搜档网
当前位置:搜档网 › 生物化学复习重点doc

生物化学复习重点doc

生物化学复习重点doc
生物化学复习重点doc

名词解释

血糖:通过各种途径进入血液的葡萄糖。

糖原合成与分解:由单糖合糖原的过程叫糖原的合成;由糖原分解成单糖的过程叫分解。糖异生:由非糖物质合成葡萄糖的过程。

有氧氧化:在供氧充足时,葡萄糖在细胞液中分解生成的丙酮酸进入线粒体,彻底氧化CO2和水,并释放出大量的能量的过程。

三羧酸循环:在线粒体内,乙酰CoA与草酰乙酸缩合成柠檬酸,柠檬酸在一系列的酶促反应后又生成草酰乙酸,应成一个反应循环,该反应循环生成的第一个化合物是柠檬酸,它含有三个羧基,所以叫三羧酸循环。

糖酵解:在供氧不足时,葡萄糖在胞液中分解成丙酮酸,丙酮酸再进一步还厡乳酸。

血脂:血脂包括甘油三脂,磷脂,胆固醇脂,胆固醇和脂肪酸。

血浆脂蛋白:脂类在血浆中的存在形式和转运形式。

脂肪动员:脂肪中的甘油三酯被脂肪酸酶水解成甘油和脂肪酸,释放入血,工全身各组织利用的过程。

酮体:包括乙酰乙酸,β-羟丁酸和丙酮。是脂肪酸代谢的正常产物。

必需脂肪酸:维持人体正常生命活动所需要的脂肪酸,但人体内不能合成或合成不足,必须从食物中摄取的脂肪酸。

必需氨基酸:机体内需要而自身又不能合成,必须由食物供给的氨基酸。

蛋白质互补作用:将不同种类营养价值较低的蛋白质混合使用,可以相互补充所缺少的必需氨基酸,从而提高其营养价值。

转氨基作用:是指由氨基转移酶催化,将氨基酸的α-氨基转移到一个α-酮酸的羰基位置上,生成相应的α-酮酸和一个新的α-氨基酸。(其中只发生氨基转移,不产生游离的氨。)

一碳单位:有些氨基酸在分解代谢过程中可以产生一个碳原子的活性基团。

密码子:从mRNA编码区5’端向3’端按每3个碱基为一组连续分组,每组碱基构成一个遗传密码称为密码子。

中心法则:是关于遗传信息传递规律的基本法则,包括由DNA到DNA的复制、由DNA到RNA 的转录和由RNA到蛋白质的翻译过程,即遗传信息的流向是DNA→RNA→蛋白质。

半保留复制:当DNA进行复制时,亲代DNA双链必须解开,两股链分别作为模板按照碱基互补配对原则指导合成一股新的互补链,最终得到与亲代DNA碱基序列完全一样的两个子代DNA分子,每个子代DNA分子都含有一股亲代DNA链和一股新生DNA链的复制方式。

逆转录:是以RNA为模板,以dNTP为原料,由逆转录酶催化合成DNA的过程。

转录:指生物按照碱基互补配对原则把DNA碱基序列化成RNA碱基序列,从而将遗传信息传递到RNA分子上的过程。

启动子:由RNA聚合酶结合位点,转录起始位点及控制转录起始的其他调控序列组成,是启动转录的特异序列。

翻译:蛋白质的生物合成过程是核糖体协助tRNA从mRNA读取信息,用氨基酸合成蛋白质的过程。是mRNA碱基序列决定蛋白质氨基酸序列的过程或者说是把碱基语音翻译成氨基酸语音的过程。

点突变:由错配及一个核苷酸的插入和缺失所导致的突变。

变/别构调节:特定物质和酶蛋白活性中心以外某一部位以非共价键结合,改变酶蛋白构想,从而改变其活性的调节形式。

基因表达:指基因经过转录和翻译等一系列复杂过程,指导合成有特定生理功能的产物。

化学修饰调节:通过酶促反应使酶蛋白以共价键结合某种特定基团,或脱去该特定基团,导致酶蛋白构想改变,酶活性也随之改变,这种调节称为化学修饰调节。

胆色素:是体内铁卟啉化合物的主要分解代谢产物。包括胆红素,胆绿素,胆素原和胆素等。生物转化:肝脏将一些非营养物质进行转化,最终增加其水溶性或极性,使其容易随胆汁和尿液排出体外的过程。

碱储:血浆NaHCO3的含量在一定程度上代表机体缓冲酸的能力,习惯上将血浆NaHCO3称为碱储或碱储备。

框移突变(移码突变):在正常地DNA分子中,碱基缺失或增加非3地倍数,造成这位置之后的一系列编码发生移位错误的改变,这种现象称移码突变。

增强子:是真核生物基因中促进转录的调控序列,与启动子可以相邻、重叠或包含。增强子通过结合反式作用因子、改变染色质DNA结构而促进转录。它们相互作用,决定着基因表达的特异性。

酶:是由活细胞合成的、具有催化作用的蛋白质。

酶原:酶的无活性前体,(在特异位点水解后,转变为具有活性的酶。)

酶原激活:酶原向酶转化的过程。

同工酶:是指能催化相同化学反应、但酶蛋白的分子组成、分子结构和理化性质乃至免疫学性质和电泳行为都不相同的一组酶,是生命在长期进化过程中基因分化的产物。

生物氧化:糖、脂肪和蛋白质在体内氧化分解逐步释放能量,最终生成二氧化碳和水的过程

(组织呼吸或细胞呼吸)

氧化磷酸化:在生物氧化过程中,代谢物脱下的氢经呼吸链氧化生成水时,所释放的能量能够偶联ADP磷酸化成A TP的过程。又称偶联磷酸化。

胆汁酸:胆汁酸是存在于胆汁中一大类胆烷酸的总称,以钠盐或钾盐的形式存在,即胆汁酸盐,简称胆盐。

呼吸链:是位于真核生物线粒体内膜(原核生物细胞膜)上的一组排列有序的递氢体和递电子体构成,其功能是将营养物质氧化释放的电子传递给O2生成H2O。

非蛋白氮(NPN):是指血液中除蛋白质以外的所有含氮化合物的氮总量,主要来自尿素、尿酸、肌酐、肌酸、氨基酸、肽、胆红素和氨等含氮化合物。

问答题:

1.简要说明血糖的来源和去路及机体对其的调节;

(1)血糖来源:①食物糖消化吸收,②肝糖原分解,③肝脏内糖异生作用,

血糖去路:①氧化分解功能,②合成糖原,③转化成其他糖类或非糖物质,④血糖过高时随尿液排出体外

(2)①肝脏调节:肝脏是维持血糖浓度的最主要器官,是通过控制糖原的合成与分解及糖异生来调节血糖的。当然,肝脏对血糖浓度的调节是在神经和激素的控制下进行的。

②肾脏调节:肾脏对唐具有很强的重吸收能力,其极限值可以用肾糖阈来表示,只要血糖浓度不超过肾糖阈,肾小管就能将原尿中几乎所有的葡萄糖都重吸收入血,不会出现糖尿。

③神经调节:用电刺激交感神经系统的视丘下部腹内侧核或内脏神经,能促进肝糖原分解,使血糖浓度升高;用电刺激副交感神经系的视丘下部外侧或迷走神经,能促进肝糖原合成,使血糖浓度降低。

④激素调节:胰岛素是唯一能降低血糖浓度的激素;而能升高血糖浓度的激素主要有胰高血糖素、肾上腺素、糖皮质激素、生长激素和甲状腺激素等。这些激素主要通过调节糖代谢的各主要途径来维持血糖浓度。

2.简要说明血浆甘油三酯的来源和去路及激素对其的调节;

(1)血脂来源:①食物脂类的消化吸收②体内合成脂类③脂库动员释放

血脂去路; ①氧化供能②进入脂库储存③构成生物膜④转化为其他物质(2)机体对血浆中甘油三酯的调节

①甘油三酯的分解代谢

ⅰ脂肪动员:脂肪细胞内的甘油三酯在激素敏感性脂酶的催化下被脂肪酶水解生成甘油和脂肪酸

ⅱ甘油代谢;脂肪动员产生的甘油被磷酸化生成3-磷酸甘油,然后脱氢生成磷酸二羟丙酮,通过糖代谢途径分解,或合成葡萄糖等其他物质

A,然后经过脱氢、加ⅲ脂肪酸β氧化:脂肪动员产生的脂肪酸先活化成脂酰C

O

水、再脱氢和硫解四步反应生成乙酰C

A,

O

ⅳ酮体代谢:酮体包括乙酰乙酸、β-羟丁酸和丙酮,是脂肪酸分解代谢的正常产物。如果酮体合成增加,超过肝外组织利用酮体的能力,导致血液中酮体积累而产生酮血症尿液中也会出现酮体,称为酮尿症。

