搜档网
当前位置:搜档网 › 增压器喘振的原因

增压器喘振的原因

增压器喘振的原因
增压器喘振的原因

增压器喘振的原因

当压气机的流量减小到一定值后,气体进入工作叶轮和扩压器的方向偏离设计工况,造成气流从叶片或扩压器上强烈分离,同时产生强烈脉动,并有气体倒流,引起压气机工作不稳定,导致压气机振动,并发出异常的响声。

(1)气流通道堵塞 [增压系统流道堵塞是引起增压器喘振最常见的原因]

*增压系统的气体流动路线:

压气机进口滤器和消音器压气机叶轮压气机扩压器空气冷却器扫气箱柴油机的进气口(阀)排气口(阀)排气管废气涡轮喷嘴环废气涡轮叶轮废气锅炉烟囱

*上述流动路线中的任一环节发生阻塞,如脏污、结炭变形等都会因流阻增大而使压气机流量减小,背压升高,引起喘振。

*其中易脏堵的部件是进口滤器,压气机叶轮和扩压器,空气冷却器,气缸进气口和排气口,涡轮喷嘴环和叶轮。另外,涡轮的喷嘴环易发生热变形。

*管理中应注意检查上述部件的污损,并加以清洁。这样就可以防止和排除因流道堵塞而引起的喘振。

(2)增压器和柴油机的运行失配

对于设计时选配良好的柴油机和增压器,在正常情况下是不会发生喘振的。但是由于柴油机本身的某些故障或者由于装载、顶风、污底等原因,或者由于轮机员操作不当以及在大风浪天航行,都可能导致柴油机和增压器匹配不良引起喘振。

*柴油机喷油设备出现故障;柴油机活塞环断裂或者粘着;气阀烧损,这时如果柴油机的供油量不变,就会破坏柴油机和增压器的正常匹配关系,导致压气机在高背压小流量的状态下工作,严重是就会发生增压器喘振。这时只要排除了柴油机的故障也就消除了喘振。

*当船舶满载,顶风,污底严重时,因阻力增加,主机负荷加大,柴油机在低转速高负荷下运行气缸耗气量降低而循环喷油量增加,废气能量增大,也会使增压器转速升高,供气量增多,这也容易引起增压器和柴油机匹配不良而出现喘振,此时降低油门即可消除喘振。

*若轮机人员操作不慎,可能使增压器与柴油机失配而发生喘振,但不久又能恢复匹配关系,喘振即可自动消失,如高速下停车,需急速将操纵杆拉到停油位置,急速降低主机转速时也会出现类似情况;主机加速过快时增压器也会发生短暂喘振。

*船舶在风浪天航行发生飞车时,并联增压系统和单独增压系统回发生喘振。在并联增压时,辅助泵因转速高供气增多,使压气机背压较高而流量减小,引起喘振;在单独增压系统时,若螺旋桨入水时柴油机转速过低,会造成压气机阻塞而发生喘振。

(3)脉冲增压一缸熄火或各缸负荷严重不均

当某缸熄火时,与之相连的涡轮功率减小,转速下降,供气能力降低,而其它增压器正常工作,压气机的出口背压仍与正常运转时相同。这对于同熄火缸相连的增压器来说背呀就显得过高,使排量减小,发生喘振。由于喘振使得压气机出口压力波动幅度较大,甚至可能引发多台增压器交替喘振。若使熄火缸恢复工作或减小另一组气缸的供油量,则可消除喘振。

各缸负荷不均引起喘振的机理与上述相同。

(4)环境温度的变化

在低温时匹配的不带空冷器的增压器和柴油机如用在高温海域时,或者在高温时匹配的带有空冷的增压器和柴油机用在低温海域时,由于两者匹配关系的改变,运行点更靠近喘振区,因而容易引起喘振。

大型轴流风机各类振动原因分析及处理措施精编版

大型轴流风机各类振动原因分析及处理措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲

柴油机涡轮增压器喘振的分析及排除

大连交通大学成人教育学院 毕业论文(设计) 题目柴油机涡轮增压器喘振的原因分析及排除铁道机车车辆专业 学生姓名刘杨班级 指导老师职称(务) 指导单位 教研室主任 完成日期年月日

大连交通大学成人教育学院 毕业论文(设计)评阅书 学生姓名刘杨班级 题目柴油机涡轮增压器喘振的原因分析及排除 指导老师职称(务) 指导单位 教研室主任 1.指导教师评语: 签名: 2.答辩委员会综合评语: 经毕业(论文)设计答辩委员会综合评定成绩为: 答辩委员会主任(签字): 年月日

大连交通大学成人教育学院 毕业论文(设计) 题目柴油机涡轮增压器喘振的原因分析及排除 起止日期年月日至年月日 学生姓名刘杨班级 指导老师职称(务) 指导单位 教研室主任 日期年月日

任务及要求 1.在查阅分析资料的基础上确定论文研究的主要内容及论文提纲 2.对我国铁路东风型内燃机车废气涡轮增压器喘振的原因进行分析 3.探讨影响我国铁路东风型内燃机车废气涡轮增压器喘振的具体原因及消除方法 4.提出消除东风型内燃机车废气涡轮增压器喘振的几点建议 5.论文要求内容详实、论据充分、条例清楚、结构严谨、有独立见解、有所创新,论文符合《大连交通大学成人教育学院毕业设计的要求》。

毕业设计(论文)内容 计:说明书(论文)16页表格 0 张插图 0 幅附设计图 0 张 完成日期年月日

摘要 增压是提高柴油机功率最主要、最有效的途径,随着增压压力的提高,柴油机的功率成比例提高,因此增压器一旦工作异常或发生故障对柴油机的工作性能影响很大。经调查发现,增压器故障在柴油机故障中所占比例正在逐年增大,而其中又以增压器的喘振最为常见,且危害巨大。本文即深入分析柴油机涡轮增压器的喘振故障,又对增压器的特性进行探讨,并且对增压器与柴油机的配合进行讨论,进而深入分析增压器喘振故障的理论原因,并给出一些实际情况中引起喘振的具体因素和相应的预防、排除方法。 关键词:柴油机涡轮增压器喘振分析排除

