搜档网
当前位置:搜档网 › 电磁场原理期末复习提纲

电磁场原理期末复习提纲

电磁场原理期末复习提纲
电磁场原理期末复习提纲

期末复习提纲

I 基本概念和理论

1. 基本概念

(1)何谓标量场?何谓矢量场?

(2)“ ”算符的微分特性和矢量特性?

(3)电场强度是怎样定义的?其物理意义如何?

(4)电位的定义式和它的物理意义。电位和电场强度之间的积分和微分关系。

(5)什麽是介质的极化?介质极化的影响怎样用等效极化电荷的分布来表示?

(6)电位移矢量是怎样定义的?它的物理意义?

(7)特别注意泊松方程和拉普拉斯方程的适用范围。

(8)从唯一性定理来理解:按照间接求解方法来计算静电场问题,为什麽要特别强调有效区域问题?

(9)什麽叫静电独立系统?

(10)恒定电场中的几种媒质分界面衔接条件与静电场中有何不同?

(11)毕奥---沙阀定律的应用条件?磁场计算能否运用叠加原理?

(12)正确理解安培环路定律的涵义,运用其积分形式求解磁场问题切实注意积分路径的选择。

(13)为什麽要引入磁矢量位?其定义式如何?

(14)什麽是媒质的磁化?媒质磁化的影响怎样用等效磁化电流的分布来表示?

(15)正确认识电、磁场的分布和电、磁场能量的分布之间的关系。

(16)正确理解Maxwell方程组中各个方程的物理意义,深刻认识电场和磁场之间相互依存、相互制约、不可分割,而成为一个整体的两个方面。

(17)什麽叫推广的电磁感应定律?什麽叫全电流定律?全电流是指哪几种电

流?

(18) 坡印廷定理和坡印廷矢量的物理意义是什麽?深刻理解坡印廷矢量反映的

电磁能流密度概念。

(19) 深刻理解动态位解答所揭示的时变电磁场的波动性,以及场点电场、磁场

的场量滞后于波源变化的推迟性。 (20) 如何看待时空组合变量??

?

?

?-

v R t 所描述的波动? (21) 电能是如何沿着输电导线传播的?

(22) 何谓电准静态电磁场?按什麽条件来判别是电准静态电磁场? (23) 何谓磁准静态电磁场?按什麽条件来判别是磁准静态电磁场? (24) 在时变电磁场中什麽叫良导体?什麽叫似稳条件?

(25) 何谓集肤效应?何谓去磁效应?何谓邻近效应?它们分别与哪些因素相

关?

(26) 什麽是涡流?涡流会产生什麽样的影响?如何减小这种影响? (27) 什麽叫均匀平面电磁波?它的主要特征是什麽? (28) 均匀平面电磁波在理想介质中的传播特性? (29) 均匀平面电磁波在导电媒质中的传播特性? (30) 什麽是色散现象?什麽是色散媒质?

(31) 对于有电磁波传播的导体,什么叫做低损耗介质?什么叫做良导体? (32) 什么叫导行电磁波?为什么空心金属导波管内不可能存在TEM 波? (33) TM 波的最低模式为什么是TM 11?

(34) 什么叫截止频率f c ?什么叫截止波长λc ?什么叫波导色散? (35) 为什么称TE 10波为矩形波导的主模? (36) 什么叫波阻抗?什么叫本征阻抗? (37) 电磁辐射的定义,电磁辐射的机理是什么? (38) 单元偶极子的近区场概念,近区场的特点。

(39) 单元偶极子的远区场概念,远区场(辐射场)的特点。

(40) 单元偶极子的辐射功率与辐射电阻。 (41) 辐射的方向性和方向函数,方向图的定义。 (42) 对称振子天线辐射场的特点。

(43) 天线阵的阵因子、方向函数和方向乘积定理。

2. Maxwell 方程组

积分形式 微分形式

???????+?+?=?S D

S v S E l H d d d d S S S l t ργ t c ??+=??D J H (t

v ??+=D

J )

S B

l E d d ???-=???S

l t

t ??-=??B E 0d =??S B S 0=??B q S =??S D d ρ=??D

明了各基本方程的意义,方程的基本特点。 媒质的构成方程 E J H

B E

D γμε===

电磁场基本方程微分形式描述的循环图。

3. 导出静态场的基本方程

微分形式: ()0=??

t

c J H =?? 0=??E 0=??=????C J H

0=??B ρ=??D 0=??E

积分形式:

?∑?=?=?I S c l S J l H d d 0d =??l E l 0d =??l E l 0d =??S B S q S =??S D d 0d =??S J S c

4. 正弦电磁场中微分形式Maxwell 方程组的相量表达式

D J H

ωj c +=?? B E

ωj -=?? 0=??B

ρ

=??D

5. 准静态电磁场

(1)电准静态电磁场 (2)磁准静态电磁场

t

c ??+

=??D

J H c J H ≈?? 0≈??E t

??-=??B

E 0=??B 0=??B

ρ=??D ρ=??D

循环图的闭环已被断开。

6. 媒质的影响

P E D +=0ε, ()M H B +=0μ, ()E J J =,

各向同性、线性媒质

E E D εεε==r 0,H H B μμμ==r 0, E J γ=

7. 媒质分界面衔接条件

k )H (H e =-?12n 012=-?)E (E e n 012=-?)B (B e n σ=-?)D (D e 12n

应用矢量形式。使用中的标量形式。

8. 波动特性和能量传输

(1)动态位波动方程和动态位解答:

ερ?με

?-=??-?222t , c t

J A

A μμε-=??-?22

2

()V d R

v R t t V '??

? ??-

'=

?

'

,r r,ρπε

?41 , ()V R

v R t T c V '?