(2)甘油三酯的分解代谢:

A和NADPH等合成脂肪酸

ⅰ脂肪酸合成:肝脏、乳腺和脂肪组织等利用乙酰C

O

ⅱ3-磷酸甘油的合成:肝脏和肠粘膜富含甘油激酶,能催化甘油磷酸化生成3-磷酸甘油

ⅲ脂肪酸活化成脂酰C

A与3-磷酸甘油经一系列反应最终生成甘油三酯。

O

(3)激素对甘油三酯代谢的调节

对甘油三酯代谢有较大影响的激素有胰岛素、肾上腺素、胰高血糖素、甲状腺激素、糖皮质激素和生长激素等,其中胰岛素促进甘油三酯的合成,其余激素促进甘油三酯的分解,以胰岛素、肾上腺素和胰高血糖素最为重要。

3.试诉四种脂蛋白的组成特点和生理功能(或意义);

1、乳糜微粒(CM):

成分:甘油三酯80%~95%,还有少量磷脂、胆固醇及酯、载脂蛋白;

功能:运输外源性甘油三酯的主要形式

2、极低密度脂蛋白(VLDL):

成分:含甘油三酯50%~70%、其他含磷脂、胆固醇、载脂蛋白。

功能:运输内源性甘油三酯的主要形式。

3、低密度脂蛋白(LDL):

成分:胆固醇占脂蛋白总量的1/2~2/3,其中多为胆固醇酯;

功能:转运内源性胆固醇至肝外的主要形式。

4、高密度脂蛋白(HDL)

成分:主要由磷脂、胆固醇和载脂蛋白等组成;

功能:将肝外组织中的胆固醇逆向转送到肝脏,经肝脏代谢转化成胆汁酸后排出体外,阻止胆固醇在动脉壁等组织的沉积,防止动脉粥样硬化的出现。

?

4.简述胆固醇的生物合成及与糖代谢的关系;

胆固醇合成所需原料和能量均可由糖代谢途径提供,

(1)胆固醇生物合成的NADPH主要由磷酸戊糖途径提供:葡萄糖在磷酸化生成6-磷酸葡萄糖之后直接发生脱氢和脱羧等反应,生成NADPH和磷酸核糖,NADPH可为胆固醇合成提供氢。

A和ATP可由糖的有氧氧化提供,在糖的有氧氧(2)胆固醇生物合成的乙酰C

O

化中,丙酮酸在丙酮酸脱氢酶系的催化下可生成NADPH,另外,一分子葡萄糖经有氧氧化可净合成36-38分子的ATP,蕴含大量能量,可直接为胆固醇的生物合成供能。

5.试诉进食过量糖类(淀粉)食物可导致发胖的生化机理;

进食过量的糖类食物后体内可能发生下列反应

A,葡萄糖经过磷酸戊糖途径可生成①葡萄糖经过有氧氧化途径可生成乙酰C

O

NADPH。乙酰C

A和NADPH可用来合成脂肪酸。

O

A。

②糖代谢可产生ATP, ATP可将脂肪酸活化成脂酰C

O

③葡萄糖在酵解途径中产生的磷酸二羟丙酮可还原成3-磷酸甘油

A缩合,生成甘油三酯

④3-磷酸甘油可与三分子脂酰C

O

6.简述以下代谢的大致过程和生理意义;

有氧氧化和三羧酸循环;糖原合成与分解;鸟羧酸循环;脂肪酸氧化;酮体合成与分解;有氧氧化的过程:有氧氧化途径分为三个阶段:

(1)葡萄糖在细胞液中氧化分解生成丙酮酸;(2)丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化作用下(氧化脱羧)生成乙酰CoA;(3)乙酰基进入三羧酸循环彻底氧化成CO2和H2O。

生理意义:人体代谢所需的能量主要来自糖的有氧氧化

三羧酸循环的大致过程:

1.乙酰CoA与草酰乙酸缩合成柠檬酸

2.柠檬酸异构成异柠檬3、异柠檬酸氧化脱羧生成α-酮戊二酸4.α-酮戊二酸氧化脱羧生成琥珀酰CoA 5.琥珀酰CoA生成琥珀酸6.草酰乙酸再生

生理意义:三羧酸循环是糖类、脂类和蛋白质彻底氧化分解代谢的共同途径;三羧酸循环是糖类、脂类和蛋白质代谢联系的枢纽。

糖原合成的过程:包括4步反应:

(1)葡萄糖磷酸化生成6-磷酸葡萄糖;(2)6-磷酸葡萄糖异构成1-磷酸葡萄糖;

(3)1-磷酸葡萄糖与UTP反应生成UDP-Glc(葡萄糖);

(4)在糖原合酶的催化下,UDP-Glc的葡萄糖残基加到糖原引物(Gn)分子上生成糖原(Gn+1),这样在原有的糖原分子上增加了一个葡萄糖残基。

糖原的分解过程:

①糖原磷酸化酶催化糖原非还原端的α-1,4-糖苷键磷酸解,生成1-磷酸葡萄糖;

② 1-磷酸葡萄糖异构生成6-磷酸葡萄糖;

③葡萄糖-6-磷酸酶催化6-磷酸葡萄糖水解生成葡萄糖;

④糖原的残余部分即极限糊精,脱去分支后形成寡糖链,寡糖链可以继续由糖原磷酸化酶催化磷酸解,生成1-磷酸葡萄糖。

生理意义:糖原的合成与分解是维持血糖正常水平的重要途径。

鸟氨酸循环的大致过程:

①鸟氨酸与NH3及CO2结合生成瓜氨酸;②瓜氨酸再(从ASP)接受一分子NH3生成精氨酸。③精氨酸水解产生一分子尿素并重新生成鸟氨酸;④鸟氨酸进入下一轮循环。

生理意义:合成尿素,是含氮废物排出的主要途径.

脂肪酸的β氧化过程:包括4步反应:

(1)脂肪酸活化成脂酰CoA;

(2)脂酰CoA以肉碱为载体转运进入线粒体;

(3)脂酰CoA通过氧化包括脱氢、加水、再脱氢和硫解四步反应,生成乙酰CoA;

(4)乙酰CoA进入三羧酸循环彻底氧化生成CO2和H2O,释放能量推动合成ATP。

生理意义:主要是氧化分解提供能量,生成乙酰辅酶A。

酮体在肝细胞的线粒体中由乙酰CoA合成。酮体包括乙酰乙酸、β-羟丁酸和丙酮。酮体是脂肪酸分解代谢的正常产物,是乙酰CoA的转运形式。酮体是水溶性小分子,容易透过毛细血管壁,被肝外组织特别是心脏、肾脏和骨骼肌吸收利用。饥饿时血糖水平下降,脑组织也可以利用酮体。

7.简述体内氨基酸/丙氨酸/谷氨酸有哪些代谢去路;

在肌肉组织中,氨基酸经氨基转移作用,可将氨基间接转移给丙酮酸生成丙氨酸,后者进入血液循环,被运送至肝脏。在肝脏,丙氨酸通过联合脱氨基作用释放氨。氨用于合成尿素。脱氨基生成的丙酮酸异生为葡萄糖。葡萄糖进入血液循环运送到肌肉组织,经糖的氧化分解途径生成丙酮酸,从而构成一个循环,成为丙氨酸-葡萄糖循环。通过这一循环,肌肉组织代谢产生的氨以无毒的氨基酸形式运送到肝,又以合成尿素解除氨毒;同时肝又为肌肉组织提供了生产丙酮酸的葡萄糖。

谷氨酸:来源:①食物蛋白的消化吸收②组织蛋白的降解

③α-酮戊二酸和NH3的合成④谷氨酰胺脱氨基

去路:①主要是参与合成组织蛋白②脱氨基生成α-酮戊二酸和NH3

③脱羧基生成氨基丁酸和CO2 ④参与合成谷氨酰胺和核苷酸

丙氨酸:来源:①食物蛋白的消化吸收②组织蛋白的降解③丙酮酸和谷氨酸的合成去路:①主要是参与合成组织蛋白②脱氨基生成丙酮酸和谷氨酸③脱羧基生成丙酮酸氨基酸:来源:①食物蛋白的消化吸收②组织蛋白的降解③体内合成非必需氨基酸去路:①主要是合成组织蛋白②脱氨基生成a-酮酸

③脱羧基生成胺④转化成其他含氮化合物

8.氨与胆红素对人体有毒性,人体分别如何进行氨与胆红素的转运、转化、以避免其对组织的毒性作用;