浅析汽车发动机涡轮增压器原理及故障

浅析汽车发动机涡轮增压器原理及故障 发表时间:2018-10-26T10:16:45.080Z 来源:《防护工程》2018年第17期作者:李若辉 [导读] 随着汽车工业的飞速发展,汽车已逐渐走进到千家万户,在满足乘坐的舒适性、使用的经济性要求后,人们对于汽车的动力性的要求也逐步提高 长城汽车股份有限公司天津哈弗分公司动力事业部天津 300000 摘要:随着汽车工业的飞速发展,汽车已逐渐走进到千家万户,在满足乘坐的舒适性、使用的经济性要求后,人们对于汽车的动力性的要求也逐步提高,在现有的技术条件下,给发动机加装涡轮增压器是最好的解决办法。一般情况下,加装增压器后,发动机的功率及扭矩要比加装前增大20%~30%。小排量,大功率,代表着当前发动机技术的最高水平。比普通发动机拥有更好的动力,也有更好的燃油经济性。但在使用中常发生废气涡轮增压器早期损坏的故障,分析其原因,主要是对增压器的使用,维护不当造成的。现对影响增压器的使用寿命因素,故障和诊断加以分析,并说明使用中的注意事项,意在减少增压器的故障,延长其使用寿命,降低维护费用。 关键词:汽车发动机;涡轮增压器;原理;故障 1 引言 涡轮增压器它是安装在发动机排气管道上的一台精致的空气压缩机,利用发动机排出的废气推动涡轮室内的涡轮旋转,涡轮又带动同轴的叶轮旋转,这样,叶轮就把从空气滤清器进来的空气进行压缩,使之增压进入汽缸。由于进入气缸的空气密度增大,可使更多的燃油充分燃烧,因而大大提高了发动机的功率,降低了燃油消耗。 2 涡轮增压器的工作原理 涡轮增压器的组成由涡轮,压气机,转子总成,轴承机构,中间体和密封装置等组成。工作原理是利用发动机排出的高温高压废气驱动废气涡轮旋转,废气涡轮带动同一轴上的压气机共同旋转,压气机压缩由空气滤清器过滤后的空气,使空气被压缩后增压进入发动机气缸内,提高发动机进气量的装置,减少废气中CO、HC、CL粒等有害物的排放。废气涡轮与压气机通常装成一体。 3 涡轮增压器的使用 3.1 正确使用发动机机油 发动机的机油要按说明书规定使用,对于低增压柴油机,应选用不低于CC级的柴机油,对中增压柴油机,应选用不低于CD级的柴机油。对高增压柴油机一般采用CH级的柴机油。发动机保养要按发动机工作小时要求及时更换机油和机油滤清器,保证油质,使增压器得到良好的润滑和散热。 3.2 保持正常的润滑系统机油压力 柴油机在运转中,当机油压力低于0.15MPa时,应停机检查,增压器转子轴与轴承润滑,以免机油压力过低造成烧损,机油压力过高也可造成机油窜入涡轮室或压气机室。严禁发动机怠速运转时间过长,以防机油压力过低使增压器润滑不良。 3.3 发动机的正确预热 汽车发动机启动后不能急加油门,应使发动机怠速运转3-5min,以保证增压器轴承得到充分的润滑,增压器的轴承是浮动轴承,如润滑不良可使轴承瞬间烧损。在冬季低温启动发动后急加油门可损坏增压器油封,要使发动机至少怠速预热5min。 3.4 发动机的正确熄火 发动机在熄火前应使发动机怠速运转3-5min。如发动机在高转速下突然熄火停止工作,机油压力为零,而增压器的转子由于惯性继续高速运转,增压器在高转速下停止润滑,热量未被机油带走及时冷却,使增压器的局部温度可达900-1000摄氏度,产生轴承烧损和机油结焦产生积碳。所以在高转速下应怠速运转3-5min,来降低增压器的转子转速和降低增压器的温度。 4 涡轮增压器检查 4.1 涡轮增压器工作情况检查 发动机在工作中,根据发动机怠速和中速及变换发动机转速情况下检查,使增压器应运转均匀,无金属撞击或金属磨擦异响,无喘振或不正常振动现象。 4.2 涡轮增压器外部检查 经常检查增压器固定情况,排气和导管使否漏气润滑油管和接头是否漏油,例如卡特彼勒电控柴油机3512B装配水冷却增压器,要检查冷却水管和接头密封是否漏水。出现渗漏及时检修。 浅析汽车涡轮增压器原理及故障。 4.3 涡轮增压器涡轮及空压轮检查 检查涡轮和空压轮应完整清洁,涡轮叶背面有积碳,是机油焦化或机油燃烧产生积碳。空压轮叶背面有积尘,是进气管路漏气。在拆检时应注意不要碰撞损坏叶轮。 4.4 涡轮增压器密封环检查 要经常检查密封环是否密封,密封不良可使机油进入进气管道及气缸燃烧。造成发动机机油烧损。 5 影响增压器使用寿命的因素 第一,润滑油。润滑油用来润滑冷却增压器,但当增压器正常工作时,其转轴转速高达每分钟几万转到十几万转,润滑油被打成泡沫状,其冷却和润滑性能下降,因此润滑系统必须保证能提供充足的润滑油。若当600℃左右的高温废气通过涡轮室时,轴承座得不到足够的润滑和冷却,润滑油将在其环形油道壁上结焦,逐渐堵塞油道。润滑油如果不清洁,也会很快损坏增压器内部零件。如含有灰尘、泥状沉淀物和金属微粒的润滑油会迅速破坏各零件的配合间隙,刮伤和磨损轴承表面。这些都将会引起涡轮轴转动阻力增大和失掉平衡,使轴的转速下降,导致柴油机的功率损失增大,且转动不平衡将很快导致增压器零件的损坏。 第二,进气系统。增压器工作的好坏也依赖于进气系统,只有供给充足、干净的空气才能保证增压器长期无故障工作,使寿命延长。

涡轮增压器常见故障及排除

涡轮增压器常见故障及 排除 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

涡轮增压器常见故障及排除废气涡轮增压器(以下简称增压器)是一种很精密的装置,广泛应用在工程机械、发电机组等动力设备中,在不改变柴油机基本结构的基础上,增压器能增加动力30%甚至更多,使燃油油耗降低5%左右,收到很好的经济效益。但是,增压器在其使用过程中往往因安装、使用不当,达不到预期的使用效果,现以增压器的结构原理为基础,分析增压器的常见故障。 增压器是利用排气管中排出的废气,推动涡轮高速旋转,同时通过转子轴带动压气机叶轮高速旋转,其转速可高达50000~230000r/min,高速旋转的压气机叶轮将吸入的空气增压,使进入汽缸的空气密度大大增加,提高了柴油机功率。 1增压器常见的故障 1.1增压效果差 主要表现在动力下降,冒黑烟,燃油经济性差。 1.2增压器一端或两端漏油

