛋白质的连接方式? 3. 试述肽键的性质。 4. 试述蛋白质一级结构测定的策略。 5. 如何测定 N- 端氨基酸? 6. 图示胰蛋白酶、胰凝乳蛋白酶、嗜热菌蛋白酶及胃蛋白酶的作用专一性。 7. 书 p194 —第 2 题 8. 研究蛋白质构象的方法都有哪些? 9. 稳定蛋白质的三微结构的作用力有哪些? 10. 影响α - 螺旋形成的因素有哪些? 11. 胶原蛋白的氨基酸组成有何特点? 12. 蛋白质变性后有哪些现象? 13. 举例说明蛋白质一级结构决定三级结构。 第 6 章蛋白质结构与功能的关系 一.名词解释: 珠蛋白,亚铁血红素,高铁血红素,亚铁肌红蛋白,高铁血红蛋白 二.回答问题: 1. 肌红蛋白和血红蛋白的氧合曲线有何不同,试从蛋白质结构与功能的关系上加以解

生物化学试题(适合沉同,王镜岩第二和第三版)

一.选择题(从下面四个备选答案中选择一个或两个正确答案,并将其题号写在括号内。选错或未全选对者,该题无分。每小题1分,共15分。) 1.下列属于生酮氨基酸的是(BD )A.V al B. Leu C. Thr D. Lys 2.下列属于生酮兼生糖氨基酸的是(AC )A.Tyr B. His C. Phe D. Glu 3.以FAD为辅基的脱氢酶是(BD ) A.异柠檬酸脱氢酶 B. 脂酰CoA脱氢酶 C.β-羟丁酸脱氢酶 D. 琥珀酸脱氢酶 4. 下列以NADP+为辅酶的脱氢酶是(B ) A. 3-磷酸甘油醛脱氢酶 B. 6-磷酸葡萄糖脱氢酶 C. 乳酸脱氢酶 D. 脂酰CoA脱氢酶 5.参与尿素合成的氨基酸是(B ) A.精氨酸 B. 天冬氨酸 C. 谷氨酸 D. 丙氨酸 6.嘧啶环上第1位N来源于下列( C )A. Gln B. Gly C. Asp D. His 7. 嘌呤环上第1位N和第7位N来源于下列( AD ) A. Asp B. Met C. Glu D. Gly 8.糖异生过程中克服第2和第3个能障的酶是(BC ) A. 丙酮酸激酶 B. 果糖二磷酸酶 C. 葡萄糖-6-磷酸酶 D. 烯醇化酶 9.HMGCoA是下列( AD )化合物合成过程中的共同中间产物。 A. 胆固醇 B. 脂肪酸C. 甘油 D. 酮体 10.丙酮酸脱氢酶系中所需的辅因子有( BC ) A. FMN B. NAD+ C. HSCoA D. ACP 11.脂肪酸每经一次β-氧化, 由脱氢反应生成的ATP数为( B ) A. 6 B. 5 C. 4 D. 3 12.合成糖原时,葡萄糖的供体形式为( B ) A. CDPG B. UDPG C. ADPG D. GDPG 13.下列物质在体内彻底氧化时, 产生ATP数最多的是( C ) A. 丙酮酸 B. 乳酸 C. 己酸 D. 苹果酸 14.Tyr在生物体内可转变为( AB ) A. 甲状腺素 B. 肾上腺素 C. 胰岛素 D. 性激素 12.脂肪酸合成的原料和供氧体分别是( BD ) A. 琥珀酰COA B. 乙酰COA C. NADH+H+ D. NADPH+H+ 13.参与嘌呤核苷酸循环的化合物有( D ) A. GMP B. CMP C. AMP D. IMP 14.能转运内源性和外源性TG的脂蛋白分别是(D A ) A. CM B. LDL C. HDL D. VLDL 15 .三羧酸循环中, 以NAD+为辅酶的脱氢酶有( D ) A.异柠檬酸脱氢酶 B. 琥珀酸脱氢酶 C. β-羟丁酸脱氢酶 D. 苹果酸脱氢酶 16.胆固醇和酮体合成过程中相同的中间产物有( A. B. ) A. 乙酰乙酰COA B. 羟甲戊二酰COA C. 二羟甲基戊酸 D.β-羟丁酸 17.尿素分子中两个NH2分别来源于是( C和氨) A. 丙氨酸 B. 谷氨酸 C. 天冬氨酸 D.鸟氨酸 18.核苷酸从头合成中, 嘌呤环上第3位和第9位N是由( C )提供的A. Gly B. Asp C. Gln D.Ala 19.下列属于生糖氨基酸的是( AB )

王镜岩生物化学题库含详细答案

第十章D N A的生物合成(复制) 一、A型选择题 1.遗传信息传递的中心法则是() A.DNA→RNA→蛋白质 B.RNA→DNA→蛋白质 C.蛋白质→DNA→RNA D.DNA→蛋白质→RNA E.RNA→蛋白质→DNA 2.关于DNA的半不连续合成,错误的说法是() A.前导链是连续合成的 B.随从链是不连续合成的 C.不连续合成的片段为冈崎片段 D.随从链的合成迟于前导链酶合成 E.前导链和随从链合成中均有一半是不连续合成的 3.冈崎片段是指() A.DNA模板上的DNA片段 B.引物酶催化合成的RNA片段 C.随从链上合成的DNA片段 D.前导链上合成的DNA片段 E.由DNA连接酶合成的DNA 4.关于DNA复制中DNA聚合酶的错误说法是() A.底物都是dNTP B.必须有DNA模板 C.合成方向是5,→3, D.需要Mg2+参与 E.需要ATP参与 5.下列关于大肠杆菌DNA聚合酶的叙述哪一项是正确() A.具有3,→5,核酸外切酶活性 B.不需要引物 C.需要4种NTP D.dUTP是它的一种作用物 E.可以将二个DNA片段连起来 6.DNA连接酶() A.使DNA形成超螺旋结构 B.使双螺旋DNA链缺口的两个末端连接 C.合成RNA引物D.将双螺旋解链 E.去除引物,填补空缺 7.下列关于DNA复制的叙述,哪一项是错误的() A.半保留复制 B.两条子链均连续合成 C.合成方向5,→3, D.以四种dNTP为原料 E.有DNA连接酶参加 8.DNA损伤的修复方式中不包括() A.切除修复 B.光修复 C.SOS修复 D.重组修复 E.互补修复 9.镰刀状红细胞性贫血其β链有关的突变是() A.断裂B.插入C.缺失 D.交联 E.点突变 10.子代DNA分子中新合成的链为5,-ACGTACG-3,,其模板链是() A.3,-ACGTACG-5, B.5,-TGCATGC-3, C.3,-TGCATGC-5, D.5,-UGCAUGC-3, E.3,-UGCAUGC-5, 二、填空题 1.复制时遗传信息从传递至;翻译时遗传信息从传递至。 2.冈崎片段的生成是因为DNA复制过程中,和的不一致。 3.能引起框移突变的有和突变。 4.DNA复制的模板是;引物是;基本原料是;参与反应的主要酶类有、、、和。 5.DNA复制时连续合成的链称为链;不连续合成的链称为链。 6.DNA的半保留复制是指复制生成的两个子代DNA分子中,其中一条链是,另一条链 是。

相关主题