A:(1)谷氨酰胺的运氨作用谷氨酰胺酶催化谷氨酸和NH

合成谷氨酰胺,谷氨

3

,这对于防酰胺是中性无毒分子,易溶于水,脑组织通过合成谷氨酰胺运输NH

3

止NH

对脑的毒性作用方面起着重要作用

3

(2)丙氨酸-葡萄糖循环在肌肉组织中,氨基酸还可以通过转氨基反应将氨基转移给丙酮酸,生成丙氨酸,丙氨酸通过血液循环转运至肝脏。在肝脏,丙氨酸

,用于合成尿素,丙酮酸通过糖异生途径合成葡萄通过联合脱氨基作用释放NH

3

糖。葡萄糖通过血液循环转运至肌肉组织,通过糖酵解途径分解生成丙酮酸,丙酮酸通过转氨基反应生成丙氨酸,从而构成一个循环过程,称为丙氨酸-葡萄糖循环,该循环意义在于不仅实现了氨的无毒转运,又得以使肝脏为肌肉活动提供能量,

(3)尿素合成在正常情况下,体内的NH

有80%-90%是在肝脏合成中性无毒、易

3

溶于水的尿素,尿素通过血液循环转运至肾脏,随尿液排出体外。尿素合成有利于减少和避免高血案症,和由于肝中毒而引起脑昏迷。

B:肝脏转化胆红素的过程是一个解毒过程。游离胆红素是一种有毒的脂溶性物质,极易通过扩散透过细胞膜进入细胞(特别是富含脂类的神经细胞),对细胞产生毒性损害。肝脏可以有效的摄取血浆游离胆红素,并将其转化为结合胆红素,提高其极性和水溶性,使其易于随胆汁排入肠道,研究表明,肝脏每小时可以清除100g胆红素,比单核吞噬细胞系统产生的胆红素速度快十倍,所以正常血浆游离胆红素浓度极低。

9.试述DNA与RNA结构与组分的异同点;

(1)结构异同点:DNA和RNA的核苷酸均含有以下结构

①糖苷键:嘌呤碱基的N-9或嘧啶碱基的C-1’以N-β-糖苷键连接,形成核苷。核苷包括存在于RNA中的核糖核苷和存在于DNA中的脱氧核糖核苷

②磷酸酯键:磷酸与核苷中的戊糖以磷酸酯键连接,形成一磷酸核苷NMP,也称为核苷酸,包括构成RNA的核苷酸和构成DNA的脱氧核苷酸

③酸酐键:一磷酸核糖可以通过酸酐键结合第二个、第三个磷酸,形成二磷酸核苷、三磷酸核苷。

核酸的分子结构

核酸的一级结构都是核酸内核苷酸的排列顺序

DNA的二级结构是右手双螺旋结构,某些病毒、噬菌体和细菌的DNA及真核生物的线粒体DNA呈环状,其三级结构是超螺旋结构,真核生物的细胞核DNA与RNA、蛋白质构成染色体,其结构更复杂。RNA的二级结构不像DNA那样典型,除了少数RNA病毒的RNA之外,所有生物的RNA都是单链结构。单链RNA可以通过链内互补构成局部双螺旋,此外,如果RNA互补双链部分存在未配对碱基,就会形成鼓泡、膨胀环和发夹环结构。

真核生物5’端含7-甲基鸟苷酸的帽子,3’端含聚腺苷酸尾。TRNA含三叶草形的二级结构和倒“L”形的三级结构。RRNA则是由大小亚基构成。

(2)组分异同点:构成DNA和RNA的酸都是磷酸,戊糖方面:DNA含有脱氧核糖,

RNA含有核糖:碱基方面:DNA和RNA都含有腺嘌呤,鸟嘌呤和胞嘧啶,但DNA 含胸腺嘧啶无尿嘧啶,而RNA含尿嘧啶无胸腺嘧啶

10.试述复制与转录、逆转录过程的异同点;

①模板:都以DNA链为模板,但复制的模板为解开的两股DNA单链,转录的模板是一股DNA链的一段,故为不对称转录。

②参与酶:参与复制的酶主要有DNA聚合酶、拓扑酶、解旋酶、引物酶、连接酶,参与转录的酶主要是RNA聚合酶。DNA聚合酶和RNA聚合酶均按5’-3’方向催化延伸

③连续性:复制是半不连续的,而转录是连续进行的

④加工:复制产物为两条与亲链相同的子代DNA双链,不需要加工修饰。而转录产物为与DNA模板链互补的RNA分子,还需要经过剪接等加工。

⑤原料:复制的原料是四种DNTP,转录的产物是四种NTP

11.参与蛋白质合成的核酸有哪些?各自作用如何?蛋白质合成时氨基酸排列由什么决定并按什么规律进行?

(1)参与蛋白质的合成的核酸有MRNA、RRNA和TRNA

①MRNA是指导蛋白质合成的模板,mRNA携带来自DNA的遗传信息,其开放阅读框的密码子系列直接编码蛋白质多肽链的一级结构。

②TRNA既是氨基酸的转运工具又是读玛器。每一种氨基酸都有自己的TRNA,它转运氨基酸并将其连接到肽链C端,且每一种TRNA都有一个反密码子,它可以直接与MRNA的密码子结合,达到相互识别的目的。

③核糖体合成蛋白质的机器,核糖体是由RRNA和蛋白质组成的核蛋白颗粒,由大小亚基组成,可经一系列反应合成蛋白质

(3)蛋白质合成的氨基酸排列是由MRNA上的密码子排列顺序决定的。规律是起始密码子是第一个编码氨基酸的密码子,且读玛的是每相邻三个碱基组成密码子,然后就一个密码子一个密码子地编码过去,直至遇见终止密码子,编码终止。

12.请叙述体内胆汁酸的生成原料与部位,关键酶及生理作用;

(1)分类

①按结构分类:一类是游离胆汁酸,包括胆酸、鹅脱氧胆酸、脱氧胆酸和石胆酸四种。一类是结合胆汁酸,包括甘氨胆酸、牛磺胆酸、甘氨鹅脱氧胆酸、牛磺脱氧胆酸、甘氨脱氧胆酸、牛磺脱氧胆酸、甘氨石胆酸和牛磺脱氧胆酸八种

②按来源分类:一类是由胆固醇转化生成的胆酸、鹅脱氧胆酸、甘氨胆酸、牛磺胆酸、甘氨鹅脱氧胆酸、牛磺鹅脱氧胆酸六种,一类是由初级胆汁酸转化生成的脱氧胆酸、石胆酸、甘氨脱氧胆酸、牛磺脱氧胆酸、甘氨石胆酸和牛磺石胆酸

(2)生成情况

①在肝细胞内,胆固醇转化生成初级游离胆汁酸

②在肝细胞内,初级游离胆汁酸与甘氨酸或牛磺酸缩合,生成结合胆汁酸,随胆汁通过胆管汇入胆囊储存

③随结合胆汁酸受到肠道菌作用部分水解重新生成游离胆汁酸,其中的一部分初级游离胆汁酸还原生成次级游离胆汁酸

④次级游离胆汁酸重吸收入肝脏,与甘氨酸或牛磺酸缩合,生成次级结合胆汁酸,随胆汁通过胆管汇入胆囊储存

(4)作用

胆汁酸作为胆固醇的转化产物,胆汁酸具有较高的亲水性,既直接参与食物脂类的消化吸收,又是胆固醇的主要排泄形式,并促进胆固醇的直接排泄。

①参与食物脂类的消化吸收胆汁酸分子结构具有亲水面和疏水面,能够乳化脂

类,扩大脂类和脂酶的接触面,促进之类的消化。

②是胆固醇的主要排泄形式正常人每天有0.4-0.6g胆固醇在肝脏内转化成胆

汁酸,通过肠道排出体外。

③抑制胆汁中胆固醇的析出部分胆固醇可以随胆汁汇入胆囊。当胆汁在胆囊中

进一步浓缩时,难溶于水的胆固醇较易析出。胆汁中的胆汁酸和磷脂酰胆碱可以与胆固醇形成微团,阻止其析出。

13.黄疸有哪几种类型?其产生的原因及相应的血、尿、粪便检查变化情况如何?

(1)溶血性黄疸是由于红细胞在单核-吞噬细胞系统破坏过多,超过肝细胞的摄取转化和排泄能力,造成血清游离胆红素浓度过高所致。

血清未结合胆红素增加血清结合胆红素正常尿胆红素阴性尿胆素(原)增加粪胆素增加粪色加深

(2)肝细胞性黄疸由于肝细胞破坏,其摄取、转化、和排泄胆红素能力降低所致。血清未结合胆红素增加血清结合胆红素升高尿胆红素阳性尿胆素(原)不一定粪胆素正常/减少粪色正常/变浅

(3)阻塞性黄疸各种原因引起的胆汁排泄通道受阻,使胆小管和毛细血管内压力增大破裂,致使结合胆红素逆流入血, 造成血清胆红素升高所致。

血清未结合胆红素不变或微增血清结合胆红素升高尿胆红素阳性

尿胆素(原)减少粪胆素减少粪色变浅至灰白

14.何谓高(低)血钾?其与酸碱平衡和物质代谢有何关系?主要危害是什么?

