搜档网
当前位置:搜档网 › 数学发展历史

数学发展历史

数学发展历史
数学发展历史

数学在提出问题和解答问题方面,已经形成了一门特殊的科学。在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。数学家门为了解答这些问题,要花费较大力量和时间。尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。◇公元前600年以前◇据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理" 。◇公元前600--1年◇公元前六世纪,发展了初等几何学(古希腊泰勒斯)。约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。公元前六世纪,印度人求出√2=1.4142156。公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊巴门尼德、芝诺等).。公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。公元前三世纪,筹算是当时中国的主要计算方法。公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊阿波罗尼)。约公元前一世纪,中国的《周髀算经》发表。其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。◇1-400年◇继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。一世纪左右,写了关于几何学、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角

三角形三边之间关系的命题共21条(中国,赵爽)。三世纪至四世纪魏晋时期,发明"割圆术",得π=3.1416(中国,刘徽)。三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国刘徽)。四世纪时,几何学著作《数学集成》问世,是研究古希腊数学的手册(古希腊,帕普斯)。◇401-1000年◇五世纪,算出了π的近似值到七位小数,比西方早一千多年(中国祖冲之)。五世纪,著书研究数学和天文学,其中讨论了一次不定方程式的解法、度量术和三角学等(印度,阿耶波多)。六世纪中国六朝时,提出祖氏定律:若二立体等高处的截面积相等,则二者体积相等。西方直到十七世纪才发现同一定律,称为卡瓦列利原理(中国,祖暅)。六世纪,隋代《皇极历法》内,已用"内插法"来计算日、月的正确位置(中国,刘焯)。七世纪,研究了定方程和不定方程、四边形、圆周率、梯形和序列。给出了ax+by=c (a,b,c,是整数)的第一个一般解(印度,婆罗摩笈多)。七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国,王孝通)。七世纪,唐代有《"十部算经"注释》。"十部算经"指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国,李淳风等)。 727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国,僧一行)。九世纪,发表《印度计数算法》,使西欧熟悉了十进位制(阿拉伯,阿尔·花刺子模 )。◇1001-1500年◇1086-1093年,宋朝的《梦溪笔谈》中提出"隙积术"和"会圆术",开始高阶等差级数的研究(中国,沈括)。十一世纪,第一次解出x2n+axn=b型方程的根(阿拉伯,阿尔·卡尔希)。十一世纪,完成了一部系统研究三次方程的书《代数学》(阿拉伯,卡牙姆)。十一世纪,解决了"海赛姆"问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角(埃及,阿尔·海赛姆)。十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的"增乘开方法",列出二项式定理系数表,这是现代"组合数学"的早期发现。后人所称的"杨辉三角"即指此法(中国,贾宪)。十二世纪,《立剌瓦提》一书是东方算术和计算方面的重要著作(印度,拜斯迦罗)。1202年,发表《计算之书》,把印度-阿拉伯记数法介绍到西方(意大利,费婆拿契 )。1220年,发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例(意大利,费婆拿契)。 1247年,宋朝的《数书九章》共十八卷,推广了"增乘开方法"。书中提出的联立一次同余式的解法,比西方早五百七十余年(中国,秦九韶)。 1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述"天元术"的著作(中国,李治 )。1261年,宋朝发表《详解九章算法》,用"垛积术"求出几类高阶等差级数之和(中国,杨辉)。1274年,宋朝发表《乘除通变本末》,叙述"九归"捷法,介绍了筹算乘除的各种运算法(中国,杨辉)。1280年,元朝《授时历》用招差法编制日月的方位表(中国,王恂、郭守敬等)。十四世纪中叶前,中国开始应用珠算盘。1303年,元朝发表《四元玉鉴》三卷,把"天元术"推广为"四元术"(中国,朱世杰)。1464年,在《论各种三角形》(1533年出版)中,系统地总结了三角学(德国,约·米勒)。1494年,发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识( 意大利,帕奇欧里)。◇1501-1600年◇1545年,卡尔达诺在《大法》中发表了非尔洛求三次方程的一般代数解的公式(意大利,卡尔达诺、非尔洛)。1550─1572年,出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题(意大利,邦别利)。1591年左右,在《美妙的代数》中出现了用字母表示数字系数的一般符号,推进了代数问题的一般讨论(德国,韦达)。1596