?? ??-'

?='d 4,r J r,A πμ

动态位解答的波动特点——推迟效应。 (2)坡印廷定律和坡印廷矢量:

()?????+--??-=??V V e V c S V v V t W

d d d 2

E J J S H E ργ

H E s ?=

()t T

T

av

d 1

??=H E s

(3)电磁场能量密度

在各向同性、线性媒质中

222

1

212121H E m e

μεωωω+=?+?='+'='H B D E

[]

*?==H E s

s Re Re av

9. 均匀平面电磁波的传播

II 基本计算问题

1. 关于场的计算

(1)无限大介质空间已知电荷分布,依据库仑定律和电场强度定义式,推求介质中

的电场分布。 (2)场分布有一定的对称性

① 已知电荷或者假定电荷分布,求D : 运用高斯定理-----恰当选择的高斯面; ② 已知电流分布或者假定电流分布,类似于高斯定理-----恰当选择计算开面,求电场分布;

③ 已知电流分布或者假定电流分布,求H : 运用安培环路定律或全电流定律-----选择恰当的积分循环路径;

④ 已知变化的磁场分布,求感应电场(不考虑感应电场的影响):运用电磁感应定律,(如同运用安培环路定律一样)选择恰当的积分路径。

(3)计算电场的一维边值问题

① 建立电位的微分方程;

② 建立所需的边界条件和媒质分界面衔接条件; ③ 求解边值问题。

(4)间接求解方法

① 镜像法 ② 电轴法 ③ 等效条件

(5)E 、?关系

已知E 求?:

分区域求解,采用积分计算 ()()l r E r d ?=?Q

P ?,注意参考点的选择。

已知?求E :

采用微分计算 ()()r r E ?-?=

2. 求参数C 、G 、L 、M ;

求e W 、e ω、m W 、m ω; 求电场力、磁场力; 求功率损耗;

求正弦均匀平面电磁波的参数、场量E 、H 的瞬时表达式或相量表达式。

工程电磁场复习提纲及考点

第一部分:电磁场的数学工具和物理模型 来源:工程电磁场原理教师手册 场的概念;场的数学概念;矢量分析; 数学工具:在不同坐标系下的数学描述方法;巩固标量场梯度的概念和数学描述方法;掌握散度在直角坐标系下的表达形式;掌握旋度在直角坐标系下的表达形式;强调几个矢量分析的恒等式:0=???V (任何标量函数梯度的旋度恒等于零);0)(=????A (任意矢量函数旋度的散度恒等于零);() A A A 2?-???=????;?????+??=??A A A )(; V V 2?=???。 亥姆霍兹定理推导出:无旋场(场中旋度处处为零),但散度不为零;无散场(无源场):场中散度处处为零,但其旋度不为零;一般矢量场:场中散度和旋度均不为零。无限空间中的电磁场作为矢量场)(r F 按定理所述,其特性取决于它的散度和旋度特性,而用公式可以表示为:)()()(r A r r F ??+-?=?,其中标量函数?-??= V dV r r r F r '') '('41)(π?,矢量函数?-??= V dV r r r F r A '' ) '('41)(π,由此可见,无限空间中的电磁场)(r F 唯一地取决于其散度和旋度的分布。 散度定理——高斯定理;旋度定理——stokes 定理 第二部分:静态电磁场——静电场 掌握电场基本方程,并理解其物理意义。 电场强度E 与电位?的定义以及物理含义;理解静电场的无旋性,及电场强度的线积分与路径无关的性质,以及电场强度与电位之间的联关系。 掌握叠加原理,对自由空间中的静电场,会应用矢量分析公式计算简单电荷分布产生的电场强度与电位;对于呈对称性分布的特征的场,能熟练地运用高斯定理求解器电场强度与电位分布。 了解媒介(电介质)的线性、均匀和各向同性的含义;了解电偶极子、电偶极矩的概念及其电场分布的特点。了解极化电荷、极化强度P 的定义及其物理意义。连接通过极化电荷求极化电场分布的积分形式。 理解电位移矢量D 的定义,以及D 、E 和P 三者之间的关系。对电介质中的静电场,会求解其相应对称的场的分布。

电路理论复习题及答案1

《电路理论》 一、填空题 1 .对称三相电路中,负载Y联接,已知电源相量?∠=? 0380AB U (V ),负载相电流?∠=? 305A I (A ) ;则相电压=? C U (V ),负载线电流=? Bc I (A )。 2 .若12-=ab i A ,则电流的实际方向为 ,参考方向与实际方向 。 3 .若10-=ab i A ,则电流的实际方向为 ,参考方向与实际方向 。 4 .元件在关联参考方向下,功率大于零,则元件 功率,元件在电路中相当于 。 5 .回路电流法自动满足 定律,是 定律的体现 6 .一个元件为关联参考方向,其功率为―100W ,则该元件 功率,在电路中相当于 。 7 .在电路中,电阻元件满足两大类约束关系,它们分别是 和 。 8 .正弦交流电的三要素是 、 和 。 9 .等效发电机原理包括 和 。 10.回路电流法中自阻是对应回路 ,回路电流法是 定律的体现。 11.某无源一端口网络其端口电压为)302sin(240)(?+=t t u (V),流入其端口的电流为 )602cos(260)(?-=t t i (A),则该网络的有功功率 ,无功功率 ,该电路呈 性。若端口电压电流用相量来表示,则其有效值相量 =?U ,=? I 。 12.无源二端电路N 的等效阻抗Z=(10―j10) Ω,则此N 可用一个 元件和一个 元件串联组合来等效。 13 .LC 串联电路中,电感电压有效值V 10U L =,电容电压有效值V 10U C =,则LC 串联电路总电压有效值=U ,此时电路相当于 。 15.对称三相星形连接电路中,线电压超前相应相电压 度,线电压的模是相电压模的 倍。 16 .RLC 并联谐振电路中,谐振角频率0ω为 ,此时电路的阻抗最 。