(1)血钾浓度低于3.5mol/L称为低血钾,其危害是①神经肌肉应激性降低:表现为全身软弱无力、反射减弱或消失甚至出现呼吸麻痹等症状②心肌应激性和自律性增加:常出现以异位搏动为主的心律失常。

血钾浓度高于5.5mol/L称为高血钾,其危害是①神经肌肉应激性增高:表现为首足感觉异常、极度疲乏、肌肉酸痛、面色苍白、肢体湿冷、嗜睡、神志模糊及

骨骼肌麻痹等症状。②心肌应激性和自律性降低,会出现心率缓慢、心律不齐、心音减弱,严重时心跳会停止于舒张状态

(2)血钾与物质代谢关系

①在糖原合成和蛋白质合成时K+进入细胞内,引起血钾浓度降低;在糖原分解和蛋白质分解时K+被排到细胞外,引起血钾浓度升高

②在组织生长旺盛和创伤愈合期或静脉输注胰岛素和葡萄糖时,由于蛋白质或糖原合成增强,K+将进入细胞内,会造成血钾浓度降低。

3严重创伤(如烧伤或大手术过后),组织大量破坏、感染或缺氧时,体内蛋白质分解代谢增强,细胞内的K+释放到细胞外,会使血钾浓度明显升高,在肾脏功能衰竭时尤为明显

4 酸中毒时,细胞外液浓度升高,部分H+进入细胞与细胞内的K+进行交换,使细胞外液K+浓度升高;同时,肾小管上皮细胞分泌H+的作用减弱,使尿液中排出的K+减少,所以酸中毒会引起高血钾,反之,碱中毒会引起低血钾。

(3)血钾与酸碱平衡的关系

远曲小管分泌的K+可以与原尿中Na+交换。H+-Na+交换也在远曲小管进行,与K+-Na+交换互相拮抗。细胞外液K+浓度升高会抑制肾小管细胞的H+-Na+交换,发生高钾性酸中毒;相反,细胞外液K+浓度降低会促进肾小管细胞的H+-Na+交换,发生低钾性碱中毒

15.调节水钠代谢体液平衡的激素有哪些?各自作用如何?水钠代谢代谢紊乱有哪些类型?

(1)神经系统的调节中枢神经系统通过对体液晶体渗透压的感受直接影响水的摄入。在机体失水过多、高盐饮食、输入高渗液等情况下,细胞外液渗透压升高,刺激丘脑下部的渗透压感受器,引起大脑皮层兴奋,产生口渴感觉,此时若给予饮水,则血浆等细胞外液的渗透压下降,水从细胞外向细胞内转移,从而达到调节体液渗透压平衡的作用。

(2)抗利尿激素的调节抗利尿激素的主要生理功能是增强肾远曲小管和集合管对水的重吸收,降低排尿量,维持体液渗透压的相对稳定。

(3)醛固酮的调节其主要生理功能是促进肾远曲小管H+-Na+交换和K+-Na+交换,同时也促进水和氯的重吸收,即排钾泌氢、保钠保水。

(4)心房钠尿肽的调节心房钠尿肽的主要生理功能是抑制肾远曲小管和集合管对水、钠的重吸收,提高肾小球滤过滤,抑制肾素、醛固酮和抗利尿激素的分泌,因而具有很强的利尿、利纳效应。此外,它还具有强烈而持久的扩张血管和降低血压的作用。

16.血液的正常PH值是多少?机体内如何调节它的相对恒定的?

血液正常ph值=7..35-7.45。它的相对恒定受到

血液缓冲系统、肺的呼吸作用和肾脏的调节作用机制。

其中肾的调节主要形式包括H+-Na+交换,NH4+ -Na+交换,K+-Na+交换

机体通过各种调节机制处理酸性和碱性物质的含量与比例,使体液的pH值恒定在一定范围内(7.35~7.45)的过程,称为酸碱平衡。

当ph<7.35或ph>7.45,就会发生酸中毒或碱中毒。

17.简述体内以下物质的代谢来源去路:丙酮酸,乳酸,乙酰辅酶A,脂肪酸,胆固醇,氨。血脂:血脂来源:①食物脂类消化吸收②体内合成脂类③脂库动员释放

血脂去路:①氧化供能②进入脂库储存③构成生物膜④转化成其他物质

丙酮酸:丙氨酸来源:①食物蛋白的消化吸收②组织蛋白的降解③丙酮酸和谷氨酸的合成

去路:①主要是参与合成组织蛋白②脱氨基生成丙酮酸和谷氨酸③脱羧基生成丙酮酸

乙酰辅酶A:乙酰辅酶A来源:①柠檬酸裂解(柠檬酸通过柠檬酸转运体转运到细胞液中,由柠檬酸裂解酶催化裂解生成乙酰CoA和草酰乙酸)

②丙酮酸氧化脱羧生成(糖的有氧氧化第二阶段)③由乙酰乙酰CoA分解生成(酮体利用)④脂肪酸的β氧化产生

去路:①合成脂肪酸②进入三羧酸循环③合成酮体(酮体合成)④合成胆固醇

脂肪酸:脂肪酸来源:①从食物摄取②体内利用乙酰CoA合成

去路:①作为储能物质分布在皮下、腹腔大网膜、肠系膜和内脏周围②氧化分解供能

胆固醇:来源:①从食物摄取

②由乙酰CoA、NADPH和ATP在体内的组织细胞液和内质网合成

去路:①转化成胆汁酸②转化成内固醇激素(如肾上腺皮质激素、性激素)

③转化成7-脱氢胆固醇④随粪便和皮脂腺排除体外

乳酸:来源:葡萄糖的无氧代谢产生

去路:①糖异生作用合成葡萄糖②乳酸脱氢生成丙酮酸进入三羧酸循环

18.结合你所学的生化知识谈谈缺钙时如何补钙?

(1)提高体内1,25-(OH)

3-D

3

含量 1,25-(OH)

3

-D

3

是Vit D

3

的活性形式,

其主要功能是促进肠内钙磷的吸收,提高血钙和血磷浓度,为新骨钙化提供钙磷,维持骨质更新,促进肾脏对钙磷的重吸收

(2)提高体内甲状旁腺素含量甲状旁腺素具有升高血钙,降低血磷的作用,是维持血钙正常水平的重要调节因素

(3)降低体内降钙素的含量降钙素主要生理功能是降低血钙和血磷,

(4)吃一些增加肠道酸性的物质因为钙盐在酸性环境下容易溶解,在碱性环境下容易沉淀,因此食物中凡能增加肠道酸性的物质,比如乳酸和柠檬酸,都有助于钙的吸收

(5)低磷膳食食物中过多的碱性磷酸盐和草酸可以与钙生成难溶性钙盐,从而影响钙的吸收,因此低磷膳食可以促进钙的吸收。

19.底物和温度对酶促反应的影响特点是?酶的抑制剂有哪些类型?

生物化学期末考试试题及答案范文

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分)( ) 2、糖类化合物都具有还原性( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。( ) 5、ATP含有3个高能磷酸键。( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。( ) 9、血糖基本来源靠食物提供。( ) 10、脂肪酸氧化称β-氧化。( ) 11、肝细胞中合成尿素的部位是线粒体。( ) 12、构成RNA的碱基有A、U、G、T。( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 二、单选题(每小题1分,共20分) 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:( ) A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油 3、蛋白质的基本结构单位是下列哪个:( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是:( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2C、3 D、4.E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP?( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是( )

生物化学复习重点

第二章 蛋白质 1、凯氏定氮法:蛋白质含量=总含氮量-无机含氮量)×6.25 例如:100%的蛋白质中含N 量为16%,则含N 量8%的蛋白质含量为50% 100% /xg=16% /1g x=6.25g 2、根据R 基的化学结构,可将氨基酸分为脂肪族氨基酸、芳香族氨基酸、杂环氨基酸和杂环亚氨基酸。 按照R 基的极性,可分为非极性R 基氨基酸、不带电荷的极性R 基氨基酸、极性带负电荷(1)一般物理性质 无色晶体,熔点极高(200℃以上),不同味道;水中溶解度差别较大(极性和非极性),不溶于有机溶剂。氨基酸是两性电解质。 氨基酸等电点的确定: 酸碱确定,根据pK 值(该基团在此pH 一半解离)计算: 等电点等于两性离子两侧pK 值的算术平均数。