这是比较常见的故障,也是影响增压器使用寿命的主要原因。 1.3增压器使用寿命离理想值相差太大 换上一个增压器,很快就出现浮动轴承损坏、两端漏油、动力下降等故障。 2故障原因 2.1增压效果差 (1)空气滤清器太脏,不能向发动机内提供高密度的洁净空气。 (2)叶轮破损,引起进气量不足。 (3)进气的灰尘太多,叶轮和增压器壳接缝处有油泥,影响了增压器叶轮转速,造成进气量不足。 2.2增压器一端或两端漏油

增压器转速很高,其浮动轴承的润滑全靠来自油底壳的润滑油润滑。以正常压力进入轴承间隙的机油在通过轴承工作面后,机油压力变为零,靠自身重力流回油底壳,不会从增压器两端流出。并且在正常工作时,增压器两叶轮之间有一定的压力,机油是不会从低压的轴承区流向两端高压区的,况且两叶轮和浮动轴承之间还有密封环,一般情况不会发生漏油现象。但在下列情况下机油有可能从增压器两端漏出: (1)浮动轴承磨损。长期不换机油或空气滤清器失效造成太多沙尘进入增压器,严重磨损浮动轴承,造成轴承间隙过大,油膜不稳定,在增压器的高转速下,很快就出现增压器的不平衡,引起转子轴系振动加剧,破坏了两端的密封,造成润滑油泄漏。 (2)空气滤清器太脏或堵塞。当空气滤清器因灰尘过多或其他原因造成供气不良时,会导致压气机进气负压太高,使压气机一端内压高于外压,机油在压力差的作用下从进气管一端流出。 (3)回油不畅。当机油从增压器浮动轴承流出后,靠自身重力流回油底壳。当回油管路发生变形或堵塞,或当曲轴箱内因废气压力过高造成回油管内有压力时,从浮动轴承流出的机油就不会很畅快地流回油底壳,而沿转子轴向两端流出密封环,造成漏油。

大型轴流风机各类振动原因分析及处理措施

大型轴流风机各类振动原因分析及处理措施 轴流风机以其流量大、启动力矩小、对风道系统变化适应性强的优势逐步取 代离心风机成为主流。轴流风机有动叶和静叶2种调节方式。动叶可调轴流风机通过改变做功叶片的角度来改变工况,没有截流损失,效率高,还可以避免在小流量工况下出现不稳定现象,但其结构复杂,对调节装置稳定性及可靠性要求较高,对制造精度要求也较高,易出现故障,所以一般只用于送风机及一次风机。静叶可调轴流风机通过改变流通面积和入口气流导向的方式来改变工况,有截流损失,但其结构简单,调节机构故障率很低,所以一般用于工作环境恶劣的引风机。 随着轴流风机的广泛应用,与其结构特点相对应的振动问题也逐步暴 露,这些问题在离心式风机上则不存在或不常见。本文通过总结各种轴流风机异常振动故障案例,对其中一些有特点的振动及其产生的原因进行汇总分析。 一、动叶调节结构导致振动 动叶可调轴流风机通过在线调节动叶开度来改变风机运行工况,这主要依赖轮毂里的液压调节控制机构来实现,各个叶片角度的调节涉及到一系列的调节部件,因而对各部件的安装、配合及部件本身的变形、磨损要求较高,液压动叶调节系统结构如图1所示。动叶调节结构对振动的影响主要分单级叶轮的部分叶片开度不同步、两级叶轮的叶片开度不同步及调节部件本身偏心3个方面。 (一)单级叶轮部分叶片开度不同步 单级叶轮部分叶片开度不同步主要是由于滑块磨损、调节杆与曲柄配合松动、叶柄导向轴承及推力轴承转动不畅引起的。这些部件均为液压缸到动叶片之间的传动配合部件,会导致部分风机叶片开度不到位,而风机叶片重量及安装半径均较大,部分风机叶片开度不一致会产生质量严重不平衡,导致风机在高转速下出现明显振动。 单级叶轮部分叶片开度不同步引起的振动主要特点如下: 1)振动频谱和普通质量均不平衡,振动故障频谱中主要为工频成分,同时部分叶片不同步会产生一定的气流脉动,使振动频谱中出现叶片通过频率及其谐波,部分部件的磨损及松动则会产生一定的非线性冲击,使振动频谱中出现工频高

发动机涡轮增压器的特点及使用注意事项

发动机涡轮增压器的特点及使用注意事项 汽车发动机涡轮增压器主要由涡轮机罩、压气面罩及增压壳等组成。 废气涡轮增压就是利用柴油机排出的能量来驱动涡轮机,从而带动压气机,来提高进气压力增加充气量。增加发动机的进气压力,主要是靠装在发动机上的一个径流式废气涡轮增压器来实现。当发动机运转时,利用发动机排出的废气流经涡轮机的力量,迫使涡轮机叶轮高速旋转。因涡轮机叶轮与压气机叶轮同在一根轴上,所以在涡轮机叶轮高速旋转的同时,也带动压气机叶轮做相应的调整旋转,从而使通过压气机内的空气速度和压力增加。又因压气机出气口是和发动机进气支管相连接的,所以,这些经过增压后的空气,也就能顺利地进入发动机的燃烧室以供燃油燃烧。 柴油机采用废气涡轮增压不仅可提高功率,还可减少单位功率质量、缩小整机外形尺寸、降低燃油消耗。 1、废气涡轮增压的优点 1.1增压器与发动机只有气体管路连接而无机械传动,因此增压方式结构简单,不需要消耗功率。 1.2在发动机重量及体积增加很少的情况下,发动机结构无需做重大改动,便很容易提高功率20%-50%。 1.3由于废气涡轮增压回收了部分能量,故增压后发动机经济性也有明显提高,再加上相对减小了机械损失和散热损失,提高了发动机的机械效率和热效率,使发动机涡轮增压后燃油溺消耗率可降低5%-10%。 1.4涡轮增压发动机对海拔高度变化有较强的适应能力,因此装有废气涡轮增压的汽车在高原地区具有明显的优势。 2、废气涡轮增压器在使用中应注意一下几点: 2.1增压器的转子轴转速高达80000-100000r/min,若用一般机械中的轴承将无法正常工作。因此,增压器普遍采用全浮动轴承。全浮动轴承与转子轴和壳体轴承之间均有间隙,当转子轴高速旋转时,具有0.25-0.4Mpa压力的润滑油充满这两个间隙,使浮动轴承在内外两层油膜中随转子轴同向旋转,但其转速却比转子轴低得多,从而使轴承相对轴承孔和转子轴的相对线速度大幅度下降。由于有双层油膜,可以双层冷却,并产生双层阻尼。由此可知,浮动轴承具有高速轻载下工作可靠等优点,但同时也发现浮动轴承对润滑油的要求很高。必须注意按规定牌号加注润滑油。 2.2所用润滑油必须清洁,否则将加速轴承磨损,甚至导致增压器及发动机性能恶化。因此,必须严格按照保养规定,定期清洗机油滤清器滤芯。15000km磨合期更换一次机油和滤芯,以后每10000km更换一次机油。 2.3应按保养规定定期清洁空气滤清器,每两年便更换一次空气滤清器滤芯或按行驶里程定期更换。使用中应经常检查进气系统和排气系统的密封性。 2.4为确保浮动轴承的润滑,发动机刚起动时,应怠速运转几分钟(至少30s),因为机油的压力以及机油循环至浮动轴承处需要一定时间,否则浮动轴承的润滑条件得不到保障,加剧轴承磨损,甚至发生卡死故障。停机时也同样如此,逐渐减少负荷,直至怠速运转几分钟后方可停机。 2.5增压器在使用了2000-2500h后,应在发动机不解体的状态下测量转子轴的轴向移动量。测量前应先将进、排气管从增压器上拆下,把千分表触点顶在转子轴上,然后轴向推动叶轮进行测量,移动量应为0.10-0.30mm。若超差则应将增压器拆下检修,或更换增压器。