华南理工大学网络教育学院期末考试《电路原理》模拟试题(含答案)

华南理工大学网络教育学院期末考试 《电路原理》模 拟 试 题 注意事项: 1.本试卷共四大题,满分100分,考试时间120分钟,闭卷; 2.考前请将密封线内各项信息填写清楚; 3.所有答案请直接做在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、单项选择题(每小题2分,共70分) 1、电路和及其对应的欧姆定律表达式分别如图1-1、图1- 2、图1-3所示,其中表达式正确的是( b )。 (a )图1-1 (b )图1-2 (c )图1-3 图 1图 2 图 3图1-1 图1-2 图1-3 2、在图1-4所示电路中,已知U =4V ,电流I =-2A ,则电阻值R 为( b )。 (a )-2Ω (b )2Ω (c )-8Ω 3、在图1-5所示电路中,U S ,I S 均为正值,其工作状态是( b )。 (a )电压源发出功率 (b )电流源发出功率 (c )电压源和电流源都不发出功率 4、图1-6所示电路中的等效电阻R AB 为( b )。 (a )4Ω (b )5Ω (c )6Ω R U I S 图1-4 图1-5 图1-6 5、在计算非线性电阻电路的电压和电流时,叠加定理( a )。 (a )不可以用 (b )可以用 (c )有条件地使用 6、理想运放工作于线性区时,以下描述正确的是( c )。 (a )只具有虚短路性质 (b )只具有虚断路性质 (c )同时具有虚短路和虚断路性质 7、用△–Y 等效变换法,求图1-7中A 、B 端的等效电阻R AB 为( b )。 (a )6Ω (b )7Ω (c )9Ω 8、图1-8所示电路中,每个电阻R 均为8Ω,则等效电阻R AB 为( a )。 (a )3Ω (b )4Ω (c )6Ω

电路原理总复习题1

江苏技术师范学院2008—2009学年第1学期 《电路原理》总复习1 一、单选题 1. 星形联接对称三相负载,每相电阻为11Ω,相电流为20A ,则三相负载的线电压为 ( ) A. 1120?V B. 11202??V C. 11202??V D. 11203??V 2. 右图所示正弦交流电路,已知?∠=01I A ,则图中C I 为 ( ) A. 0.8?∠1.53 A B. 0.6?∠1.53 A C. 0.8?-∠9.36 A D. 0.6?∠9.36 A 3. 右图所示对称三相电路中,已知线电压l U =380V ,三相功率P =4356W ,R =12Ω。求图中负载感抗L ω。 ( ) A. 6Ω B. 12Ω C. 16Ω D. 24Ω 4. 某RLC 串联电路的R =2Ω、L =1H ,要使电路的零输入响应为振荡性,C 值可选用 ( ) A. 1F B. 2F C. 12 F D. 3F 5.图中并联的有互感线圈的等效电感为 ( ) A. L L M L L M 122 122-++ B. L 1+L 2-2M C. L 1+L 2+2M D. L L M L L M 122 122-+- L 2

6.含理想变压器电路如图所示,欲使负载电阻R L 获得最大功率,则n 和所获得的P Lmax 值应为 A. n = 4,P Lmax = 4w B. n = 2,P Lmax = 2w C. n = 3,P Lmax = 3w D. n = 12 ,P Lmax = w 2 1 ( ) 7.如图所示含源二端网络N 外接R 为Ω12时,A 2=I ;当R 短路时A 5=I 。当Ω=24R 时,I 应为 A 4. A A 5.2.B A 25.1.C A 1.D ( ) 8.电路如图所示,如电压表V1、V2的读数都是10V ,则V 表的读数为 A. 20V B. 14.14V C. 10V D. 0V ( ) 9.图中对称三相电路中,已知电压?∠=902.173CB U V ,电流?∠=1802C I A ,则负载(复)阻抗Z 等于 A. ?-∠6050Ω B. ?∠6050Ω C. ?∠3050Ω D. ?-∠3050Ω ( ) C B A 10.电路如图所示互感电路,a 、b 端的等效电感ab L 为 A. 4H B. 6H C. 8H D. 10H ( ) 11.电路如图所示,正弦稳态电路,已知t t u S 100cos 218)(=V ,则L R 上消耗的平均功率P 等于 A. 2W B. 4 9W C. 9W D. 1W ( )