─1613年,完成了六个三角函数的间隔10秒的十五位小数表(德国,奥脱、皮提斯库斯)。◇1601-1650年◇1614年,制定了对数(英国,耐普尔)。1615年,发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积(德国,刻卜勒 )。1635年,发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分(意大利,卡瓦列利)。1637年,出版《几何学》,制定了解析几何。把变量引进数学,成为"数学中的转折点","有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了"(法国,笛卡尔)。1638年,开始用微分法求极大、极小问题(法国,费尔玛)。1638年,发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就(意大利,伽里略)。1639年,发行《企图研究圆锥和平面的相交所发生的事的草案》,是近世射影几何学的早期工作(法国,德沙格)。 1641年,发现关于圆锥内接六边形的"巴斯噶定理"(法国,巴斯噶)。 1649年,制成巴斯噶计算器,它是近代计算机的先驱(法国,巴斯噶)。 .◇1651-1700年◇1654年,研究了概率论的基础(法国,巴斯噶、费尔玛)。1655年,出版《无穷算术》一书,第一次把代数学扩展到分析学(英国,瓦里斯)。1657年,发表关于概率论的早期论文《论机会游戏的演算》(荷兰,惠更斯)。1658年,出版《摆线通论》,对"摆线"进行了充分的研究(法国,巴斯噶)。1665─1676年,牛顿(1665─1666年)先于莱布尼茨(1673─1676年)制定了微积分,莱布尼茨(1684─1686年)早于牛顿(1704─1736年)发表微积分(英国,牛顿,德国,莱布尼茨 )。1669年,发明解非线性方程的牛顿-雷夫逊方法(英国,牛顿、雷夫逊)。1670年,提出"费尔玛大定理",预测:若X,Y,Z,n都是整数,则Xn +Yn=Zn ,当 n>2时是不可能的(法国,费尔玛)。1673年,发表《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线(荷兰,惠更斯)。1684年,发表关于微分法的著作《关于极大极小以及切线的新方法》(德国,莱布尼茨)。1686年,发表了关于积分法的著作(德国,莱布尼茨)。1691年,出版《微分学初步》,促进了微积分在物理学和力学上的应用及研究(瑞士,约·贝努利)。1696年,发明求不定式极限的"洛比达法则"(法国,洛比达)。 1697年,解决了一些变分问题,发现最速下降线和测地线(瑞士,约·贝努利)。◇1701-1750年◇1704年,发表《三次曲线枚举》、《利用无穷级数求曲线的面积和长度》、《流数法》(英国,牛顿)。1711年,发表《使用级数、流数等等的分析》(英国,牛顿)。1713年,出版概率论的第一本著作《猜度术》(瑞士,雅·贝努利)。 1715年,发表《增量方法及其他》(英国,布·泰勒)。1731年,出版《关于双重曲率的曲线的研究》是研究空间解析几何和微分几何的最初尝试(法国,克雷洛)。1733年,发现正态概率曲线(英国,德·穆阿佛尔)。 1734年,贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机(英国,贝克莱)。 1736年,发表《流数法和无穷级数》(英国,牛顿)。1736年,出版《力学、或解析地叙述运动的理论》,是用分析方法发展牛顿的质点动力学的第一本著作(瑞士,欧勒)。1742年,引进了函数的幂级数展开法(英国,马克劳林)。1744年,导出了变分法的欧勒方程,发现某些极小曲面(瑞士,欧勒)。 1747年,由弦振动的研究而开创偏微分方程论(法国,达兰贝尔等)。 1748年,出版了系统研究分析数学的《无穷分析概要》,是欧勒的主要著作之一(瑞士,欧勒)。◇1751-1800年◇1755─1774年出版《微分学》和《积分学》三卷。书中包括分方

程论和一些特殊的函数(瑞士,欧勒)。1760─1761年,系统地研究了变分法及其在力学上的应用(法国,拉格朗日)。1767年,发现分离代数方程实根的方法和求其近似值的方法(法国,拉格朗日)。1770─1771年,把置换群用于代数方程式求解,这是群论的开始(法国,拉格朗日)。1772年,给出三体问题最初的特解(法国,拉格朗日)。1788年,出版《解析力学》,把新发展的解析法应用于质点、刚体力学(法国,拉格朗日)。1794年,流传很广的初等几何学课本《几何学概要》(法国,勒让德尔)。1794年,从测量误差,提出最小二乘法,于1809年发表(德国,高斯)。1797年,发表《解析函数论》不用极限的概念而用代数方法建立微分学(法国,拉格朗日)。1799年,创立画法几何学,在工程技术中应用颇多(法国,蒙日)。 1799年,证明了代数学的一个基本定理:实系数代数方程必有根(德国,高斯)。◇1801-1850年◇1801年, 出版《算术研究》,开创近代数论(德国,高斯)。1809年,出版了微分几何学的第一本书《分析在几何学上的应用》(法国,蒙日)。1812年,《分析概率论》一书出版,是近代概率论的先驱(法国,拉普拉斯)。1816年,发现非欧几何,但未发表(德国,高斯)。1821年,《分析教程》出版,用极限严格地定义了函数的连续、导数和积分,研究了无穷级数的收敛性等(法国,柯西)。1822年,系统研究几何图形在投影变换下的不变性质,建立了射影几何学(法国,彭色列)。1822年,研究热传导问题,发明用傅立叶级数求解偏微分方程的边值问题,在理论和应用上都有重大影响(法国,傅立叶)。1824年,证明用根式求解五次方程的不可能性(挪威,阿贝尔)。1825年,发明关于复变函数的柯西积分定理,并用来求物理数学上常用的一些定积分值(法国,柯西)。1826年,发现连续函数级数之和并非连续函数(挪威,阿贝尔)。 1826年,改变欧几理得几何学中的平行公理,提出非欧几何学的理论(俄国,罗巴切夫斯基,匈牙利,波约)。1827-1829年,确立了椭圆积分与椭圆函数的理论,在物理、力学中都有应用(德国,雅可比,挪威,阿贝尔,法国,勒让德尔)。1827年,建立微分几何中关于曲面的系统理论(德国,高斯)。 1827年,出版《重心演算》,第一次引进齐次坐标(德国,梅比武斯)。1830年,给出一个连续而没有导数的所谓"病态"函数的例子(捷克,波尔查诺)。1830年,在代数方程可否用根式求解的研究中建立群论(法国,伽罗华)。1831年,发现解析函数的幂级数收敛定理(法国,柯西)。1831年,建立了复数的代数学,用平面上的点来表示复数,破除了复数的神秘性(德国,高斯)。1835年,提出确定代数方程式实根位置的方法(法国,斯特姆)。 1836年,证明解析系数微分方程式解的存在性(法国,柯西)。1836年,证明具有已知周长的一切封闭曲线中包围最大面积的图形必定是圆(瑞士,史坦纳)。1837年,第一次给出了三角级数的一个收敛性定理(德国,狄利克莱)。1840年,把解析函数用于数论,并且引入了"狄利克莱"级数(德国,狄利克莱)。1841年,建立了行列式的系统理论(德国,雅可比)。1844年,研究多个变元的代数系统,首次提出多维空间的概念(德国,格拉斯曼)。1846年,提出求实对称矩阵特征值问题的雅可比方法(德国,雅可比)。1847年,创立了布尔代数,对后来的电子计算机设计有重要应用(英国,布尔)。 1848年,研究各种数域中的因子分解问题,引进了理想数(德国,库莫尔)。 1848年,发现函数极限的一个重要概念--一致收敛,但未能严格表述(英国,斯托克斯)。1850年,给出了"黎曼积分"的定义,提出函数可积的概念(德国,黎曼)。◇1851-1900年◇1851年,提出共形映照的原理,在力学、工程技术中应用颇多,但未给出证明(德国,黎