涡轮增压器常见故障及原因对策

涡轮增压器常见故障及原因对策 涡轮增压器是一种很精密的机械,广泛应用在工程机械、发电机组等工程设备中,在不改变发动机原有结构的基础上,增压器曾增加动力30%左右,使燃油油耗降低5%左右,收到很好的经济效益。但是,增压器在其使用过程中往往因安装、使用不当,达不到预期的使用寿命,下面从增压器的结构与原理分析一下增压器的常见故障。 结构原理:利用排气管中排出的废气,推动涡轮高速旋转,同时通过转子轴带动压气机叶轮高速旋转,其旋转可高达50000-230000r/min,高速旋转的压气机叶轮将吸入的空气增压,使进入汽缸的空气密度大大增加,增高了燃油燃烧的效率,提高了经济效益。 一、而对这样高的转速和高温工作环境,增压器其常见的故障有以下几种: 1、增压效果差 主要表现在动力下降,冒黑烟,燃油经济性差。 2、增压器一端或两端漏油 这是比较常见的故障,也是影响增压器使用寿命的主要原因 3、增压器使用寿命离理想值相差太大 换上一个增压器,很快就出现浮动轴承损坏、两端漏油、动力下降等故障。 二、针对以上故障表现,现分析原因如下: 1、对增压效果差,主要原因有: ①空气滤清器太脏,进气条件不好,不能向发动机内提供高密度的洁净空气。 ②叶轮破损引起进气量不足; ③进入的灰尘太多,在叶轮和增压器壳接缝处形成油泥,影响了增压器叶轮转速。这些情况都能造成进气量不足,使发动机不能高效工作,引起动力下降。 2、增压器一端或两端漏油主要原因有: 因增压器转速太高,其浮动轴承的润滑全靠来自油底壳的润滑油润滑。从理论上,当以正常压力进入轴承间隙的机油在通过轴承工作面后,机油压力变为零,靠自身重力流回油底壳,不会从增压器两端流出。并且在正常工作时,增压器两叶轮之间有一定的压力,机油是不会从低压的轴承区流向两端高压区的,况且两叶轮

通风机振动精度

机械工业部石化通用机械工业局企业标准 通风机振动精度 JB/TQ334—84 本标准适用于离心式,轴流式通风机(以下简称风机)振动的评价与测量。 1 风机的振动速度(均方根速度)应符合表1的规定。 2 风机振动速度的测量部位如下: a. 对叶轮直接装在电动机轴上的风机,应在电机定子两端轴承部位测量其垂直,水平,与轴向三个方向 (见图1)的振动速度并取其中最大读数作为度量值,当电动机带有风扇罩时则轴向振动不予测量。 图1 b. 对于双支撑轴承的风机或有两个轴承体的风机,按图2所示三个方向的要求测量原动机 c. 当两个轴承都装在同一个轴承箱内时,按图3所示三个方向的要求在轴承箱壳体轴承部 位测量其振动速度并取其中最大读数作为度量值。 d. 当被测的轴承箱在风机内部时,按b或c的要求,可预先装置振动传感器,然后引出至 风机外以指示器读数为测量依据,传感器安装的方向与测量方向的偏差不得大于±5°。 3 测振仪器应采用频率f范围为10~500Hz 其速度范围为1~10mm/s 的接触式测振仪表。 4 测振仪表须经计量部门鉴定合格后才能使用。

图3 5 被测的风机须装在大于10倍风机质量的底座或试车台上,装置的自振频率不得大于电机和风机转速的0.3倍。 6 在测试振动速度时,外部或周围环境对底座或试车台的影响,应符合下列规定:风机运 转时的振动速度与风机静止时的振动速度的差须大于3 倍以上,当差数小于此值时风机需采 用避免外界影响措施。 7 风机振动速度与振幅(位移)可按下式进行换算 V= 式中:V —振动速度mm/s S —振幅(位移)m μ ω—角速度rad/s 石化通用机械工业局1984—01—13发布1984—03—01实施