电磁场理论复习题

1. 两导体间的电容与_A__有关 A. 导体间的位置 B. 导体上的电量 C. 导体间的电压 D. 导体间的电场强度 2. 下面关于静电场中的导体的描述不正确的是:____C__ A. 导体处于非平衡状态。 B. 导体内部电场处处为零。 C. 电荷分布在导体内部。 D. 导体表面的电场垂直于导体表面 3. 在不同介质的分界面上,电位是__B_。 A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 4. 静电场的源是A A. 静止的电荷 B. 电流 C. 时变的电荷 D. 磁荷 5. 静电场的旋度等于__D_。 A. 电荷密度 B. 电荷密度与介电常数之比 C. 电位 D. 零 6. 在理想导体表面上电场强度的切向分量D A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 7. 静电场中的电场储能密度为B A. B. C. D. 8. 自由空间中静电场通过任一闭合曲面的总通量,等于B A. 整个空间的总电荷量与自由空间介电常数之比 B. 该闭合曲面内所包围的总电荷量与自由空间介电常数之比。 C. 该闭合曲面内所包围的总电荷量与自由空间相对介电常数之比。 D. 该闭合曲面内所包围的总电荷量。 9. 虚位移法求解静电力的原理依据是G A. 高斯定律 B. 库仑定律 C. 能量守恒定律 D. 静电场的边界条件 10. 静电场中的介质产生极化现象,介质内电场与外加电场相比,有何变化? A. 变大 B. 变小 C. 不变 D. 不确定 11. 恒定电场中,电流密度的散度在源外区域中等于B____ A. 电荷密度 B. 零 C. 电荷密度与介电常数之比 D. 电位 12. 恒定电场中的电流连续性方程反映了___A_ A. 电荷守恒定律 B. 欧姆定律 C. 基尔霍夫电压定律 D. 焦耳定律 13. 恒定电场的源是___B_ A. 静止的电荷 B. 恒定电流 C. 时变的电荷 D. 时变电流 14. 根据恒定电场与无源区静电场的比拟关系,导体系统的电导可直接由静电场中导体系统的D A. 电量 B. 电位差 C. 电感 D. 电容 15. 恒定电场中,流入或流出闭合面的总电流等于__C___ A. 闭合面包围的总电荷量 B. 闭合面包围的总电荷量与介电常数之比 C. 零 D. 总电荷量随时间的变化率 16. 恒定电场是D A. 有旋度 B. 时变场 C. 非保守场 D. 无旋场 17. 在恒定电场中,分界面两边电流密度矢量的法向方向是B A. 不连续的 B. 连续的 C. 不确定的 D. 等于零 18. 导电媒质中的功率损耗反映了电路中的_D____

电路基础总复习题(全面)

11级电路总复习题 一、判断 1.电路中没有电压的地方就没有电流,没有电流的地方也就没有电压。(Х) 2.当欧姆定律写成U=-RI时,电压参考方向与电流参考方向为非关联参考方向。(√) 3.叠加定理既可以用于计算电路中的电流和电压,也可以用于计算功率。(Х) 4.电阻的串联实现分压,电阻的并联实现分流。(√)5.两种电源模型等效时,Is的参考方向与Us从负极指向正极的方向一致。(√) 6.两种电源模型等效时对电源内部及内部功率是不等效的(√)。7.理想电压源与理想电流源之间可以等效变换。(Х) 8.等效变换过程中,待求量的所在支路不能参与等效。(√)9.一个电路的等效电路有且仅有一个。(Х) 10.电压源供电时的功率为P=-IU。( X ) 11.选择不同的参考点,电路中各点的电位将变化(√) 12.电路中两点间的电压与参考点有关。(Х)13.在直流电路中,电容元件相当于短路。(Х)14.在换路的一瞬间,电容上的电压和电流等都不能跃变。(Х)15.在换路瞬时,电感两端电压不能突变。(Х)16.几个电容并联,总电容是越并越大。(√)17.几个电容串联,总电容是越串越大。(Х)

18.一阶电路的三要素为:初始值、瞬态值、时间常数。( Х) 19.正弦交流电流是交流电流中的一种。 (√ ) 20. 电感元件两端的电压大小与电流的变化率成正比。 (√ ) 21.无功功率的单位是V.A 。 ( Х ) 22.有一正弦电流 i= -14.12sin(314t+45 )A, 其初相为450 (Х ) 23.V 314sin 2220 1t u =的相位超前V )45628sin(3112?-=t u 45°。 (Х ) 24、两个正弦量的初相之差就为两者的相位差。 ( Х ) 25、正弦量可以用相量来表示,因此相量等于正弦量。 (Х ) 26、交流电的有效值是它的幅值的0.707倍。 ( Х ) 27、万用表的电压档测出的电压值是交流电压的最大值。 (Х ) 28、电容元件电压相位超前于电流π/2 rad 。 ( Х ) 29.在RLC 串联电路中,公式 C L R U U U U ++= 是正确的。(Х ) 30、有功功率加无功功率不等于视在功率。 (√ ) 31、串联电路的总电压相位超前电流时,电路一定呈感性。 ( √ ) 32、电阻电感相并联,I R =3A ,I L =4A ,则总电流等于5A 。 (√ ) 33、正弦电流通过串联的两个元件时,若U 1=10V, U 2=15V, 则总电压U= U 1+ U 2=25V 。(Х ) 34、电容元件上的电流、电压方向为关联参考方向时其伏安特性为i=Cdu/dt 。( √ ) 35、交流电路中负载获得最大功率的条件是负载阻抗等于电源内阻抗。( Х ) 36、任何一个线性二端网络对外电路来说都可以用一个等效的电压源与电阻串联模型代替。(√)

大学物理电磁学复习提纲(赵凯华)

复习提纲 第一章 §1运用库仑定律 §2理解电场强度电场线能用叠加原理求电场分布(包括离散的电荷分布和电荷的连续分布)求带电体在电场中所受的力及其运动 §3高斯定理熟练运用高斯定理求解电场 §4 理解电势和电势差理解静电场力作功与路径无关及静电场的环路定理能运用叠加原理和电势定义式求电势分布理解等势面理解电势梯度及与电场的关系 §5 熟悉导体静电平衡条件理解静电平衡导体的性质、导体上的电荷分布、静电屏蔽熟练掌握有静电平衡导体问题的一般求法 §6 了解静电能的概念 §7 了解孤立导体的电容熟知典型电容器的电容能熟练求解简单电容器的电容、电容器的能量 §9 理解电流密度矢量熟悉并且能运用欧姆定律的微分形式,理解电流的连续性方程、稳恒电流条件理解电动势并且能在电路中运用 熟悉例题1—15,22—27。 参考习题 3、13、18、25、36、37、46、52、66 第二章 §1 理解电流的磁效应了解安培定律、电流单位的定义 §2 理解B的定义熟悉毕萨定律并且能求解简单情况下的问题(包括2.3, 2.4, 2.5的情形) §3 熟悉安培环路定理且能熟练应用求解问题 §4 了解磁场的高斯定理 §5 熟悉安培力熟练求解导体棒和线圈在磁场中所受的力和力矩 §6 熟悉洛仑兹力及特点,能求解简单磁场分布下带电粒子在磁场中的运动问题理解霍尔效应并且能求解 熟悉例题5—8,12--13 参考习题 1、2、3、4、7、14、16、17、23、28、32、43、50 第三章 §1 熟悉电磁感应现象能熟练应用电磁感应定律和楞次定律了解涡电流和电磁阻尼 §2 熟练应用动生电动势公式了解交流发电机原理理解感生电场能求轴对称磁场情况下感生电动势了解感应加速器 §5 理解互感和自感现象能求简单情况的自感和互感、两线圈顺接和反接的自感、互感系数和自感系数的关系熟悉自感磁能的公式,了解互感磁能 熟悉例题1—3,7—9, 参考习题 3、4、5、11、12、14、26、32、35 第四章 §1 理解极化概念了解极化的微观机制理解极化强度P的定义、退极化场的概念能求解极化电荷面密度熟悉D的定义,理解D、E、P三者的关系能熟练