曼)。1854年,建立更广泛的一类非欧几何学--黎曼几何学,并提出多维拓扑流形的概念(德国,黎曼)。开始建立函数逼近论,利用初等函数来逼近复杂的函数。二十世纪以来,由于电子计算机的应用,使函数逼近论有很大的发展(俄国,契比雪夫)。1856年,建立极限理论中的ε-δ方法,确立了一致收敛性的概念(德国,外尔斯特拉斯)。1857年,详细地讨论了黎曼面,把多值函数看成黎曼面上的单值函数(德国,黎曼)。1868年,在解析几何中引进一些新的概念,提出可以用直线、平面等作为基本的空间元素(德国,普吕克)。 1870年,发现李群,并用以讨论微分方程的求积问题(挪威,李)。给出了群论的公理结构,是后来研究抽象群的出发点(德国,克朗尼格)。 1872年,数学分析的"算术化",即以有理数的集合来定义实数(德国,戴特金、康托尔、外耳斯特拉斯)。发表了"爱尔朗根计划",把每一种几何学都看成是一种特殊变换群的不变量论(德国,克莱茵)。1873年,证明了π是超越数(法国,埃尔米特)。1876年,《解析函数论》发行,把复变函数论建立在幂级数的基础上(德国,外尔斯特拉斯)。1881-1884年,制定了向量分析(美国,吉布斯)。1881-1886年,连续发表《微分方程所确定的积分曲线》的论文,开创微分方程定性理论(法国,彭加勒)。1882年,制定运算微积,是求解某些微分方程的一种简便方法,工程上常有应用(英国,亥维赛)。1883年,建立集合论,发展了超穷基数的理论(德国,康托尔)。 1884年,《数论的基础》出版,是数理逻辑中量词理论的发端(德国弗莱格)。1887-1896年,出版了四卷《曲面的一般理论的讲义》,总结了一个世纪来关于曲线和曲面的微分几何学的成就(德德国,达尔布)。1892年,建立运动稳定性理论,是微分方程定性理论的重要方面(俄国,李雅普诺夫)。1892-1899年,创立自守函数论(法国,彭加勒)。1895年,提出同调的概念,开创代数拓扑学(法国,彭加勒)。 1899年,《几何学基础》出版,提出欧几里得几何学的严格的公理系统,对数学的公理化思潮有很大影响(德国,希尔伯特)。瑞利等人最早提出基于统计概念的计算方法--蒙太卡诺方法的思想。二十世纪二十年代柯朗(德)、冯.诺伊曼(美)等人发展了这个方法。后在电子计算机上获得应用。提出数学上未解决的23个问题,引起了20世纪许多数学家的注意(德国,希尔伯脱)。◇1901-1910年◇1901年,严格证明狄利克雷原理,开创变分学的直接方法,在工程技术的计算问题中有很多应用(德国,希尔伯特)。首先提出群的表示理论。此后,各种群的表示理论得到大量研究(德国,舒尔、弗洛伯纽斯)。基本上完成张量分析,又名绝对微分学。确立了研究黎曼几何和相对论的分析工具(意大利,里齐、勒维.齐维塔)。提出勒贝格测度和勒贝格积分。推广了长度、面积积分的概念(法国,勒贝格)。1903年,发现集合论中的罗素悖理,出现所谓第三次数学危机(英国,贝.罗素)。建立线性积分方程的基本理论,是解决数学物理问题的数学工具,并为建立泛函分析作了准备(瑞典,弗列特荷姆)。1906年,总结了古典代数几何学的研究(意大利,赛维利等)。把由函数组成的无限集合作为研究对象,引入函数空间的概念,并开始形成希尔伯特空间。这是泛函分析的发源(法国,弗勒锡,匈牙利,里斯)。开始系统地研究多个自变量的复变函数理论(德国,哈尔托格斯)。初次提出"马尔可夫链"的数学模型(俄国,马尔可夫)。1907年,证明复变函数论的一个基本原理---黎曼共形映照定理(德国,寇贝)。反对在数学中使用排中律,提出直观主义数学(美籍荷兰人,路.布劳威尔)。1908年,点集拓扑学形成(德国,忻弗里斯)。提出集合论的公理化系统(德国,策麦罗)。1909年,解决数论中著名的华林问题(德国,希尔伯特)。