汽车发动机涡轮增压器的使用与检修

为了提高发动机的功率,降低油耗,减少排放和噪声,依维柯SOFIM8140.27S发动机采用增压压力自控式废气涡轮增压器,其型号为Garrett TA03。它位于发动机的右前侧,与发动机缸体之间装有隔热板。Garrett TA03型增压器主要由涡轮机、压气机、壳体、限压阀等组成。涡轮与压气机的叶轮装在同一转子轴上,转子轴采用全浮动轴承。在增压器前部的排气歧管上装有一活门式限压阀,其作用是在高速、大负荷时有一部分废气不再进入涡轮机,防止增压器超速。 一、增压器的使用注意事项 1.按质按量加注润滑油 SOFIM8140.27S发动机废气涡轮增压器的转子转速高达4500km/h以上,涡轮部分温度达1000°左右。由于工作环境特别恶劣,因而增压器的润滑就显得特别重要。应加注规定牌号的柴油机机油,其牌号为15W/40柴油机机油或2OW/40(夏)、20W/30(冬)柴油机机油。要经常检查机油量,定期更换机油及滤芯,避免因缺少机油或机油变质而导致转动轴承磨损过快及转动件卡死。 2.起动后、熄火前均应怠速运转3-5min 增压发动机起动后,要怠速运转3-5min,使润滑油达到一定的温度和压力,以免突然增加负荷时,轴承无油而加速磨损,甚至烧毁。这是因为涡轮增压器所用机油来自发动机油底壳,经机油主油道进入精滤器再次滤清后,才能到达增压器壳内,因而机油的输送需要一个过程。 停车后如若立即熄火,增压器就失去了润滑油的润滑和冷却,而此时增压器的涡轮部分温度可达1000℃左右,并且转子会因本身的惯性继续运转一段时间,这样就会烧坏轴承和轴。所以,熄火前也应怠速运转3-5min。 3.定期清洗空气滤清器 空气滤清器堵塞严重,空气入口的空气压力和流量将减少,会造成增压器性能恶化和发动机功率下降。 4.经常检查进气系统的密封性 进气系统漏气会使灰尘吸入压气机,并进入气缸造成压气机叶片和气缸、活塞早期磨损。 5.保持曲轴箱通风装置畅通 曲轴箱通风装置堵塞后会造成曲轴箱压力过高,从而影响润滑油的回流速度,造成增压器漏油。 二、增压器工作情况的检查 1.起动发动机,使其在怠速和中等转速下运转,观察涡轮增压器的工作情况,应运转均匀,无金属撞击或摩擦声,无喘振或强烈的振动现象。 2.发动机怠速运转熄火后,应能听到涡轮增压器的均匀运转声。 若与以上两点不符,应拆下增压器进行检修。 三、增压器的检修 1.拆卸要求 由于涡轮、压气机叶轮均为精密部件,拆卸前要在转子轴、涡轮、压气机叶轮之间作一相配位置记号。拆卸时要用铜棒或塑料锤轻击压气机壳的周边,不许磕碰,以防影响修复后的性能。 2.零件的清洗 清洗零件时,要用干净的汽油或非碱性清洁剂和软刷清洗,并用压缩空气吹干。 3.各机件的检查 (1)检查涡轮壳是否因为过热、咬合、变形或其它损伤而产生裂纹。 (2)检查涡轮和压气机叶轮是否弯曲、有毛刺、损坏、腐蚀,或背面有接触痕迹。

废气涡轮增压器损坏原因及注意事项

废气涡轮增压器损坏原因及注意事项 毕建珍 【期刊名称】山东农机化 【年(卷),期】2016(000)006 【总页数】2 废气涡轮增压器主要由涡轮、压气机、支撑装置、密封装置、润滑与冷却装置五大部分组成。它是利用废气通道截面的变化来提高废气的流速,使高速流动的废气按一定方向冲击涡轮,带动压气机向发动机提供压力高、密度大的新鲜充量,从而使发动机在结构尺寸不变的基础上,功率可提高30%~100%甚至更多,而且降低了燃油消耗、减少了排放污染,因此,涡轮增压器在汽车上的应用越来越广泛。但是,涡轮增压器的工作环境比较恶劣,使用效率高,所以故障率也较高。 一、损坏原因及预防措施 1.润滑油不足或供油滞后 (1)因为柴油机高负荷运转、涡轮增压器转速很高时,即使有短暂的几秒钟对涡轮增压器轴承供油不足也将造成轴承损坏,所以,当涡轮增压器的转速和柴油机负荷增加时,涡轮增压器润滑油的供油量也必须增加; (2)当柴油机处于倾斜状态下工作时,如果机油油面太底或吸入空气,就会造成机油压力降低 ,即使时间再短也有可能使增压器缺乏润滑而损坏,所以,必须保证增压器的可靠润滑。 2.外部杂物或泥沙进入润滑系统 含有赃物或有泥沙的机油对涡轮增压器轴承的磨损和损坏比对柴油机轴承的损坏要严重得多,因为涡轮增压器转速远远高于柴油机的转速,如果涡轮增压器发生这种损坏,应找出产生机油赃物的原因并排除,否则即使换上了新增压器也会损坏,发展下去还可能损坏柴油机。当混在机油中的赃物颗粒较大、足以赌塞涡轮增压器内部的油道时,增压器则会因缺乏润滑油而造成损坏。所以,在更换机油和机油滤清器时,在有条件的情况下可提取柴油机内的油样来进行分析,这将有助于防止出现上述损坏;应按照使用说明书规定的更换期限更换机油滤清器,决不能随意延长。 3.润滑油氧化或变质 造成机油氧化和变质的根本原因则是柴油机过热、机油中混入柴油、冷却水进入机油、机油选用不当以及未按规定的期限更换机油等。 柴油机机油氧化或变质后会形成油泥沉积下来,油泥将影响涡轮增压器的性能和寿命;当机油的油泥状态严重时还会影响柴油机的寿命。当油泥沉积过多而影响涡轮端轴承颈的回油时,沉积在涡轮

涡轮增压器常见故障及排除实用版

YF-ED-J1093 可按资料类型定义编号 涡轮增压器常见故障及排 除实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

涡轮增压器常见故障及排除实用 版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 废气涡轮增压器(以下简称增压器)是一种 很精密的装置,广泛应用在工程机械、发电机 组等动力设备中,在不改变柴油机基本结构的 基础上,增压器能增加动力30%甚至更多,使燃 油油耗降低5%左右,收到很好的经济效益。但 是,增压器在其使用过程中往往因安装、使用 不当,达不到预期的使用效果,现以增压器的 结构原理为基础,分析增压器的常见故障。 增压器是利用排气管中排出的废气,推动 涡轮高速旋转,同时通过转子轴带动压气机叶

轮高速旋转,其转速可高达 50000~230000r/min,高速旋转的压气机叶轮将吸入的空气增压,使进入汽缸的空气密度大大增加,提高了柴油机功率。 1增压器常见的故障 1.1增压效果差 主要表现在动力下降,冒黑烟,燃油经济性差。 1.2增压器一端或两端漏油 这是比较常见的故障,也是影响增压器使用寿命的主要原因。 1.3增压器使用寿命离理想值相差太大 换上一个增压器,很快就出现浮动轴承损坏、两端漏油、动力下降等故障。