电路原理期末复习提纲

第一部分直流电阻电路一、电压电流的参考方向、功率 U 图1 关联参考方向图2 非关联参考方向 在电压、电流采用关联参考方向下,二端元件或二端网络吸收的功率为P=UI; 在电流、电压采用非关联参考方向时,二端元件或二端网络吸收的功率为P=-UI。 例1计算图3中各元件的功率,并指出该元件是提供能量还是消耗能量。 u u= -u=10 (a) 图3 解:(a)图中,电压、电流为关联参考方向,故元件A吸收的功率为 p=ui=10×(-1)= -10W<0 A发出功率10W,提供能量 (b)图中,电压、电流为关联参考方向,故元件B吸收的功率为 p=ui=(-10)×(-1)=10W >0 B吸收功率10W,消耗能量 (c)图中,电压、电流为非关联参考方向,故元件C吸收的功率为 p=-ui= -10×2= -20W <0 C发出功率20W,提供能量 例2 试求下图电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 其它例子参考教材第一章作业1-5,1-7,1-8 二、KCL、KVL KCL:对电路中任一节点,在任一瞬时,流入或者流出该节点的所有支路电流的代数和恒为零,即Σi =0; KVL:对电路中的任一回路,在任一瞬时,沿着任一方向(顺时针或逆时针)绕行一周,该回路中所有支路电压的代数和恒为零。即Σu=0。 例3如图4中,已知U1=3V,U2=4V,U3=5V,试求U4及U5。 解:对网孔1,设回路绕行方向为顺时针,有 -U1+U2-U5=0 得U5=U2-U1=4-3=1V 对网孔2,设回路绕行方向为顺时针,有 U5+U3-U4=0 得U4=U5+U3=1+5=6V 三、理想电路元件 理想电压源,理想电流源,电阻元件,电容元件,电感元件,线性受控源 掌握这些基本元件的VCR 关系,对储能元件,会计算储能元件的能量。 图4

电磁学期末考试试题 2

电磁学期末考试 一、选择题。 1. 设源电荷与试探电荷分别为Q 、q ,则定义式q F E =对Q 、q 的要求为:[ C ] (A)二者必须是点电荷。 (B)Q 为任意电荷,q 必须为正电荷。 (C)Q 为任意电荷,q 是点电荷,且可正可负。 (D)Q 为任意电荷,q 必须是单位正点电荷。 2. 一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元dS 的一个带电量为dS σ的电荷元,在球面内各点产生的电场强度:[ C ] (A)处处为零。 (B)不一定都为零。 (C)处处不为零。 (D)无法判定 3. 当一个带电体达到静电平衡时:[ D ] (A)表面上电荷密度较大处电势较高。 (B)表面曲率较大处电势较高。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 4. 在相距为2R 的点电荷+q 与-q 的电场中,把点电荷+Q 从O 点沿OCD 移到D 点(如图),则电场力所做的功和+Q 电位能的增量分别为:[ A ] (A) R qQ 06πε,R qQ 06πε-。 (B) R qQ 04πε,R qQ 04πε-。 (C)R qQ 04πε- , R qQ 04πε。 (D)R qQ 06πε-,R qQ 06πε。 5. 相距为1r 的两个电子,在重力可忽略的情况下由静止开始运动到相距为2r ,从相距1r 到相距2r 期间,两电子系统的下列哪一个量是不变的:[ C ]

(A)动能总和; (B)电势能总和; (C)动量总和; (D)电相互作用力 6. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面。今以该圆周为边线,作一半球面s , 则通过s 面的磁通量的大小为: [ B ] (A)B r 2 2π。 (B)B r 2 π。 (C)0。 (D)无法确定的量。 7. 对位移电流,有下述四种说法,请指出哪一种说法正确:[ A ] (A)位移电流是由变化电场产生的。 (B)位移电流是由线性变化磁场产生的。 (C)位移电流的热效应服从焦耳—楞次定律。 (D)位移电流的磁效应不服从安培环路定理。 8.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。问那个区域中有些点的磁感应强度可能为零:[ D ] A .仅在象限1 B .仅在象限2 C .仅在象限1、3 D .仅在象限2、4 9.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为:[ D ] A .P B >Q B >O B B .Q B >P B >O B C . Q B >O B >P B D .O B >Q B >P B

电路分析基础_期末考试试题与答案

试卷编号 命题人:审批人:试卷分类(A卷或B卷)A 大学试卷 学期:2006至2007学年度第1学期 课程:电路分析基础 I专业:信息学院05级 班级:姓名:学号: 题号一二三四五六七八九 十十 十总分 一二 得分 一、得分 (本小题 5 分 )求图示电路中a、 b 端的等效电阻R ab。 R2 R1a b R ab=R2 二、得分 (本小题 6 分 )图示电路原已处于稳态,在t 0 时开关打开,求则i 0。 5i t 0 4A51F05.H3 i(0+)=20/13=1.54A