(2)化学性质 ①与水合茚三酮的反应:Pro产生黄色物质,其它为蓝紫色。在570nm(蓝紫色)或440nm (黄色)定量测定(几μg)。 ②与甲醛的反应:氨基酸的甲醛滴定法 ③与2,4-二硝基氟苯(DNFB)的反应:形成黄色的DNP-氨基酸,用来鉴定多肽或蛋白质的N 端氨基酸,又称Sanger法。或使用5-二甲氨基萘磺酰氯(DNS-Cl,又称丹磺酰氯)也可测定蛋白质N端氨基酸。 ④与异硫氰酸苯酯(PITC)的反应:多肽链N端氨基酸的α-氨基也可与PITC反应,生成PTC-蛋白质,用来测定N端的氨基酸。 4、肽的结构 线性肽链,书写时规定N端放在左边,C端放在右边,用连字符将氨基酸的三字符号从N 端到C端连接起来,如Ser-Gly-Tyr-Ala-Leu。命名时从N端开始,连续读出氨基酸残基的名称,除C端氨基酸外,其他氨基酸残基的名称均将“酸”改为“酰”,如丝氨酰甘氨酰酪氨酰丙氨酰亮氨酸。若只知道氨基酸的组成而不清楚氨基酸序列时,可将氨基酸组成写在括号中,并以逗号隔开,如(Ala,Cys2,Gly),表明此肽有一个Ala、两个Cys和一个Gly 组成,但氨基酸序列不清楚。 由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一个平面,称作肽平面或酰胺平面。 5、、蛋白质的结构 (一)蛋白质的一级结构(化学结构) 一级结构中包含的共价键主要指肽键和二硫键。 (二)蛋白质的二级结构 (1)α-螺旋(如毛发) 结构要点:螺旋的每圈有3.6个氨基酸,螺旋间距离为0.54nm,每个残基沿轴旋转100°。(2)β-折叠结构(如蚕丝) (3)β-转角 (4)β-凸起 (5)无规卷曲 (三)蛋白质的三级结构(如肌红蛋白) (四)蛋白质的司机结构(如血红蛋白) 6、蛋白质分子中氨基酸序列的测定 氨基酸组成的分析: ?酸水解:破坏Trp,使Gln变成Glu, Asn变成Asp ?碱水解:Trp保持完整,其余氨基酸均受到破坏。 N-末端残基的鉴定:

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

浙江工业大学生物化学期末复习知识重点

1.糖异生和糖酵解的生理学意义: 糖酵解和糖异生的代谢协调控制,在满足机体对能量的需求和维持血糖恒定方面具有重要的生理意义。 2.简述蛋白质二级结构定义及主要类别。 定义:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 主要类别:α-螺旋,β-折叠,β-转角,β-凸起,无规卷曲 3.简述腺苷酸的合成途径. IMP在腺苷琥珀酸合成酶与腺苷琥珀酸裂解酶的连续作用下,消耗1分子GTP,以天冬氨酸的氨基取代C-6的氧而生成AMP。 4.何为必需脂肪酸和非必需脂肪酸?哺乳动物体内所需的必需脂肪酸有哪些? 必需脂肪酸:自身不能合成必须由膳食提供的脂肪酸常见脂肪酸有亚油酸、亚麻酸非必须脂肪酸:自身能够合成机单不饱和脂肪酸 5.简述酶作为生物催化剂与一般化学催化剂的共性及其个性? 共性:能显著的提高化学反应速率,是化学反应很快达到平衡 个性:酶对反应的平衡常数没有影响,而且酶具有高效性和专一性 6.简述TCA循环的在代谢途径中的重要意义。 1、TCA循环不仅是给生物体的能量,而且它还是糖类、脂质、蛋白质三大物质转化的枢纽 2、三羧酸循环所产生的各种重要的中间产物,对其他化合物的生物合成具有重要意义。 3、三羧酸循环课供应多种化合物的碳骨架,以供细胞合成之用。 7.何为必需氨基酸和非必需氨基酸?哺乳动物体内所需的必需氨基酸有哪些? 必需氨基酸:自身不能合成,必须由膳食提供的氨基酸。(苏氨酸、赖氨酸、甲硫氨酸、色氨酸、苯丙氨酸、缬氨酸、亮氨酸、异亮氨酸) 8.简述蛋白质一级、二级、三级和四级结构。 一级:指多肽链中的氨基酸序列,氨基酸序列的多样性决定了蛋白质空间结构和功能的多样性。 二级:指多肽主链有一定周期性的,由氢键维持的局部空间结构。 三级:球状蛋白的多肽链在二级结构、超二级结构和结构域等结构层次的基础上,组装而成的完整的结构单元。 四级:指分子中亚基的种类、数量以及相互关系。 9.脂肪酸氧化和合成途径的主要差别? β-氧化:细胞内定位(发生在线粒体)、脂酰基载体(辅酶A)、电子受体/供体(FAD、NAD+)、羟脂酰辅酶A构型(L型)、生成和提供C2单位的形式(乙酰辅酶A)、酰基转运的形式(脂酰肉碱) 脂肪酸的合成:细胞内定位(发生在细胞溶胶中)、脂酰基载体(酰基载体蛋白(ACP))、电子受体/供体(NADPH)、羟脂酰辅酶A构型(D型)、生成和提供C2单位的形式(丙二酸单酰辅酶A)、酰基转运的形式(柠檬酸) 10.酮体是如何产生和氧化的?为什么肝中产生酮体要在肝外组织才能被利用? 生成:脂肪酸β-氧化所生成的乙酰辅酶A在肝中氧化不完全,二分子乙酰辅酶A可以缩合成乙酰乙酰辅酶A:乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A(HMG-CoA),后者分裂成乙酰乙酸;乙酰乙酸在肝线粒体中可还原生成β-羟丁酸,乙酰乙酸还可以脱羧生成丙酮。 氧化:乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸内缺乏β-酮脂酰辅酶A转移酶和乙酰乙酸硫激酶,所以肝中产生酮体要在肝外组织才能被

生物化学期末考试试卷与答案

安溪卫校药学专业生物化学期末考试卷选择题 班级 _____________姓名 _____________座号 _________ 一、单项选择题(每小题 1 分,共30 分) 1、蛋白质中氮的含量约占 A 、 6.25% B 、10.5%C、 16% D 、19%E、 25% 2、变性蛋白质分子结构未改变的是 A 、一级结构B、二级结构C、三级结构 D 、四级结构E、空间结构 3、中年男性病人,酗酒呕吐,急腹症,检查左上腹压痛,疑为急性胰腺炎,应测血中的酶是 A 、碱性磷酸酶 B 、乳酸脱氢酶C、谷丙转氨酶D、胆碱酯酶E、淀粉酶 4、酶与一般催化剂相比所具有的特点是 A 、能加速化学反应速度 C、具有高度的专一性 E、对正、逆反应都有催化作用B、能缩短反应达到平衡所需的时间D、反应前后质和量无改 5、酶原之所以没有活性是因为 A 、酶蛋白肽链合成不完全C、酶原是普通的蛋白质E、是已 经变性的蛋白质B、活性中心未形成或未暴露D、缺乏辅酶或辅基 6、影响酶促反应速度的因素 A 、酶浓度B、底物浓度C、温度D、溶液pH E、以上都是 7、肝糖原能直接分解葡萄糖,是因为肝中含有 A 、磷酸化酶 B 、葡萄糖 -6-磷酸酶C、糖原合成酶D、葡萄糖激酶E、己糖激酶 8、下列不是生命活动所需的能量形式是 A 、机械能B、热能C、 ATP D、电能E、化学能 9、防止动脉硬化的脂蛋白是 A、CM B 、VLDL C、 LDL D、 HDL E、 IDL 10、以下不是血脂的是 A 、必需脂肪酸 B 、磷脂C、脂肪D、游离脂肪酸E、胆固醇 11、一分子软脂酸在体内彻底氧化净生成多少分子ATP A、38 B、 131 C、 129 D、146 E、 36 12、没有真正脱掉氨基的脱氨基方式是 A 、氧化脱氨基B、转氨基C、联合脱氨基D、嘌呤核苷酸循环E、以上都是 13、构成 DNA 分子的戊糖是 A 、葡萄糖B、果糖C、乳糖 D 、脱氧核糖E、核糖 14、糖的有氧氧化的主要生理意义是: A 、机体在缺氧情况下获得能量以供急需的有效方式 B 、是糖在体内的贮存形式 C、糖氧化供能的主要途径 D 、为合成磷酸提供磷酸核糖 E、与药物、毒物和某些激素的生物转化有关 15、体内氨的主要运输、贮存形式是 A 、尿素B、谷氨酰胺C、谷氨酸 D 、胺E、嘌呤、嘧啶 16、DNA作为遗传物质基础,下列叙述正确的是 A 、 DNA 分子含有体现遗传特征的密码 B 、子代 DNA 不经遗传密码即可复制而成