1910年,总结了19世纪末20世纪初的各种代数系统如群、代数、域等的研究,开创了现代抽象代数(德国,施坦尼茨)。发现不动点原理,后来又发现了维数定理、单纯形逼近方法,使代数拓扑成为系统理论(美籍荷兰人,路.布劳威尔)。1910-1913年,出版《数学原理》三卷,企图把数学归结到形式逻辑中去,是现代逻辑主义的代表著作(英国,贝.素、怀特海)。1913年法国的厄·加当和德国的韦耳完成了半单纯李代数有限维表示理论,奠定了李群表示理论的基础。这在量子力学和基本粒子理论中有重要应用。德国的韦耳研究黎曼面,初步产生了复流形的概念。1914年德国的豪斯道夫提出拓扑空间的公理系统,为一般拓扑学建立了基础。1915年瑞士美籍德国人爱因斯坦和德国的卡·施瓦茨西德把黎曼几何用于广义相对论,解出球对称的场方程,从而可以计算水星近日点的移动等问题。1918年英国的哈台、立笃武特应用复变函数论方法来研究数论,建立解析数论。丹麦的爱尔兰为改进自动电话交换台的设计,提出排队论的数学理论。希尔伯特空间理论的形成(匈牙利里斯)。1919年德国的亨赛尔建立P-adic数论,这在代数数论和代数几何中有重要用。1922年德国的希尔伯特提出数学要彻底形式化的主张,创立数学基础中的形式主义体系和证明论。1923年法国的厄·加当提出一般联络的微分几何学,将克莱因和黎曼的几何学观点统一起来,是纤维丛概念的发端。法国的阿达玛提出偏微分方程适定性,解决二阶双曲型方程的柯西问题()。波兰的巴拿哈提出更广泛的一类函数空间——巴拿哈空间的理论()。美国的诺·维纳提出无限维空间的一种测度——维纳测度,这对概率论和泛函分析有一定作用。1925年丹麦的哈·波尔创立概周期函数。英国的费希尔以生物、医学试验为背景,开创了“试验设计”(数理统计的一个分支),也确立了统计推断的基本方法。1926年德国的纳脱大体上完成对近世代数有重大影响的理想理论。1927年美国的毕尔霍夫建立动力系统的系统理论,这是微分方程定性理论的一个重要方面。1928年美籍德国人理·柯朗提出解偏微分方程的差分方法。美国的哈特莱首次提出通信中的信息量概念。德国的格罗许、芬兰的阿尔福斯、苏联的拉甫连捷夫提出拟似共形映照理论,这在工程技术上有一定应用。1930年美国的毕尔霍夫建立格论,这是代数学的重要分支,对射影几何、点集论及泛函分析都有应用。美籍匈牙利人冯·诺伊曼提出自伴算子谱分析理论并应用于量子力学。1931年瑞士的德拉姆发现多维流形上的微分型和流形的上同调性质的关系,给拓扑学以分析工具。奥地利的哥德尔证明了公理化数学体系的不完备性。苏联的柯尔莫哥洛夫和美国的费勒发展了马尔可夫过程理论。1932年法国的亨·嘉当解决多元复变函数论的一些基本问题。美国的毕尔霍夫、美籍匈牙利人冯·诺伊曼建立各态历经的数学理论。法国的赫尔勃兰特、奥地利的哥德尔、美国的克林建立递归函数理论,这是数理逻辑的一个分支,在自动机和算法语言中有重要应用。1933年匈牙利的奥·哈尔提出拓扑群的不变测度概念。苏联的柯尔莫哥洛夫提出概率论的公理化体系。美国的诺·维纳、丕莱制订复平面上的傅立叶变式理论。1934年美国的莫尔斯创建大范围变分学的理论,为微分几何和微分拓扑提供了有效工具。美国的道格拉斯等解决极小曲面的基本问题——普拉多问题,即求通过给定边界而面积为最小的曲面。苏联的辛钦提出平稳过程理论。1935年波兰的霍勒维奇等在拓扑学中引入同伦群,成为代数拓扑和微分拓扑的重要工具。法国的龚贝尔开始研究产品使用寿命和可靠性的数学理论。1936年德国寇尼克系统地提出与研究图的理论,美国的贝尔治等对图的理论有很大的发展。50年代以后,由于在博弈论、规划论、信息论等方面的发展,