三、得分 (本大题6分)求图示二端网络的戴维南等效电路。 a +1 15V2 -1 1A2 2 b u ab=10v, R0=3Ω 四、得分 (本小题 5 分)图示电路中,电流I=0,求U S。 I 3 2A3 U S Us=6v 五、得分 (本小题 5 分)已知某二阶电路的微分方程为 d 2 u8 d u12 u 10 d t 2 d t 则该电路的固有频率(特征根 )为 ____-2________ 和___-6______ 。该电路处于 ___过 _____阻尼工作状态。

六、得分 (本小题 5 分 )电路如图示 ,求 a、 b 点对地的电压U a、U b及电流 I 。 1 1a1 I b 3V212V U a=U b=2v, I=0A. 七、得分 (本大题10分 )试用网孔分析法求解图示电路的电流I1、 I2、 I3。 4I1I 25 I 3 12V234V I1=4A, I 2=6A,I3=I1-I2=-2A 八、得分 (本小题 10 分 )用节点分析法求电压 U。 4 4U 14 U 1U 224 V U=4.8V

“电磁场理论”课程教学大纲

西安交通大学 “电磁场理论”课程教学大纲 英文名称:Theory of Electromagnetic Field 课程编码:PHYS2012 学时:64 学分:4 适用对象:电子科学与技术专业本科生 先修课程:普通物理,数理方程,矢量与张量分析 使用教材及参考书: 金泽松,《电磁场理论>>, 电子科技大学出版社, 1995 郭硕鸿,《电动力学》,高等教育出版社,1989 冯慈璋,《电磁场》高等教育出版社,1983 李承祖,《电动力学教程》(修订版),国防科技大学出版社,1997 一、课程性质、目的和任务 本课程是电子科学与技术系各专业本科生必修的一门工程基础课.通过本课程的学习,使学生熟悉电磁场的基本理论,掌握基本规律,加深对电磁场的性质和时空概念的理解,获得分析和处理一些电磁现象的方法和能力,为以后的专业课程学习打下基础。 二、教学基本要求 1. 了解电磁现象的普遍规律,掌握库仑定律、高斯定理、毕奥定律、电磁感应定律和麦克斯韦方程组, 熟悉电磁场的边值关系。 2. 了解静电场和稳恒电流磁场的性质,熟悉静电势和微分方程、磁矢势和微分方程,掌握求解静电场和磁场问题的常用分析方法。 3.掌握波动方程和亥姆霍兹方程,熟悉平面电磁波的性质, 掌握电磁波传播的规律。 4.了解时变电磁场的性质和势,掌握辐射电磁场的规律和计算方法。 5.了解狭义相对论和相对论电动力学,掌握电磁场量在不同参考系间的变化规律。了解带电粒子和电磁场的相互作用,掌握运动带电粒子的位和电磁场,了解加速运动带电粒子的辐射。 三、教学内容及要求 第一章:电磁现象的普遍规律 1.了解电荷和电场、电流和磁场。 2.掌握库仑定律、高斯定理、毕奥定律、电磁感应定律。 3.重点掌握麦克斯韦方程组和电磁场的边值关系。 4.了解介质的电磁性质。 5.掌握电磁场的能量和能流密度表示式,了解电磁能量的传输。

电路原理期末考试题27720

电路原理—2 一、单项选择题(每小题2分,共40分)从每小题的四个备选答案中,选出 一个正确答案,并将正确答案的号码填入题干的括号内。 1.图示电路中电流 s i等于() 1) 1.5 A 2) -1.5A 3) 3A 4) -3A 2.图示电路中电流I等于() 1)2A 2)-2A 3)3A 4)-3A 3.图示直流稳态电路中电压U等于() 1)12V 2)-12V 3)10V S i Ω 2 A i1 = 16 Ω 6Ω 2 Ω 2 V 12 Ω 3 Ω 2

4) -10V 4. 图示电路中电压U 等于( ) 1) 2V 2) -2V 3) 6V 4) -6V 5. 图示电路中5V 电压源发出的功率P 等于( ) 1) 15W 2) -15W 3) 30W 4) -30W 6. 图示电路中负载电阻L R 获得的最大功率为( ) 1) 2W 2) 4W 3) 8W 4) 16W V 6A 3+- V 55.0 2L

7. 图示单口网络的输入电阻等于( ) 1) 3Ω 2) 4Ω 3) 6Ω 4) 12Ω 8. 图示单口网络的等效电阻ab R 等于( ) 1) 2Ω 2) 3Ω 3) 4Ω 4) 6Ω 9. 图示电路中开关闭合后电容的稳态电压()∞c u 等于( ) 1) -2V 2) 2V 3) -5V 4) 8V S 2.0 S a b Ω 3Ω :a b

10. 图示电路的开关闭合后的时间常数等于( ) 1) 0.5s 2) 1s 3) 2s 4) 4s 11. 图示电路在开关闭合后电流()t i 等于( ) 1) 3t e 5.0- A 2) 3(t e 31--) A 3) 3(t e 21--) A 4) 3(t e 5.01--) A 12. 图示正弦电流电路中电流()t i 等于( ) 1) 2)1.532cos( +t A 2) 2)1.532cos( -t A 3) 2)9.362cos( +t A 4) 2)9.362cos( -t A 13. 图示正弦电流电路中电流()t i R 的有效值等于( U V t t u S )2cos(10)( =L i ?H 2H 26