TLT动叶可调轴流风机振动故障原因分析

TLT动叶可调轴流风机振动故障原因分析 马晟恺 (华能上海电力检修公司上海 200942) 摘要:能源是国民经济发展的基础,是关系人类生存的重要因素。随着全世界工业化、自动化的不断发展,人类对能源的需求量与日俱增。然而能源是有限的,过渡的开发和浪费能源终将危机人类自身,因此如何合理的利用能源、如何节约能源、如何提高能源的利用率,将会是人类科技进步中一个永恒的主题。对于火力发电厂中的锅炉辅机设备中,六大风机至关重要,一台风机的停运便会导致机组损失一半的发电量。所以,风机的安全稳定运行对于机组的正常发电有着决定性的作用。本文对TLT动叶可调轴流风机的振动现象、原因及处理办法进行了阐述。并致力于高效解决TLT动叶可调轴流风机进行了研究。 关键词:TLT;动叶可调;轴流风机;火力发电机组;振动。 作者简介:马晟恺(1987-),从事大型火力发电站热能装置工程技术工作。

一、概述 一台设备从设计、制造到安装、运行、维护、检修有许多环节,任何环节的偏差都会造成设备性能劣化或故障。同时,运行过程中设备处于各种各样的条件下,其内部必然会受到力、热、摩擦等多种物理、化学作用,使其性能发生变化,最终导致设备故障。 能源是国民经济发展的基础,是关系人类生存的重要因素。随着全世界工业化、自动化的不断发展,人类对能源的需求量与日俱增。然而能源是有限的,过渡的开发和浪费能源终将危机人类自身,因此如何合理的利用能源、如何节约能源、如何提高能源的利用率,将会是人类科技进步中一个永恒的主题。对于火力发电厂中的锅炉辅机设备中,六大风机至关重要,一台风机的停运便会导致机组损失一半的发电量。所以,风机的安全稳定运行对于机组的正常发电有着决定性的作用。 如今,由于国内火力发电机组向高参数、高容量发展。国内300MW、600MW、1000MW 的机组大多采用德国TLT公司技术的轴流式风机。因此,该种类型的风机是否能安全稳定运行成为了如今国内火力发电厂的新课题之一。 二、TLT动叶可调轴流风机简介 风机(AIR BLOWER)是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。 我国于1979年引进德国TLT公司动叶可调轴流风机技术,适用于大型火电机组锅炉送风机、引风机、一次风机、脱硫风机以及矿井主通风机。采用的液压动叶可调,能使风机特性与使用工况在较大流量变化范围内相适应,从而能在较大区域内保持高效率,节能效果显著。有为最大到1500MW火电机组配套能力。风机性能参数可根据用户要求工况“量体裁衣”选择最佳效率设计生产。与此同时,公司还为上述产品配备了引进技术生产的大型消声器。 尤其对大型和特大型风机,液压调节能最佳地改变远行时动叶的位置,使风机特性经济地与远行工况相适应。我们把这些经验用于发展热电厂用的动叶可调的轴流式风机,尤其是在很早就已预测到锅炉装置容量的增大而需要相应的大型风机。与机械调节(在这种情况下风机不能实现高调节力调节)相比液压调节具有一系列优点:在转子一液压装置系统中,力的传送,对转子主轴承不产生反作用力:调节力不受限制;机械传动零件少,因而故障少;操纵机械的扭矩仅为30—50Nm(牛顿·米);内装的反锁装置能防止过调和保证稳定的调节;由于装有配重,即使液力控制油压力降低,风机运行也不受影响。为使液压调节机构达到最佳的运行可靠性,每一台都在专用试验台上进行运转试验。 TLT动叶可调轴流风机设计的主要特点是:结构紧凑、坚固;单级和两级风机的零部件已标准化;由于卧式风机机壳的上半部易于拆下和立式风机的机壳等部件可以移动,所以转子、主轴承箱等检修方便。整体结构的主轴承箱装在机壳内部中心法兰之间;叶轮轮壳为焊接结构,厚的内环位于较小的直径处,因此减小了离心力。 TLT风机由于其设计系列化、零部件标准化、品种规格齐全,适用范围广泛,因而可以采用积木块式设计方法,利用这些标准化的零部件,组合成技术经济指标先进,不同型号规格的风机最大限度的满足用户需要,这种设计方法如同“量体裁衣”,可取得最佳的运行经济性。 TLT动叶可调轴流风机具有噪音小、效率高等明显特点。 动叶可调轴流风机装备有液压调节系统,可以通过液压传动以及机械传动带动叶片转动,达到调整叶片开度的目的。从而实现通过动叶调整改变风机风量大小的目的。 电厂电站风机形式主要分为轴流风机和离心风机两种。 风的流向和轴是平行的就叫轴流风机,(比如消防的排烟风机)反之就是离心风机,(比如风