生物化学复习重点

绪论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及其应用;蛋白质分离纯化的方法及其基本原理。 【复习思考题】 1. 名词解释:蛋白质一级结构、蛋白质二级结构、蛋白质三级结构、蛋白质四级结构、肽单元、模体、结构域、分子伴侣、协同效应、变构效应、蛋白质等电点、电泳、层析 2. 蛋白质变性的概念及本质是什么有何实际应用? 3. 蛋白质分离纯化常用的方法有哪些其原理是什么? 4. 举例说明蛋白质结构与功能的关系 核酸的结构与功能 掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。 第三章酶 掌握:酶的概念、化学本质及生物学功能;酶的活性中心和必需基团、同工酶;酶促反应特点;各种因素对酶促反应速度的影响、特点及其应用;酶调节的方式;酶的变构调节和共价修饰调节的概念。 第四章糖代谢 掌握:糖的主要生理功能;糖的无氧分解(酵解)、有氧氧化、糖原合成及分解、糖异生的基本反应过程、部位、关键酶(限速酶)、生理意义;磷酸戊糖途径的生理意义;血糖概念、正常值、血糖来源与去路、调节血糖浓度的主要激素。 【复习思考题】 1. 名词解释:.糖酵解、糖酵解途径、高血糖和糖尿病、乳酸循环、糖原、糖异生、三羧酸循环、活性葡萄糖、底物水平磷酸化。 2.说出磷酸戊糖途径的主要生理意义。 3.试述饥饿状态时,蛋白质分解代谢产生的丙氨酸转变为葡萄糖的途径。

大学微生物学期末考试必考学习知识重点

微生物学期末考试知识点 第六章微生物的生长繁殖及其控制 1. 生长曲线:细菌接种到定量的液体培养基中,定时取样测定细胞数量,以培养时间为横座标,以菌数为纵座标作图,得到的一条反映细菌在整个培养期间菌数变化规律的曲线。 2. 二次生长:当培养基中同时含有快速碳源(氮源)或迟效碳源(氮源)这两类碳源(或氮源)时,微生物在生长过程中会形成二次生长现象。

3.同步培养:使群体中的细胞处于比较一致的,生长发育均处于同一阶段上,即大多数细胞能同时进行生长或分裂的培养方法。 4.分批(封闭)培养:是指在一个密闭系统内投入有限数量的营养物质后,接入少量微生物菌种进行培养,使微生物生长繁殖,在特定条件下完成一个生长周期的微生物培养方法。 5. 连续培养:在微生物的整个培养期间,通过一定的方式使微生物能以恒定的比生长速率生长并能持续生长下去的一种培养方法。 连续培养的两种类型: 6. 环境对微生物生长的影响: 1. 营养物质: 碳源、氮源、无机盐等 2. 水的活性 3. 温度 4. pH 5. 氧 7.酵母的生殖方式 (一)无性繁殖:芽殖 裂殖 无性孢子 (二)有性繁殖:酵母菌是以形成子囊和子囊孢子的方式进行有性繁殖的。 8.微生物生长控制中的常见名词解释 消毒:杀死或灭活病原微生物(营养体细胞) 灭菌:杀死包括芽孢在内的所有微生物 防腐:防止或抑制霉腐微生物在食品等物质上的生长 化疗:杀死或抑制宿主体内的病原微生物 抑制:生长停止,但不死亡 死亡:生长能力不可逆丧失 9.两种重要的选择性抗微生物剂 抗代谢物:有些化合物在结构上与生物体所必需的代谢物很相似,以至可以和特定的酶结合,从而阻碍了酶的功能,干扰了代谢的正常进行,这些物质称为抗代谢物。 举例:叶酸对抗物(磺胺)、嘌呤对抗物(6-巯基嘌呤)、苯丙氨酸对抗物(对氟苯丙氨酸)、尿嘧啶对抗物(5-氟尿嘧啶)胸腺嘧啶对抗物(5-溴胸腺嘧啶)等等

2014生物化学期末考试试题

《生物化学》期末考试题 A 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。 ( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( ) 9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将激素信号传递发挥其生物() 1、下列哪个化合物是糖单位间以α-1,4糖苷键相连: ( ) A、麦芽 B、蔗糖 C、乳糖 D、纤维素 E、香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、脂酰甘油

3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA 6、物质脱下的氢经NADH呼吸链氧化为水时,每消耗1/2分子氧可生产ATP分子数量( ) A、1B、2 C、3 D、4. E、5 7、糖原分子中由一个葡萄糖经糖酵解氧化分解可净生成多少分子ATP? ( ) A、1 B、2 C、3 D、4 E、5 8、下列哪个过程主要在线粒体进行 ( ) A、脂肪酸合成 B、胆固醇合成 C、磷脂合成 D、甘油分解 E、脂肪酸β-氧化 9、酮体生成的限速酶是 ( ) A、HMG-CoA还原酶 B、HMG-CoA裂解酶 C、HMG-CoA合成酶 D、磷解酶 E、β-羟丁酸脱氢酶 10、有关G-蛋白的概念错误的是 ( ) A、能结合GDP和GTP B、由α、β、γ三亚基组成 C、亚基聚合时具有活性 D、可被激素受体复合物激活 E、有潜在的GTP活性 11、鸟氨酸循环中,合成尿素的第二个氮原子来自 ( ) A、氨基甲酰磷酸 B、NH3 C、天冬氨酸 D、天冬酰胺 E、谷氨酰胺 12、下列哪步反应障碍可致苯丙酮酸尿症 ( )

生物化学知识点整理

生物化学知识点整理(总33 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为 机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。 第二节脂类的消化与吸收

脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾 上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质)

生物化学期末考试试题及答案

《生物化学》期末考试题 A 一、判断题(15个小题,每题1分,共15分) ( ) 1、蛋白质溶液稳定的主要因素是蛋白质分子表面形成水化膜,并在偏离等电点时带有相同电荷 2、糖类化合物都具有还原性 ( ) 3、动物脂肪的熔点高在室温时为固体,是因为它含有的不饱和脂肪酸比植物油多。( ) 4、维持蛋白质二级结构的主要副键是二硫键。 ( ) 5、ATP含有3个高能磷酸键。 ( ) 6、非竞争性抑制作用时,抑制剂与酶结合则影响底物与酶的结合。( ) 7、儿童经常晒太阳可促进维生素D的吸收,预防佝偻病。 ( ) 8、氰化物对人体的毒害作用是由于它具有解偶联作用。 ( )

9、血糖基本来源靠食物提供。 ( ) 10、脂肪酸氧化称β-氧化。 ( ) 11、肝细胞中合成尿素的部位是线粒体。 ( ) 12、构成RNA的碱基有A、U、G、T。 ( ) 13、胆红素经肝脏与葡萄糖醛酸结合后水溶性增强。 ( ) 14、胆汁酸过多可反馈抑制7α-羟化酶。 ( ) 15、脂溶性较强的一类激素是通过与胞液或胞核中受体的结合将 二、单选题(每小题1分,共20分)

1、下列哪个化合物是糖单位间以α-1,4糖苷键相连:() A、麦芽糖 B、蔗糖 C、乳糖 D、纤维素 E、 香菇多糖 2、下列何物是体内贮能的主要形式 ( ) A、硬酯酸 B、胆固醇 C、胆酸 D、醛固酮 E、 脂酰甘油 3、蛋白质的基本结构单位是下列哪个: ( ) A、多肽 B、二肽 C、L-α氨基酸 D、L-β-氨基酸 E、以上都不是 4、酶与一般催化剂相比所具有的特点是 ( ) A、能加速化学反应速度 B、能缩短反应达到平衡所需的时间 C、具有高度的专一性 D、反应前后质和量无改 E、对正、逆反应都有催化作用 5、通过翻译过程生成的产物是: ( ) A、tRNA B、mRNA C、rRNA D、多肽链E、DNA