而得到广泛应用。现代的代数几何学开始形成。(荷兰范德凡尔登,法国外耳,美国查里斯基,意大利培·塞格勒等) 英国的图灵、美国的邱吉、克林等提出理想的通用计算机概念,同时建立了算法理论。美籍匈牙利人冯·诺伊曼建立算子环论,可以表达量子场论数学理论中的一些概念。苏联的索波列夫提出偏微分方程中的泛函分析方法。1937年美国的怀特尼证明微分流形的嵌入定理,这是微分拓扑学的创始。苏联的彼得洛夫斯基提出偏微分方程组的分类法,得出某些基本性质。瑞士的克拉默开始系统研究随机过程的统计理论。1938年布尔巴基丛书《数学原本》开始出版,企图从数学公理结构出发,以非常抽象的方式叙述全部现代数学(法国布尔巴基学派)。1940年美国的哥德尔证明连续统假说在集合论公理系中的无矛盾性。英国的绍司威尔提出求数值解的松弛方法。苏联的盖尔方特提出交换群调和分析的理论。1941年美国的霍奇定义了流形上的调和积分,并用于代数流形,成为研究流形同调性质的分析工具。苏联的谢·伯恩斯坦、日本的伊藤清开始建立马尔可夫过程与随机微分方程的联系。苏联的盖尔芳特创立赋范环理论,主要用于群上调和分析和算子环论。1942年美国的诺·维纳、苏联的柯尔莫哥洛夫开始研究随机过程的预测,滤过理论及其在火炮自动控制上的应用,由此产生了“统计动力学’。1943年中国的林士谔提出求代数方程数字解的林士谔方法。1944年美籍匈牙利人冯·诺伊曼等建立了对策论,即博弈论。1945年法国的许瓦茨推广了古典函数概念,创立广义函数论,对微分方程理论和泛函分析有重要作用。美籍华人陈省身建立代数拓扑和微分几何的联系,推进了整体几何学的发展。1946年美国莫尔电子工程学校和宾夕法尼亚大学试制成功第一台电子计算机ENIAC。(设计者为埃克特、莫希莱等人)。法国的外耳建立现代代数几何学基础。中国的华罗庚发展了三角和法研究解析数论。苏联的盖尔芳特、诺依玛克建立罗伦兹群的表示理论。1947年美国的埃·瓦尔特创立统计的序贯分析法。1948年英国的阿希贝造出稳态机,能在各种变化的外界条件下自行组织,以达到稳定状态。鼓吹这是人造大脑的最初雏型、机器能超过人等观点。美国的诺·维纳出版《控制论》,首次使用控制论一词美国的申农提出通信的数学理论。美籍德国人弗里得里希斯、理·柯朗总结了非线性微分方程在流体力学方面的应用,推进了这方面的研究。波兰的爱伦伯克、美国的桑·麦克伦提出范畴论,这是代数中一种抽象的理论,企图将数学统—于某些原理。苏联的康脱洛维奇将泛函分析用于计算数学。1949年开始确立电子管计算机体系,通称第一代计算机。英国剑桥大学制成第一台通用电子管计算机EDSAC。1950年英国的图灵发表《计算机和智力》一文,提出机器能思维的观点。美国的埃·瓦尔特提出统计决策函数的理论。英国的大·杨提出解椭圆型方程的超松弛方法,这是目前电子计算机上常用的方法。美国的斯丁路特、美籍华人陈省身、法国的艾勒斯曼共同提出纤维丛的理论。1951年五十年代以来,“组合数学”获得迅速发展,并应用于试验设计、规划理论、网络理论、信息编码等。(美国霍夫曼,马·霍尔等) 1952年美国的蒙哥马利等证明连续群的解析性定理(即希尔伯特第五问题)。1953年美国的基费等提出优选法,并先后发展了多种求函数极值的方法。1955年制定同调代数理论(法国亨·加当、格洛辛狄克,波兰爱伦伯克)。美国的隆姆贝格提出求数值积分的隆姆贝方法,这是目前电子计算机上常用的一种方法。瑞典的荷尔蒙特等制定线性偏微分算子的一般理论。美国的拉斯福特等提出解椭圆形或双线型偏微分方程的交替方向法。英国的罗思解决了代数数的有理迫近问题。1956年提出统筹方法(又名计划评审法),是一

种安排计划和组织生产的数学方法。美国杜邦公司首先采用。英国的邓济希等提出线性规划的单纯形方法。苏联的道洛尼钦提出解双曲型和混合型方程的积分关系法。1957年发现最优控制的变分原理(苏联庞特里雅金)。美国的贝尔曼创立动态规划理论,它是使整个生产过程达到预期最佳目的的一种数学方法。美国的罗森伯拉特等以美国康纳尔实验室的“感知器”的研究为代表,开始迅速发展图象识别理论。1958年创立算法语言ALGOL(58),后经改进又提出ALGOL(60),ALGOL(68)等算法语言,用于电子计算机程序自动化。(欧洲GAMM小组,美国ACM小组) 中国科学院计算技术研究所试制成功中国第一台通用电子计算机。1959年美国国际商业机器公司制成第一台晶体管计算机“IBM 7090”,第二代计算机——半导体晶体管计算机开始迅速发展。 1959~1960年,伽罗华域论在编码问题上的应用,发明 BCH码。(法国霍昆亥姆,美国儿·玻色,印度雷·可都利) 1960年美国的卡尔门提出数字滤波理论,进一步发展了随机过程在制导系统中的应用。

数学的发展历史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用

的资料,进行整理,这是一种比较常见的方法。 四、探究结果: (一)数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

中国数学发展史

中国数学发展史——宋元数学 中国数学发展史概述 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周[前1027年—前771年,共历约二百五十七年,传十一世、十二王]。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

数学发展简史

数学发展简史 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数学发展简史数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前 5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前 5 世纪——公元 17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前 5 世纪——公元 17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》

托勒密——三角学 丢番图——不定方程 2.东方(公元 2 世纪——15 世纪) 1)中国 西汉(前 2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元 10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元 8 世纪)——印度数码、有 0;十进制

(后经阿拉伯传入欧洲,也称阿拉伯记数法) 数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元 499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元 8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法