浅析船舶涡轮增压器喘振机理及其预防措施

浅析船舶涡轮增压器喘振机理及其预防措施 发表时间:2019-07-23T12:14:57.237Z 来源:《知识-力量》2019年9月34期作者:顾卫标 [导读] 涡轮增压器是船舶增压系统的核心部件,它的可靠性是保证船舶动力装置正常安全运行的主要环节,增压器最容易出现的故障即为喘振。本文首先介绍了增压系统的工作原理,然后阐述了增压器喘振的机理。最后,分析了喘振发生的原因并提出相应的预防措施。(江苏省海洋渔业指挥部,江苏南通 226006) 摘要:涡轮增压器是船舶增压系统的核心部件,它的可靠性是保证船舶动力装置正常安全运行的主要环节,增压器最容易出现的故障即为喘振。本文首先介绍了增压系统的工作原理,然后阐述了增压器喘振的机理。最后,分析了喘振发生的原因并提出相应的预防措施。 关键词:涡轮增压器;增压;喘振;预防措施 作为当今热效率最高的动力机械,柴油机以其良好的经济性广泛应用于远洋船舶和内河船舶。为了增加功率,改善热效率,提高经济性,柴油机增压程度不断提高。增压技术使柴油机的动力性、经济性上了一个台阶,增压也成为提高柴油机功率的主要途径。船用柴油机增压器一般应用废气涡轮增压的方法,利用柴油机排出的废气能量驱动涡轮高,带动与涡轮同轴的压气机叶轮高速旋转,压气机将空气压入柴油机的气缸,增加了柴油机的充气量,可供更多的燃油完全燃烧,不仅柴油机工作过程得到改善,燃油消耗下降,经济性提高,排放也得到改善。因此,其工况的好坏直接影响柴油机的工作。 涡轮增压器工作时,当压气机的排出压力和流量减少时,其工作点落在压气机的喘振区时,压气机排出的压力忽高忽低,空气流量忽正忽负,引起机器强烈振动,并发出沉重的喘息声和吼叫声。如果增压器轴承处于良好保养的状态,这种偶尔发生的喘振是没有危害的。但是应该避免进一步喘振的发生,因为那将损坏转子,引起增压器转轴振动和整个增压器的机械颠簸,对增压器的安全运行危害极大。发生喘振的主要因素: 1.增压系统流道阻塞 增压器系统流道阻塞是引起增压器喘振的最常见的原因,增压系统的气体流动线路为:“空气滤器---压气机---中冷器---进气管---气缸---排气管---废气涡轮---废气锅炉---烟囱---大气”特别是外来杂质,如油气、粉尘等赃物进入进气管道排气管道积碳,进气管道变形等,使流道阻力增大,压气机流量减小,背压升高,特性线左移(如右图)引起喘振。此外,柴油机长期燃烧不良,涡轮喷嘴、涡轮叶片、轮盘及气封间隙两旁壁面等地方聚集大量未燃尽的碳粒的油垢,增压器停车后,油垢会冷却凝固,加大增压器运转时的机械阻力,使涡轮性能下 降,最后使增压压力下降而导致喘振。 在日常管理中,应周期性清除汽缸进气口和排气口的积碳,并经常对空气滤清器、压气机进气流道、空气冷却器、涡轮喷嘴环和叶轮等进行清洗。当增压器流道阻塞严重时,须将增压器拆开进行清洗。而在运行时对压气机和涡轮机进行清洗,既可以减少增压器的拆装次数,有可避免此类原因引起的喘振。 2.增压器和柴油机的运行失配 柴油机与增压器匹配良好是指:柴油机达到预定的增压指标,增压器在柴油机全部工作范围内能稳定低运行,既不喘振也不超速,并尽可能在高效区工作。对于设计时选配良好的柴油机和增压器,在正常情况下是不会发生喘振的。但是,由于柴油机本身的某些故障或者由于装载、顶风、污底、大风浪航行或者轮机员操作不当,都可能导致柴油机和增压器匹配不良,引起喘振。柴油机喷油系统出现故障,会使柴油机燃烧不良,引起严重的后然;柴油机的活塞环断裂或者粘着,气阀烧损气阀间隙过小,都可能导致汽缸漏气,热负荷增大,排烟温度升高。若柴油机供油量不变,因而有功功率减小,柴油机转速下降。而排烟温度升高引起废气能量增加增压器转速增高,供气量增多,从而破坏了柴油机与增压器的正常匹配关系,导致压气机处于高背压小流量状态,容易发生喘振,但此种情况下,排除了柴油机的故障,也就消除了喘振。 船舶满载、顶风航行时,主机处于高负荷、低转速状态。柴油机燃油系统供油量增加,后燃引起废气能量增加,增压器转速升高,而汽缸耗气量却因为柴油机转速降低而减少,这同样容易引起增压器与柴油机匹配不佳而出现喘振。此情况下,减小柴油机油门就可消除喘振。 3.柴油机负荷骤变 如船舶遇到大风浪,螺旋桨出水,柴油机负荷骤然减少,转速升高,各缸供油大量减少,使供给增压器的废气量减少,增压器转速下降,从而是压气机空气流量减少,达到一定程度时会发生喘振,为防止这种情况,应避免飞车现象的发生。 4.环境温度的变化 当航行在不同温度的海域或季节,增压器与柴油机的配合运行点不同;气温升高,空气密度降低使进入压气机的空气流量减小,尽管排烟温度升高,排气管冷却能力下降,涡轮获得的能量反而减少,这样增压器转速降低将进一步导致空气流量减小,从而发生增压器喘振。持续的喘振可以通过调节扫气总管顶部的阀来临时处理。 结语 增压器出现故障,不要匆忙地更换增压器,应该寻找和判断故障原因和部位,并尽可能地加以排除。这样可以避免换上增压器后同样

增压器主要故障排除方法

本文摘自再生资源回收-变宝网(https://www.sodocs.net/doc/4c17214075.html,) 增压器主要故障排除方法 1、喷油故障 当喷油系统发生故障、燃用劣质重油,后燃加重、排气温度偏高。无论是全负荷还是部分负荷,无论后燃有多严重,其配合运行点均在正常配合运行线上。随着燃烧终点延后,排气温度升高,增压器转速升高,压气机流量增大,压比升高,配合运行点往该曲线高处移动,喘振余量较少。 2、冷却变差 当空冷器冷却能力下降时,柴油机排气温度升高,压气机转速升高,配合运行点移向高处,喘振余量减小。

3、喘振原因 通常在选配增压器时,已根据采用不同的增压系统的工作特性将压气机配合工作线选择在喘振线B右侧的适当位置。此时既可保证柴油机达到预定的增压指标和增压器在高效率区工作,又保证在柴油发动机全部工作范围内增压器不发生喘振。因此在正常情况下一般不会发生喘振。但是当工作条件发生变化,例如当出现增压系统通道堵塞、负荷过高或过低、柴油机负荷不均以及负荷突变等情况时,配合工作线就会部分地或全部地进入喘振区,从而引起喘振。下面介绍一些可能导致增压器喘振的原因。 增压系统流道阻塞因素的影响增压器流道阻塞的直接后果之一就是会增加气流在 系统中的阻力。柴油机运行时,增压系统的气体流动路线是:压气机进口滤器和消音器→压气机叶轮→压气机扩压器→空气冷却器→扫气箱→柴油机进气口(阀)→排气口(阀)→排气管→废气涡轮喷嘴环→废气涡轮叶轮→烟囱。其中各组成部分的流通面积都是固定的。若上述流动路线中任一环节发生堵塞,如脏污、结碳、变形等,都会因流阻增大使压气机背压升高,流量减少,引起喘振。其中容易脏污的部件是压气机进口滤器、压气机叶轮和扩压器、空气冷却器、柴油机进(扫)气口和排气口(阀)、废气涡轮喷嘴环、废气涡轮叶轮。通常情况下,涡轮增压器气流通道的阻塞是造成其喘振的主要原因。管理中应定期检查上述部件是否污损,并加以清洁,由此而引起的喘振就会被防止或被排除。 4、阻塞因素 柴油机运行工况(负荷、转速)变化柴油机在低转速高负荷下运行,当柴油机发生故障或舰船满载、顶风、污底使外负荷增大时,柴油机转速下降,此时调速器自动增加供油量,使柴油机在低转速、高负荷下运行。由于供油量增多,废气能量增大,必然导致增压器转速提高,压气机排气量和排出压力升高。而此时柴油机转速低,耗气量少,使增压器供气与柴油机耗气之间的供需平衡被打破。压气机背压升高,流量减少,从而引起当进入低温海域时,空气密度因环境温度变低而变高,则压气机进气量变大,使涡轮获得的能量增大,增压器转速升高使配合运行线向低处移动,喘振余量增大;而进入高温海域则相反,即喘振余量减小易发生喘振。而对于一些舰船在低温航区匹配的不带