生物化学期末重点总结

第二章 1、蛋白质构成:碳、氢、氧、氮,氮含量16% 2、蛋白质基本组成单位:氨基酸 3、氨基酸分类:中性非极性~(甘氨酸Gly,G)、中性极性~、酸性~(天门冬氨酸Asp,D、谷氨 酸Glu,E)、碱性~(赖氨酸Lys,K、精氨酸Arg,R、组氨酸His,H) 4、色氨酸、酪氨酸(280nm波长)、苯丙氨酸(260nm波长)三种芳香族氨基酸吸收紫外光 5、大多数蛋白质中均含有色氨酸和酪氨酸,故测定280nm波长的光吸收强度,课作为溶液中蛋白 质含量的快速测定方法 6、茚三酮反应:蓝紫色化合物,反应直接生成黄色产物 7、肽键:通过一个氨基酸分子的—NH2与另一分子氨基酸的—COOH脱去一分子水形成—CO— NH— 8、二级结构基本类型:α—螺旋、β—折叠、β—转角、无规则卷曲 9、三级结构:每一条多肽链内所有原子的空间排布 10、一个具有功能的蛋白质必须具有三级结构 11、稳定三级结构的重要因素:氢键、盐键、疏水键、范德华力等非共价键以及二硫键 12、四级结构:亚基以非共价键聚合成一定空间结构的聚合体 13、亚基:有些蛋白质是由两条或两条以上具有独立三级结构的多肽链组成,每条多肽链称~ 14、单独的亚基一般没有生物学功能,只有构成完整的四级结构才具有生物学功能 15、等电点:调节溶液pH值,使某一蛋白质分子所带的正负电荷相等,此时溶液的pH值即为~ 16、变性作用:某些理化因素可以破坏蛋白质分子中的副键,使其构像发生变化,引起蛋白质的理 化性质和生物学功能的改变(可逆性变性、不可逆性变性) 17、变性蛋白质是生物学活性丧失,在水中溶解度降低,粘度增加,更易被蛋白酶消化水解 18、变性物理因素:加热、高压、紫外线、X线和超声波 化学因素:强酸、强碱、重金属离子、胍和尿素 19、沉淀:用物理或化学方法破坏蛋白质溶液的两个稳定因素,即可将蛋白质从溶液中析出 20、沉淀:盐析:破坏蛋白质分子的水化膜,中和其所带电荷,仍保持其原有生物活性,不会是蛋 白质变性 有机溶剂沉淀:不会变性 重金属盐类沉淀:破坏蛋白质分子的盐键,与巯基结合,发生变性 生物碱试剂沉淀: 21、双缩脲反应:在碱性溶液中,含两个以上肽键的化合物都能与稀硫酸铜溶液反应呈紫色(氨基 酸、二肽不可以) 第三章 22、核苷:一分子碱基与一分子戊糖脱水以N—C糖苷键连成的化合物 23、核苷酸=核苷+磷酸 24、RNA分子含有四种单核苷酸:AMP、GMP、CMP、UMP 25、核苷酸作用:合成核酸、参与物质代谢、能量代谢和多种生命活动的调控 26、核苷酸存在于辅酶A、黄素腺嘌呤二核苷酸(F AD)、辅酶I(NAD+)和辅酶II(NADP+) 27、A TP是能量代谢的关键 28、UTP、CTP、GTP分别参与糖元、磷脂、蛋白质的合成 29、环一磷酸腺苷(Camp)和环一磷酸鸟苷(cGMP)在信号转导过程中发挥重要作用 30、DNA具有方向性,碱基序列按照规定从5’向3’书写(3’,5’-磷酸二酯键) 31、三维双螺旋结构内容:⑴DNA分子由两条反向平行的多核苷酸链围绕同一中心轴盘旋而成 ⑵亲水的脱氧核糖基与磷酸基位于外侧,疏水的碱基位于内侧 ⑶两条多核苷酸链以碱基之间形成的氢键相互连结 ⑷互补碱基之间横向的氢键和疏水碱基平面之间形成的纵向碱基堆积 力,维系这双螺旋结构的稳定 32、B-DNA、A-DNA右手螺旋结构,Z-NDA左手螺旋结构

生物化学知识点梳理

生化知识点梳理 蛋白质水解 (1)酸水解:破坏色胺酸,但不会引起消旋,得到的是L-氨基酸。(2)碱水解:容易引起消旋,得到无旋光性的氨基酸混合物。 (3)酶水解:不产生消旋,不破坏氨基酸,但水解不彻底,得到的是蛋白质片断。(P16) 酸性氨基酸:Asp(天冬氨酸)、Glu(谷氨酸) 碱性氨基酸:Lys(赖氨酸)、Arg(精氨酸)、His(组氨酸) 极性非解离氨基酸:Gly(甘氨酸)、Ser(丝氨酸)、Thr(苏氨酸)、Cys(半胱氨酸),Tyr(酪氨酸)、Asn(天冬酰胺)、Gln(谷氨酰胺) 非极性氨基酸:Ala(丙氨酸)、Val(缬氨酸)、Leu(亮氨酸)、Ile(异亮氨酸)、Pro(脯氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Met(甲硫氨酸) 氨基酸的等电点调整环境的pH,可以使氨基酸所带的正电荷和负电荷相等,这时氨基酸所带的净电荷为零。在电场中既不向阳极也不向阴极移动,这时的环境pH称为氨基酸的等电点(pI)。 酸性氨基酸:pI= 1/2×(pK1+pKR) 碱性氨基酸:pI=1/2×(pK2+pKR) 中性氨基酸:pI= 1/2×(pK1+pK2) 当环境的pH比氨基酸的等电点大,氨基酸处于碱性环境中,带负电荷,在电场中向正极移动;当环境的pH比氨基酸的等电点小,氨基酸处于酸性环境中,带正电荷,在电场中向负极移动。 除了甘氨酸外,所有的蛋白质氨基酸的α-碳都是手性碳,都有旋光异构体,但组成蛋白质的都是L-构型。带有苯环氨基酸(色氨酸)在紫外区280nm波长由最大吸收 蛋白质的等离子点:当蛋白质在某一pH环境中,酸性基团所带的正电荷预见性基团所带的负电荷相等。蛋白质的净电荷为零,在电场中既不向阳极也不向阴极移动。这是环境的pH称为蛋白质的等电点。 盐溶:低浓度的中性盐可以促进蛋白质的溶解。 盐析:加入高浓度的中性盐可以有效的破坏蛋白质颗粒的水化层,同时又中和了蛋白质分子电荷,从而使蛋白质沉淀下来。 分段盐析:不同蛋白质对盐浓度要求不同,因此通过不同的盐浓度可以将不同种蛋白质沉淀出来。 变性的本质:破坏非共价键(次级键)和二硫键,不改变蛋白质的一级结构。蛋白质的二级结构:多肽链在一级结构的基础上借助氢键等次级键叠成有规则的空间结构。组成了α-螺旋、β-折叠、β-转角和无规则卷曲等二级结构构象单元。α-螺旋α-螺旋一圈有3.6个氨基酸,沿着螺旋轴上升0.54nm,每一个氨基酸残基上升0.15nm,螺旋的直径为2nm。当有脯氨酸存在时,由于氨基上没有多余的氢形成氢键,所以不能形成α-螺旋。 β-折叠是一种相当伸展的肽链结构,由两条或多条多肽链侧向聚集形成的锯齿状结构。有同向平行式和反向平行式两种。以反向平行比较稳定。 β-转角广泛存在于球状蛋白中,是由于多肽链中第n个残基羰基和第n+3个氨基酸残基的氨基形成氢键,使得多肽链急剧扭转走向而致 超二级结构:指多肽链上若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角)彼此相互作用,进一步组成有规则的结构组合体(p63 )。主要有αα,

福州大学考研生物化学笔记知识讲解

绪论 一、生物化学的的概念: 生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。 二、生物化学的发展: 1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。 2.动态生物化学阶段:是生物化学蓬勃发展的时期。就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。 3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。 三、生物化学研究的主要方面: 1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。 2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。 3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。 4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。 四、生物化学的应用 1.农业 2.医药 3.营养 4.临床化学 5.药理学 6.毒理学 第一章糖 第一节概述 一、定义 糖类(carbohydrate)是一类多元醇的醛衍生物或酮衍生物,或者称为多羟醛或多羟酮的聚合物。实际上糖类包括多羟醛、多羟酮、它们的缩聚物及其衍生物。

生物化学试题及答案期末用

生物化学试题及答案 维生素 一、名词解释 1、维生素 二、填空题 1、维生素的重要性在于它可作为酶的组成成分,参与体内代谢过程。 2、维生素按溶解性可分为和。 3、水溶性维生素主要包括和VC。 4、脂脂性维生素包括为、、和。 三、简答题 1、简述B族维生素与辅助因子的关系。 【参考答案】 一、名词解释 1、维生素:维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子 有机物。 二、填空题 1、辅因子; 2、水溶性维生素、脂性维生素; 3、B族维生素; 4、VA、VD、VE、VK; 三、简答题 1、

生物氧化 一、名词解释 1.生物氧化 2.呼吸链 3.氧化磷酸化 4. P/O比值 二、填空题 1.生物氧化是____ 在细胞中____,同时产生____ 的过程。 3.高能磷酸化合物通常是指水解时____的化合物,其中重要的是____,被称为能量代谢的____。 4.真核细胞生物氧化的主要场所是____ ,呼吸链和氧化磷酸化偶联因子都定位于____。 5.以NADH为辅酶的脱氢酶类主要是参与____ 作用,即参与从____到____的电子传递作用;以NADPH 为辅酶的脱氢酶类主要是将分解代谢中间产物上的____转移到____反应中需电子的中间物上。 6.由NADH→O2的电子传递中,释放的能量足以偶联ATP合成的3个部位是____、____ 和____ 。 9.琥珀酸呼吸链的组成成分有____、____、____、____、____。