简述中国数学发展史

中国数学发展史 【摘要】数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。该论文就围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 【关键词】中国数学;数学发展史;数学思想 一、中国数学的发展历程 1.1中国数学的起源与早期发展 据《易·系辞》记载:“伏羲作结绳”,“上古结绳而治”,后世圣人易之以书契。其中有十进制制的记数法,出现最大的数字为三万。这是位值制的最早使用。算筹是中国古代的计算工具,这种方法称为筹算。筹算在春秋时代已很普遍。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。在公元前2500年,我国已有圆、方、平、直的概念。对几何工具也有深刻认识。 算术四则运算在春秋时期已经确立,乘法运算已广为流行。“九九表”一直流行了约1600年。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题。《庄子》中则强调抽象的数学思想。其中几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 1.2 中国数学体系的形成与奠基 这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期。在这一时期,数学知识系统化、理论化,数学方面的专书陆续出现。 现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)分数、等差数列、勾股定理于测量术;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有比例知识。 《九章算术》是一部经几代人整理、删减补充和修订而成的古代数学经典著作,约成书于东汉初年。全书编排方法是:先举出例子,然后给出答案,通过对一类问题解法的考察和研究,最后给出“术”。它的成书标志着我国传统数学理论体系——初等数学理论体系的形成。比欧洲早了1400多年。

(发展战略)数学的发展历史最全版

(发展战略)数学的发展历 史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的壹个分支,也是自然科学史研究下属的壹个重要分支。和所有的自然科学史壹样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这壹点上,它和通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它和通常历史科学研究的对象又不相同,所以,我们既能够在数学中学到历史,又能够在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,且不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有壹个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,和现代数学联系起来,对数学历史的考证有巨大的作用。

2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用的资料,进行整理,这是壹种比较常见的方法。 四、探究结果: (壹)数学的起源和早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从壹到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但能够肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横俩种方式: 表示壹个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:壹纵十横,百立千僵,千、十相望,万、百相当〕,且以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,且早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的

浅析中国数学发展史

浅析中国数学发展史 摘要:数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。本文围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 关键词:中国数学史、数学思想、数学历史 一、中国古代数学 数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。 算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的"孙子算经"(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。"孙子算经"用十六字来表明它,"一从十横,百立千僵,千十相望,万百相当。"和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书"九章算术"(约公元一世纪前后)的分数运算法则是世界上最早的文献,"九章算术"的分数四则运算和现在我们所用的几乎完全一样。 中国数学发展繁荣时期大约在西汉末期至隋朝中叶。这是中国数学理论的第一个高峰期。这个高峰的标志就是数学专著<九章算术>的诞生。至少有1800年的《九章算术》,其作者是谁?由谁编纂?至今无从考证。史学家们只知道,它是中国秦汉时期一二百年的数学知识结晶,到公元1世纪时开始流传使用。中国数学的全盛时期是隋中叶至元后期。在

数学发展简史

数学发展简史 数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前5 世纪——公元17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前5 世纪——公元17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》 托勒密——三角学

丢番图——不定方程 2.东方(公元2 世纪——15 世纪) 1)中国 西汉(前2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)

数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法 奥马尔.海亚姆

中国数学发展简史起源

中国数学发展简史—起源 翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。 (1)中国数学的起源(上古~西汉末期) 古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。的确,一个没有数的世界是不堪设想的。 今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。如果当时要有人能数到10,那一定会被认为是杰出的天才了。后来人们慢慢地会把数字和双手联系在一起了。每只手各拿一件东西,就是2。数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。 就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。先是结绳记数,然后又发展到“书契”,五六千年前就会写 1~30的数字,到了2019多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。在金文周《※鼎》中有这样一段话:“东宫迺曰:偿※禾十秭,遗十秭为廾秭,来岁弗偿,则付秭。”这段话包含着一个利滚利的问题。说的是,如果借了10捆粟子,晚点还,就从借时的10

捆变成20捆。如果隔年才还,就得从借时的10捆涨到40捆。用数学式子表达即: 10+10=20 20×2=40 除了在记数和算法上有了较大的进步外,祖先还开始把一些数字知识记载在书上。春秋时代孔子(公元前551~前479)年修改过的古典书籍之一《周易》中,就出现了八卦。这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 到了战国时期,祖先们的数学知识已远远超出了会数1~3000的水平。这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。最令后人惊异的是,在这一时期出现了“对策论”的萌芽,对策论是现代应用数学领域的问题。它是运筹学的一个分支,主要是用数学方法来研究有利害冲突的双方,在竞争性的活动中,是否存自己制胜对方的最优策略,以及如何找出这些策略等问题。这一数学分支是在本世纪第二次世界大战期间或以后,才作为一门学科形成的,可是早在2019多年前,战国时期著名的军事家孙膑(公元

数学发展的三个时期

在人类的知识宝库中有三大类科学,即自然科学、社会科学、认识和思维的科学。自然科学又分为数学、物理学、化学、天文学、地理学、生物学、工程学、农学、医学等学科。数学是自然科学的一种,是其它科学的基础和工具。在世界上的几百卷百科全书中,它通常都是处于第一卷的地位。 从本质上看,数学是研究现实世界的数量关系与空间形式的科学。或简单讲,数学是研究数与形的科学。对这里的数与形应作广义的理解,它们随着数学的发展,而不断取得新的容,不断扩大着涵。 数学来源于人类的生产实践活动,即来源于原始人捕获猎物和分配猎物、丈量土地和测量容积、计算时间和制造器皿等实践,并随着人类社会生产力的发展而发展。对于非数学专业的人们来讲,可以从三个大的发展时期来大致了解数学的发展。 一、初等数学时期 初等数学时期是指从原始人时代到17世纪中叶,这期间数学研究的主要对象是常数、常量和不变的图形。 在这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。这一时期的成果可以用“初等数学”(即常量数学)来概括,它大致相当于现在中小学数学课的主要容。 世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。这些国家都是在农业的基础上发展起来的,从事耕作的人们日出而作、日落而息,因此他们就必须掌握四季气候变迁的规律。