电磁学发展史简述

绪论 一、电磁学发展史简述 1概述 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。

电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。 2电学发展简史 “电”一词在西方是从希腊文琥珀一词转意而来的,在中国则是从雷闪现象中引出来的。自从18世纪中叶以来,对电的研究逐渐蓬勃开展。它的每项重大发现都引起广泛的实用研究,从而促进科学技术的飞速发展。 现今,无论人类生活、科学技术活动以及物质生产活动都已离不开电。随着科学技术的发展,某些带有专门知识的研究内容逐渐独立,形成专门的学科,如电子学、电工学等。电学又可称为电磁学,是物理学中颇具重要意义的基础学科。

电路原理期终试卷卷及答案

浙江工业大学期终考试命题稿 2009/2010学年第二学期 命题注意事项: 一、命题稿请用A4纸电脑打印,或用教务处印刷的命题纸,并用黑墨水 书写,保持字迹清晰,页码完整。 二、两份试题必须同等要求,卷面上不要注明A、B字样,由教务处抽定 A、B卷。 三、命题稿必须经学院审核,并在考试前两周交教务处。

浙江工业大学 2009 / 2010 学年 第 二 学期期终考试A 卷 课程 电 路 原 理 B 姓名________________ _________ 班级__________________________ 学号 一、填空题(共30分,每题3分) 1、设R Y 为对称Y 形电路中的一个电阻,则与其等效的形电路中的每个电阻等于R= 3R Y 。 2、图1-2所示电路中的运放是理想的,则输出电压u 0= -(R 2/R 1) u s 。 3、图1-3所示电路,回路2的回路电流方程为 (R 2+R 3)i 2- R 2i 1 = – u s 。 4、图1-4所示电路,二端网络N S 中含独立源、电阻和受控源,当R = 0 时,i = 3A ,当 R = 2时,i = 1.5A 。当R = 1时,i = 2A 。 5、图1-5所示电路的输入阻抗Z i = Z L /4 。 6、图1-6所示耦合电感电路中,已知L 1 = 120mH ,L 2= 100mH ,M = 50mH 。 则a ,b 端的等效电 感L = 95 mH 。 7、某一感性负载,接在电压为220V ,频率为50Hz 的电源上,该负载的功率为264W ,电流为2A 。如果在负载两端并联一电容,使功率因数cos φ=1,此时电源端的电流为 1.2 A 。 u S 图1-3 u I 0 图1-2 图1-4 R 图1-5 L 图1-6 a b

电路原理期末考试

电路原理期末考试復習(一) 13-1 说明题图13-1所示各非正弦周期波形包含哪些分量(正弦分量、余弦分量、奇次分量、偶次分量、直流分量)。 解:(a ))()(t f t f --=,)2()(T t f t f +-=,因此波形包含正弦奇次分量; (b ))()(t f t f -=,)2()(T t f t f +-=,因此波形包含余弦奇次分量; (c ))2()(T t f t f +-=,因此波形包含正弦奇次、余弦奇次分量; (d ))()(t f t f -=,且一个周期内的平均值不为0,因此波形包含直流分量和余弦分量; (e )周期为T /2,)()(t f t f -=,且一个周期内的平均值不为0,因此波形包含直流分量和余弦分量; (f )将时间轴向上平移至消去直流分量后,得到的函数为奇函数,因此原波形包含直流 分量和正弦分量。 13-17 题图13-17中,虚线框内为一滤波电路,输入电压t U t U u ωω3sin sin m3m1+=。若 L 1=0.12H ,ω=314rad ?s -1。要使输出电压t U u ωsin m12=(即输出电压中没有三次谐波,而基 波全部通过),则C 1与C 2的值应取多少? (a) (b) (c) (d) (e) (f) 题图13-1 - u 2

解:)rad/s 314(V 3sin sin 311=+=ωωωt U t U u m m 若u 2中不含三次谐波,需L 1、C 1对三次谐波电压产生并联谐振,即 μF 39.991131 2 11 1== = L C C L ωω 若使u 1中基波全部加到R 2上,需L 1//C 1与C 2对基波电压发生串联谐振,即 μF 1.751 1111 1 1 1 21 1 112 =-=-??? ? ??= C L L C C L C C L C ωωωωωωωω 6-5题图6-5所示电路在t =0时开关动作。画出0+ 等效电路图,并求出图中所标电压、电流0+ 时的值。 解:(a )0+ 等效电路为: (b )0+ 等效电路为: S C C C S C C I r r r r u r u i r I u u 121212 )0()0()0()0()0(+-=???? ??+-===+++ -+V 80)0()3010()0(V 20)0(10)0(A 230 20205)0()0(=+-==-=-=+?- ==++++-+L L L R L L i u i u i i u C (0+) C L (0+) (c) (d) 2 u C C (a) i L (b) 题图6-5

电磁场理论复习提纲

电磁场理论复习提纲 一、矢量分析与场论基础 主要内容与问题: ①矢量及矢量的基本运算; ②场的概念、矢量场和标量场; ③源的概念、场与源的关系; ④标量函数的梯度,梯度的意义; ⑤正交曲线坐标系的变换,拉梅系数; ⑥矢量场的散度,散度的意义与性质; ⑦矢量函数的旋度,旋度的意义与性质 ⑧正交曲线坐标系中散度的计算公式; ⑨矢量场的构成,Helmholtz定理; ⑩正交曲线坐标系中散度的计算公式。 二、宏观电磁场实验定律 主要内容与问题: ①库仑定律,电场的定义,电场的力线; ②静电场的性质(静电场的散度、旋度及电位概念); ③Ampere定律;磁感应强度矢量的定义,磁场的力线; ④恒定电流磁场的性质(磁场的散度、旋度和矢势概念);