涡轮增压器损坏的原因

涡轮增压器损坏的原因 Kmp中国服务中心 1.润滑油不足或供油滞后 (1)当涡轮增压器的转速和柴油机负荷增加时,涡轮增压器润滑油的供油量也必须增加,因为柴油机高负荷运转、涡轮增压器转速很高时,即使只有短暂的几秒钟对涡轮增压器轴承供油不足也将造成轴承损坏。 (2)在更换机油和机油滤清器时,用清洁的机油预先注满滤清器,换完后第一次启动柴油机时,应在柴油机启动后保持足够长时间的怠速运转直到机油压力稳定后再加速,否则涡轮增压器的轴承就可能因启动期间缺乏润滑而损坏。 (3)当柴油机处于倾斜状态下工作(部分负荷或全负荷运转)时,如果机油油面太低或吸入空气,就会造成机油压力降低,即使时间再短也有可能使增压器因缺乏润滑油而损坏。 2.外部杂物或泥沙进入润滑系统 喊有赃物或泥沙的机油对涡轮增压器轴承的磨损和损坏比对柴油机轴承的损坏要严重得多,因为涡轮增压器的转速远远高于柴油机的转速。如果涡轮增压器发生这种损坏,应找出产生机油赃物的原因并排除,否则即使换上了新增压器也会发生损坏,发展下去还可能损坏柴油机。当混在机油中的赃物颗粒较大、足以堵塞涡轮增压器内部的油道时,增压器则会因缺乏润滑油而造成损坏。 在更换机油和机油滤清器时,在有条件的情况下可提取柴油机内的机油油样来进行分析,这将有助于防止出现上述损坏;应按照使用说明书上所规定的更换期限更换机油滤清器,决不能随意延长。 3.润滑油氧化或变质 柴油机机油氧化或变质后会形成油泥沉积下来,油泥将影响涡轮增压器的性能和寿命; 当机油的油泥状态严重时还会影响柴油机的寿命。即涡轮增压器轴的旋转运动会将机油甩到壳体内壁上,油泥即附着并沉积在壳体内壁,当油泥沉积过多而影响涡轮端轴承颈的回油时,沉积在涡轮端轴承内的油泥会由于废气传来的高温而被烘烤成坚硬的结焦,当结焦剥落后就会使涡轮端轴承和轴颈磨损,且在磨损之前油封还会发生漏油现象。 若发现涡轮增压器涡轮端有机油泄漏时,必须检查增压器的回油管和柴油机通风管是否阻塞,只有将这些故障排除后增压器才能工作。 形成油泥沉积是由于柴油机机油氧化和变质所致,而造成机油氧化和变质的根本原因则是柴油机过热、从活塞与气缸壁之间通过的燃气过多、机油中混入柴油、冷却水漏入机油、机油选用不当以及未按规定的期限更换机油等。 4.外部异物进入柴油机的进气或排气系统 涡轮增压器的涡轮和压气机叶轮都是以极高的转速转动的,一旦有外部异物进入柴油机的进、排气系统都将损坏叶轮;小的物体(如泥沙)会侵蚀叶轮使其叶片的导风角发生变化;大而硬的物体则会造成叶片破裂;柔软的物体(如棉纱)会迎着叶轮旋转方向卷在叶片上。

风机震动原因分析

电站风机振动故障简易诊断 摘要:分析了风机运行中几种振动故障的原因及其基本特征,介绍了如何运用这些振动故障的基本特征对风机常见振动故障进行简易诊断,判断振动故障产生的根源。 关键词:风机;振动;诊断 风机是电站的重要辅机,风机出现故障或事故时,将引起发电机组降低出力或停运,造成发电量损失。而电站风机运行中出现最多、影响最大的就是振动,因此,当振动故障出现时,尤其是在故障预兆期内,迅速作出正确的诊断,具有重要的意义。简易诊断是根据设备的振动或其他状态信息,不用昂贵的仪器,通常运用普通的测振仪,自制的听针,通过听、看、摸、闻等方式,判断一般风机振动故障的原因。文中所述振动基于电厂离心式送风机、引风机和排粉机。 1轴承座振动 1.1转子质量不平衡引起的振动 在现场发生的风机轴承振动中,属于转子质量不平衡的振动占多数。造成转子质量不平衡的原因主要有:叶轮磨损(主要是叶片)不均匀或腐蚀;叶片表面有不均匀积灰或附着物(如铁锈);机翼中空叶片或其他部位空腔粘灰;主轴局部高温使轴弯曲;叶轮检修后未找平衡;叶轮强度不足造成叶轮开裂或局部变形;叶轮上零件松动或连接件不紧固。转子不平衡引起的振动的特征:①振动值以水平方向为最大,而轴向很小,并且轴承座承力轴承

处振动大于推力轴承处;②振幅随转数升高而增大;③振动频率与转速频率相等;④振动稳定性比较好,对负荷变化不敏感;⑤空心叶片内部粘灰或个别零件未焊牢而位移时,测量的相位角值不稳定,其振动频率为30%~50%工作转速。 1.2动静部分之间碰摩引起的振动 如集流器出口与叶轮进口碰摩、叶轮与机壳碰摩、主轴与密封装臵之间碰摩。其振动特征:振动不稳定;振动是自激振动与转速无关;摩擦严重时会发生反向涡动; 1.3滚动轴承异常引起的振动 1.3.1轴承装配不良的振动 如果轴颈或轴肩台加工不良,轴颈弯曲,轴承安装倾斜,轴承内圈装配后造成与轴心线不重合,使轴承每转一圈产生一次交变的轴向力作用,滚动轴承的固定圆螺母松动造成局部振动。其振动特征为:振动值以轴向为最大;振动频率与旋转频率相等。 1.3.2滚动轴承表面损坏的振动 滚动轴承由于制造质量差、润滑不良、异物进入、与轴承箱的间隙不合标准等,会出现磨损、锈蚀、脱皮剥落、碎裂而造成损坏后,滚珠相互撞击而产生的高频冲击振动将传给轴承座,把加速度传感器放在轴承座上,即可监测到高频冲击振动信号。这种振动稳定性很差,与负荷无关,振动的振幅在水平、垂直、轴向三个方向均有可能最大,振动的精密诊断要借助频谱分析,运用频谱分析可以准确判断轴承损坏的准确位臵和损坏程度,在此不

相关主题