游牧民族的迁徙,也要辨清方向:白天以太阳为指南,晚上以星月为向导。因此,在世界各民族文化发展的过程中,天文学总是发展较早的科学,而天文学又推动了数学的发展。 随着生产实践的需要,大约在公元前3000年左右,在四大文明古国—巴比伦、埃及、中国、印度出现了萌芽数学。 现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些泥版是在胶泥还软的时候刻上字,然后晒干制成的(早期是一种断面呈三角形的“笔”在泥版上按不同方向刻出楔形刻痕,叫楔形文字)。 已经发现的泥版上面载有数字表(约200件)和一批数学问题(约100件),大致可以分为三组。第一组大约创制于公元前2100年,第二组大约从公元前1792年到公元前1600年,第三组大约从公元前600年到公元300年。 这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。公元前300年左右,已得到60进位的达17位的大数;一些应用问题的解法,表明已具有解一次、二次(个别甚至有三次、四次)数字方程的经验公式;会计算简单直边形的面积和简单立体的体积,并且可能知道勾股定理的一般形式。巴比伦人对于天文、历法很有研究,因而算术和代数比较发达。巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。这时还没有产生数学的理论。 对埃及古代数学的了解,主要是根据两卷纸草书。纸草是尼罗河下游的一种植物,把它的茎制成薄片压平后,用“墨水”写上文字(最早的是象形文字)。同时把许多纸草纸粘在一起连成长幅,卷在杆干上,形成卷轴。已经发现的一卷约写于公元前1850年,包含25个问题(叫“莫斯科纸草文书”,现存莫斯科);另一卷约写于公元前1650年,包含85个问题(叫“莱因德纸草文书”,是英国人莱因德于1858年发现的)。

中国数学发展史论文

中国的数学文化史 鲍是吉 郑州师院初教院S12数学与科学 123116082001 学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。 日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不

允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。纵观中国数学发展史总体就用一句话来概括“中国数学起源早到时发展缓慢” 一、中国古代数学家 数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

数学发展历史

数学在提出问题和解答问题方面,已经形成了一门特殊的科学。在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。数学家门为了解答这些问题,要花费较大力量和时间。尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。◇公元前600年以前◇据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理"。◇公元前600--1年◇公元前六世纪,发展了初等几何学(古希腊泰勒斯)。约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。公元前六世纪,印度人求出√2=1.4142156。公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊巴门尼德、芝诺等).。公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。公元前三世纪,筹算是当时中国的主要计算方法。公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊阿波罗尼)。约公元前一世纪,中国的《周髀算经》发表。其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。◇1-400年◇继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。一世纪左右,写了关于几何学、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。 150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题

数学发展史_论文

数学史与数学文化课 期末小论文 数学家与数学发展史 班级:中华旅企13-3班姓名:罗礼雄 学号:201305006820 数学家与数学发展史

数学是研究现实世界中数量关系和形式的学问,简单的说就是研究数和形的科学。众所周知数学与人类社会的发展和人们的生活息息相关,随着社会的进步,科学的发展,数学也在不停地前进;而数学的发展又离不开数学家们的探索和研究,数学家在数学发展史中占据这不可磨灭的作用。 数学从产生到茁壮成长再到成熟经历了数千年的时间,时至今日,自然科学的众多分支在各个行业和领域大放异彩,但是数学可以说仍然是科学界的女皇。那么到底是一股什么样的神秘力量在不断地推动数学的发展?数学是怎样对人类社会产生深远的影响?答案是显而易见的,数学家一直是不断地推动数学的发展力量之一。 由于生产和劳动上的需求,在古代便产生了以简单的为基础的古代数学,他们用手指或实物计数,由于生产力的需求和发展,他们逐渐过度到用数字计数。 经过一个上了一个学期的有关数学发展史课程和10多年来不断学习数学的学习经历,我个人认为数学的发展有三大动力。 恩格斯很早时就指出:“科学的发生和发展,一开始就是由生产决定的”,这里的生产是指人们使用工具来创造各种生产资料和生活资料。数学作为研究客观物质世界的数量关系和空间形式的一门科学,它的发生和发展也是由生产决定的。 尽管数与形的最初观念可以追溯到原始社会,但是由于当时生产水平的低下,虽然经历了上万年的漫长时间,也只积累了一些零碎的、萌芽的数学知识。到了古希腊奴隶社会最发达时期,社会生产有了较