⑤Faraday电磁感应定律,电磁感应定律的意义; ⑥电流连续原理(或称为电荷守恒定律) ⑦电磁场与带电粒子的相互作用力,Lorentz力公式。 三、介质的电磁性质 主要内容与问题: ①电磁场与介质的相互作用的物理过程; ②介质极化,磁化、传导的宏观现象及其特点; ③介质的极化现象及其描述方法,电位移矢量; ④介质的磁化现象及其描述方法,磁场矢量; ⑤介质的传导现象及其描述方法,欧姆定律; ⑥介质的基本分类方法及电磁特性参数与物质本构方程; ⑦极化电流、磁化电流与传导电流产生原因及其异同点; ⑧介质的色散及其产生的原因,色散在通信中带来的问题; 四、宏观Maxwell方程组 主要内容与问题: ①静态电磁场与电流连续性原理的矛盾; ②位移电流概念及其意义; ③宏观电磁场运动的Maxwell方程组; ④Maxwell方程组的物理意义; ⑤宏观Maxwell的微分形式、积分形式、边界条件;

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

09-10(一)《电路原理B》期终试卷A卷及答案

浙江工业大学 2009 / 20010 学年 第 一 学期期终考试A 卷 课程 电 路 原 理 B 姓名________________ _________ 班级__________________________ 学号 一、填空题(共32分,每题4分) 1、 图1-1所示电路中,I 1 = 4 A ,I 2 = -1 A 。 2、 图1-2所示电路, U 1 = 4 V ,U 2 = -10 V 。 3、 图1-3所示电路,开关闭合前电路处于稳态,()+0u = -4 V , + 0d d t u C = -20000 V/s 。 4、 图1-4(a )所示电路,其端口的戴维南等效电路图1-4(b )所示,其中u OC = 8 V , R eq = 2 Ω。 5、 图1-5所示正弦稳态电路中,已知V 45/50ab ?=U ,V 45/50S ?-=U 。则电流表○A 的读数为 1.25 A ,功率表○W 的读数为 6 2.5 W 。 1' 1Ω 图1-4 (a) (b) ' 图1-3 μF 图1-1 U 1图1-2

6、 图1-6所示正弦交流电流中,?=0/4S I A ,则电源发出的有功功率P = 16 W ,电源发出的无功功率Q = 16 V ar 。 7、图1-7所示电路中,电源电压t u S ωcos 250=V ,频率ω可调。当电源频率ω = 10 rad/s 时,电路发生谐振,此时理想变压器副边电压有效值U 2 = 80 V 。 8、已知两线圈的自感分别为0.8H 和0.7H ,互感为0.5H ,线圈电阻忽略不计。正弦电源电压有 效值不变,则两线圈同名端反接时的电流有效值为两线圈同名端顺接时的 5/3 倍。 二、简单计算题(每题6分,共30分) 1、 图2-1所示电路中,电阻R L 为何值时获得最大功率,并求此最大功率。 解:根据戴维南定理,原电路的戴维南等效电路如图2-1a 所示。 (2分) 当Ω2L =R 时,电阻R L 可获得最大功率 (2分) 最大功率)(3 13422max W P =?= (2分) - + S a 图1-5 Ω 图1-6 图2-1a L 2V 图2-1 L 图1-7 ∶8Ω

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

电磁场理论的基本概念

第十三章 电磁场理论的基本概念 历史背景:十九世纪以来,在当时社会生产力发展的推动下,电磁学得到了迅速的发展: 1. 零星的电磁学规律相继问世(经验定律) 2. 理论的发展,促进了社会生产力的发展,特别是电工和通讯技术的发展→提出了建立理论的要求,提 供了必要的物质基础。 3. *(Maxwell,1931~1879)麦克斯韦:数学神童,十岁进入爱丁堡科学院的学校,十四岁获科学院的数 学奖; 1854,毕业于剑桥大学。以后,根据开尔文的建议,开始研究电学,研究法拉第的力线; 1855,“论法拉第的力线”问世,引入δ =???H H ,同年,父逝,据说研究中断; 1856,阿贝丁拉马利亚学院的自然哲学讲座教授,三年; 1860,与法拉第见面; 1861-1862,《论物理力线》分四部分发表;提出涡旋电场与位移电流的假设。 1864,《电磁场的动力理论》向英国皇家协会宣读; 1865,上述论文发表在《哲学杂志》上; 1873,公开出版《电磁学理论》一书,达到顶峰。这是一部几乎包括了库仑以来的全部关于电磁研究信息的经典著作;在数学上证明了方程组解的唯一性定理,从而证明了方程组内在的完备性。 1879,去世,48岁。(同年爱因斯坦诞生) * 法拉第-麦克斯韦电磁场理论,在物理学界只能被逐步接受。它的崭新的思想与数学形式,甚至象赫姆霍兹和波尔兹曼这样有异常才能的人,为了理解消化它也花了几年的时间。 §13-1 位移电流 一. 问题的提出 1. 如图,合上K , 对传I l d H :S =?? 1 对传I l d H :S =?? 2 2. 如图,合上K ,对C 充电: 对传I l d H :S =?? 1 对02=??l d H :S 3. M axwell 的看法:只要有电动力作用在导体上,它就产生一个电流,……作用在电介质上的电动力,使它的组成部分产生一种极化状态,有如铁的颗粒在磁力影响下的极性分布一样。……在一个受到感应的电介质中,我们可以想象,每个分子中的电发生移动,使得一端为正,另一端为负,但是依然和分子束缚在一起,并没有从一个分子到另一个分子上去。这种作用对整个电介质的影响是在一定方向上引起的总的位移。……当电位移不断变化时,就会形成一种电流,其沿正方向还是负方向,由电位移的增大或减小而定。”这就是麦克斯韦定义的位移电流的概念。

相关主题