10.在NADH 氧化呼吸链中,氧化磷酸化偶联部位分别是____、____、____,此三处释放的能量均超过____KJ。 12.ATP生成的主要方式有____和____。 14.胞液中α-磷酸甘油脱氢酶的辅酶是____,线粒体中α-磷酸甘油脱氢酶的辅基是____。 16.呼吸链中未参与形成复合体的两种游离成分是____和____。 26.NADH经电子传递和氧化磷酸化可产生____个ATP,琥珀酸可产生____个ATP。 三、问答题 1.试比较生物氧化与体外物质氧化的异同。 2.描述NADH氧化呼吸链和琥珀酸氧化呼吸链的组成、排列顺序及氧化磷酸化的偶联部位。 7.简述化学渗透学说。 【参考答案】 一、名词解释 1.物质在生物体内进行的氧化反应称生物氧化。 2.代谢物脱下的氢通过多种酶与辅酶所催化的连锁反应逐步传递,最终与氧结合为水,此过程与细胞呼吸有关故称呼吸链。 3.代谢物脱下的氢经呼吸链传递给氧生成水,同时伴有ADP磷酸化为ATP,此过程称氧化磷酸化。 4.物质氧化时每消耗1摩尔氧原子所消耗的无机磷的摩尔数,即生成ATP的摩尔数,此称P/O比值。 二、填空题 1.有机分子氧化分解可利用的能量 3.释放的自由能大于20.92kJ/mol ATP 通货 4.线粒体线粒体内膜 5.生物氧化底物氧H++e- 生物合成 6.NADH-CoQ Cytb-Cytc Cyta-a3-O2 9.复合体Ⅱ泛醌复合体Ⅲ细胞色素c 复合体Ⅳ 10.NADH→泛醌泛醌→细胞色素c 细胞色素aa3→O2 30.5 12.氧化磷酸化底物水平磷酸化 14.NAD+ FAD

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶”,HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾

上腺素、肾上腺素等。 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、 雌二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3-磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化。 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体。 2)过程: ①脂酸的活化——脂酰CoA的生成(细胞质) 脂肪酸 脂酰 消耗了2 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶) b.肉碱酰基转移酶Ⅱ c.脂酰肉碱——肉碱转位酶(转运体) ③脂酸的β氧化 a.脱氢:脂酰

02634生物化学大纲

02634生物化学大纲 02634生物化学(二) 江南大学编 江苏省高等教育自学考试委员会办公室

一、课程性质及其设置目的与要求 (一)课程性质和特点 生物化学(二)是江苏省高等教育自学考试食品科学与工程专业的一门必修基础课。课程全面、系统地介绍与食品有关的生物化学基本理论、基本技术和方法,使学生掌握生物大分子的结构、功能和性质,以及它们之间的关系,掌握各类生物大分子在生物体内的代谢和调节方式,同时及时反映国内外有关生物化学的先进理论和成就。本课程在加强基础理论的同时,又强调基本技能的训练,以培养学生分析、解决问题的能力。其教学目的是使学生借助于生物化学的理论和研究方法,解决自己所学的专业和今后在生产实践、科研中所遇到的问题。 人类为了维持生命,必须从外界取得物质和能量。人经口摄入体内的含有营养素(如蛋白质、碳水化合物、脂质、矿物质、水分等)的物料统称为食物或食料。绝大多数的人类食物都是经过加工以后才食用的。经过加工以后的食物称为食品。人是生物体,人类的食物也主要来源于其它生物。食品科学是一门以生物学、化学、工程学等为主要基础的综合学科。为了最大限度地满足人体的营养需要和适应人体的生理特点,食品资源的开发、加工手段与方法的研究等都必须建立在对人及其食品的化学组成、性质和生物体在内、外各种条件下的化学变化规律了解的基础上。 (二)本课程的基本要求 生物化学涉及的范围很广,学科分支越来越多。根据研究的生物对象之不同,可分为动物生物化学、植物生物化学、微生物生化、昆虫生化等等。随着生化向纵深发展,学科本身的各个组成部分常常被作为独立的分科,如蛋白质生化、糖的生化、核酸、酶学、能量代谢、代谢调控等等。按照生物化学应用领域的不同,分为工业生化、农业生物化学、医学生物化学、食品生物化学。 食品生物化学是食品科学的一个重要的分支,是应用生物化学之一。概括地说,食品生物化学研究的对象与范围就是人及其食品体系的化学及化学过程。食品生物化学不仅涵盖生物化学的一些基本内容,而且还包括再食品生产和加工过程中与食品营养和感官质量有关的化学及生物化学知识。 本课程选用国内最具权威的生化教材(生物化学,王镜岩等主编,第三版),全书有40章,教材篇幅很大,为便于自学考生学习,首先说明考生不要求掌握的章节,但括号内的内容要求掌握: 第六章蛋白质结构与功能的关系(了解肌红蛋白和血红蛋白的结构特点) 第十五章核酸的研究方法 第十六章抗生素

生物化学期末考试重点

等电点:在某PH的溶液中,氨基解离呈阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的P H称为该氨基酸的等电点 DNA变性:某些理化因素会导致氢键发生断裂,使双链DNA解离为单链,称为DNA变性 解链温度(Tm):在解链过程中,紫外吸收值得变化达到最大变化值的一半时所对应的温度 酶的活性中心:酶分子中一些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这一区域称为酶的活性中心 同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶 诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这一过程为酶底物结合的诱导契合 米氏常数(Km值):等于酶促反应速率为最大反应速率一半时的底物浓度 酶原的激活:酶的活性中心形成或暴露,酶原向酶的转化过程即为。。 有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化 三羧酸循环:是指乙酰CoA和草酰乙酸缩合生成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,又生成草酰乙酸的循环反应过程 糖异生:从非糖化合物转化为葡萄糖或糖原的过程称为。。 脂肪动员:指储存在脂肪细胞中的甘油三酯,被酯酸逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织,氧化利用的过程 酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常生成的中间产物:乙酰乙酸、β-羟丁酸、丙酮脂蛋白:血浆中脂类物质和载脂蛋白结合形成脂蛋白 呼吸链:线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链或电子传递链 营养必需氨基酸:体内需要而又不能自身合成,必须由食物提供的氨基酸 一碳单位:指某些氨基酸在分解代谢过程中产生的含有一个碳原子的基因 半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模极,按碱基配对规律,合成与模极互补的子链、子代细胞的DNA。一股单链从亲代完整的接受过来,另一股单链则完全重新合成。两个子细胞的DNA都和亲代DNA碱基序列一致,这中复制方式称为半保留复制 生物转化:机体对内外源性的非营养物质进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程为生物转化 氧化磷酸化:代谢物脱氢进入呼吸链,彻底氧化成水的同时,ADP磷酸化生成ATP,称为氧化磷酸化 底物水平磷酸化:底物由于脱氢脱水作用,底物分子内部能量重新分布生成高能键,使ATP磷酸化生成ATP的过程 密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸。这种三联体形成的核苷酸行列称为密码子 盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出称为盐析 糖酵解:葡萄糖或糖原在组织中进行类似的发酵的降解反应过程,最终形成乳酸或丙酮酸,同时释放出部分能量,形成ATP供组织利用 蛋白质的一级结构:指在蛋白质分子从N-端至C-端的氨基酸排列顺序 蛋白质的二级结构:多肽链主链骨架原子的相对空间位置。 蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。 蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用 DNA的空间结构与功能

生物化学知识重点

生物化学知识重点文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

生物化学知识重点 第一章绪论 1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。 2.生物化学研究的内容大体分为三部分: ①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控 第二章糖类化学 1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。 2.单糖的分类: ①按所含C原子的数目分为:丙糖、丁糖...... ②按所含羰基的特点分为:醛糖和酮糖。 3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。 4.甘油醛是最简单的单糖。 5.两种环式结构的葡萄糖: 6.核糖和脱氧核糖的环式结构:(见下图) CH 2OH CH 2 OH O O OH HOCH 2 O OH HOCH 2 O OH HO OH OH HO OH OH OH OH OH OH H

α-D-(+)-砒喃葡萄糖β-D-(+)-砒喃葡萄糖β-D-核糖 β-D-脱氧核糖 7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。 8.蔗糖是自然界分布最广的二糖。 9.多糖根据成分为:同多糖和杂多糖。同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等; 杂多糖以糖胺聚糖最为重要。 10.淀粉包括直链淀粉和支链淀粉。糖原分为肝糖原和肌糖原。 11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。 第三章脂类化学 1.甘油 脂肪脂肪酸短链脂肪酸、中链脂肪酸和长链脂肪酸(根据C原子数目分类) 脂类饱和脂肪酸和不饱和脂肪酸(根据是否含有碳-碳双键分类) 类脂:磷脂、糖脂和类固醇 2.亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。 3.类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。 4.脂肪又称甘油三酯。右下图是甘油三酯、甘油和脂肪酸的结构式: 5.皂化值:水解1克脂肪所消耗KOH的毫克数。 CH2- OH CHOOC-R 1

相关主题