大发展,几何学才取得了决定性的进步。 文艺复兴时期,机械的广泛使用,航海事业的迅速发展,以及我国四大发明的传播,促成了西欧生产的巨大变化,推动了自然科学的迅速发展。在这时期,在意大利的封建社会中,代数学取得了快速的发展。17世纪欧洲生产的发展,促进了力学和技术的发展,从而向数学提出了从一般的形态上研究运动的问题。出于研究运动,变量的观念产生了,并且成了数学研究的主要对象,同时也产生了函数的概念。数学向着研究变量和函数方面发展,随后就产生了解析几何、微积分等数学分支。 微积分的基本理论在实践中的成功应用,证明它反映了生产和科学技术的某些客观规律,数学终于在较短的时间里取得了辉煌的成就。在古代虽然已有了朴素的极限思想,但是那时候的生产水平低下,科学技术不发达,研究都停留在静力学和固定不动的范围内,不可能产生微积分。 1705年,英国物理学家纽可门制成了第一个能供实用的蒸汽机;1768年,瓦特制成了近代蒸汽机。由此引起的工业革命,大大提高了人类社会生产力,从而促进了十八、十九世纪数学的大繁荣。 20世纪40年代,生产力得到进一步发展,科学技术突飞猛进。1945年,第一颗原子弹爆炸、第一台电子计算机问世;1957年,第一颗人造地球卫星发射成功。超高温、超高压、微观、宏观及大科学出现,于是现代数学发展神速、硕果累累。 综上所述,数学的发展不能脱离社会生产的发展。在绝大多数情

中国数学发展的简单历史知识1

xx数学发展的简单历史知识 中国古代是一个世界上数学先进的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方面都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。 乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356。

中国数学简史

数学文化课程报告 论文题目:中国数学简史 定义 数学(mathematics或math),是研究数量、结构、变化、空间以及

信息等概念的一门学科,从某种角度看属于形式科学的一种。 上述是百度百科对数学所下的定义,在我看来数学是有所不同的。最早,在幼儿园的时候,老师就开始教我们阿拉伯数字。被蒙在鼓里很久才知道阿拉伯数字并不是由阿拉伯人创造,而是由印度人发明,由阿拉伯人传入欧洲将其现代化。因为阿拉伯人的传播,成为该种数字最终被国际通用的关键节点,所以人们称其为“阿拉伯数字”。 从幼儿园到小学,从小学到初中到高中,直到现在,至始至终数学都陪伴在我们身边。第一次感受到数学的魅力是在小学阶段,那时还没有学设未知数求解。脑子里总觉得少了个东西,前后思维连不上。后来在大哥的指导下,用设未知数的方法很快便把问题解决了。我看着结果,愣了好半天。这种新的思维新方法让我对数学这门学科产生了浓厚的学习兴趣。 再后来随着笛卡尔坐标系、三维坐标系的学习,我深深地感受到数学并不是他们所说的那么高深,它来源于生活,能在纸上用数学的简洁形式表现出来,它可以理想化,取微元、求极限,它用自己独特的方式展现着不同寻常的美。 回望人类光辉的发展史,数学在其中扮演着举足轻重的角色。各种科学只有在成功应用了数学才算达到真正完善的地步。 数学分支 1:数学史2:数理逻辑与数学基础3:数论4:代数学5:代数几何学6:几何学7:拓扑学8:数学分析9:非标准分析10:函数论11:常微分方程

12:偏微分方程13:动力系统14:积分方程15:泛函分析16:计算数学17:概率论18:数理统计学19:应用统计数学20:应用统计数学其他学科21:运筹学22:组合数学23:模糊数学24:量子数学25:应用数学(具体应用入有关学科)26:数学其他学科 中国数学简史 中国数学从远古走来,分为先秦萌芽时期、汉唐奠基时期、宋元全盛时期、西学输入时期以及近现代数学发展时期五个阶段。 上古至先秦萌芽时期 1.传说(4000年前):上古结绳而治;皇帝使吏首作数;伏羲造八卦、规矩。 2.考古(3000年前):殷商甲骨文;周代金文;俘人十又六,鹿五十又六,计数最大到三万;陶瓷为规则的几何图形。 3.文献:周公制礼:“礼、乐、射、御、书、数”。 4.河图,洛书,算筹。 5.战国时期:墨家、名家 汉唐奠基时期(公元前202-公元907) 1.战国至两汉确立了中国传统数学的基本框架 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”

数学的发展史

数学的发展史 学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。 知识简介:尼罗河-世界上最长的大河 尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。尼罗河——阿拉伯语意为“大河”。“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。古埃及人在这里创造出高度的文明。 世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江 中国第一大河——长江 长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。以干流长度和入海水量论,长江均居世界第三位。 长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。 长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游 长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。 长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡) 世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年) 中华民族的母亲河—黄河 黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。 干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游. 数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。 一、数学萌芽时期(公元前6世纪以前) 1.“数”概念的产生 早在远古时代,人类就已具备了识别事物多少的能力。逐渐地,这种原始的“数觉”经过漫长的历史演进,发展并形成了“数”的概念。早期人类在对事物数量共性的认识与提炼中,获取数的概念,从而播下了人类文明史上的数学火种。大约发生于30万年以前的这一过程可能与早期人类对火的认识与使用一样悠久而漫长。数对于人类文明的意义决不亚于火的使用。 当对“数”的认识变得越来越明确时,人们开始对其表达萌生了一种冲动,于是就有了记数(实物记数、书写记数)的产生。 最早比较成功的计数方式可能来自于最方便的实物工具,那就是人类自己的手指。一只手上的五个指头可以被现成地用来表示五个以内事物的集合。两只手上的指头合在一起,不超过10个元素的集合就有办法表示。 当十指不够用时,随处可见的石子便成了当然的替代与补充。但记数的石子堆,很难长久保存信息,于是又有了结绳记数和书契(qi)记数。 结绳记数是我国原始公社时期的一种计量方法,是原始公社时期社会生产力发展到一定程

相关主题