搜档网
当前位置:搜档网 › 高中概率与统计试题

高中概率与统计试题

高中概率与统计试题
高中概率与统计试题

概率与统计 一、选择题

2.(福建理5)某一批花生种子,如果每1粒发牙的概率为

4

5

,那么播下4粒种子恰有2粒发芽的概率是 A.

16625

B.

96625

C.

192

625

D.

256

625

解:独立重复实验4(4,)5B ,2

2

244196(2)55625P k C ????=== ? ?????

3.(福建文5)某一批花生种子,如果每1粒发芽的概率为

4

5

,那么播下3粒种子恰有2粒发芽的概率是

A.

12125 B.16125 C.48125 D.96125

解:这是独立重复实验,服从二项分布4(3,)5B ,2

1

234148(2)55125

P X C ????=== ? ?????

4.(广东理3)某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18 C .16

D .12

解:依题意我们知道二年级的女生有380人,那么三年级的

学生的人

数应该是500,即总体中各个年级的人数比例为2:3:3,故在分层抽样中应在三年级抽取的学生人数为

168

2

64=?

6.(江西理11文11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为

A .

1180 B .1288 C .1360 D .1

480

解:一天显示的时间总共有24601440?=种,和为23总共有4种,故所求概率为

1

360

. 7.(辽宁理7文7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之

和为奇数的概率为( ) A.

13 B.1

2

C.

2

3

D.

34

一年级 二年级

三年级

女生

373

x y

男生

377

370

z

解:要使取出的2张卡片上的数字之和为奇数,则取出的2张卡片上的数字必须一奇一偶,

∴取出的2张卡片上的数字之和为奇数的概率11222342

.63

C C P C ?===

8.(山东文9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )

A .3

B .

210

5

C .3

D .

85

10

3,100

x +

+++

=

=22

121[()()()]n S x x x x x x n

∴=-+-+

+-

22221[202101301102]100=

?+?+?+?1608,1005==210

.5

S ?=选B. 9.(山东理7)在某地的奥运火炬传递活动中,有编号为1

2318,,,,的18名火炬手.若从中任选3

人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为( )

A .

1

51

B .

168

C .

1306

D .

1408

解:古典概型问题,基本事件总数为3

18

17163C =??。能组成以3为公差的等差数列有(1,4,7)

(2,5,8),,(12,15,18)共12组,因此概率121

.1716368

P =

=??

10.(山东理8)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民 百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字 和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字. 从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的 平均数为( ) A .304.6 B .303.6

C .302.6

D .301.6

解:99522610121417

300303.610

x

----++++++=+

=

11.(陕西文3)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C )

A .30

B .25

C .20

D .15

解:设样本中松树苗的数量为x ,则

15020300004000

x

x =?=

分数 5 4 3 2 1 人数

20

10

30

30

10

2 9 1 1 5 8

3 0 2 6

3 1 0 2

4 7

13.(重庆文5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是 (A)简单随机抽样法 (B)抽签法 (C)随机数表法

(D)分层抽样法

解:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样。故选D 。

14.(重庆文9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为

(A)

184

(B)

121

(C)

25

(D)

35

解:古典概型,354101

21

C P C ==,故选B 。

15.(四川延考理8文8)在一次读书活动中,一同学从4本不同的科技书和2本不同的文艺书中 任选3本,则所选的书中既有科技书又有文艺书的概率为

(A )

15 (B )1

2

(C )

2

3

(D )

45

解:因文艺书只有2本,所以选3本必有科技书。问题等价于选3本书有文艺书的概率:

343644

()1()11205

C P A P A C =-=-=-=

二、填空题

16.(广东文11).为了调查某厂工人生产某种产品的 能力,随机抽查了20位工人某天生产该产品的数量. 产品数量的分组区间为

[)45,55,[)55,65,[)65,75,

[)75,85,[)85,95由此得到频率分布直方图如图3,

则这20名工人中一天生产该产品数量在

[)55,75的人数是 .

解:20(0.06510)13??=,故答案为13.

17.(湖北文11)一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中 抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 .

解:由分层抽样方法可知从该部门抽取的工人数满足

1000200

,1050x x

== 18.(湖北文14)明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是

.

解:两个闹钟都不准时响的概率是(10.8)(10.9)0.02--=,所以至少有一准时响的概率是0.98 19.(海南宁夏理16文16)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ), 结果如下:

甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307

308 310 314 319 323 325 325 328 331 334 337 352

乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318

320 322 322 324 327 329 331 333 336 337 343 356

由以上数据设计了如下茎叶图

根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;② .

解:1.乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).

2.甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). 3.甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm .

4.乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.

20.(江苏2)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .

解:基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故31

6612

P

=

=? 21.(江苏6)在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲

3 1 27

7 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 7

9 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 7

34 3 2 35 6

解:如图:区域D 表示边长为4 的正方形的内部(含边界),

区域E 表示单位圆及其内部,因此.2

144

16

P ππ

?=

=

?

22.(湖南文12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:

生活能 否自理

能 178 278 不能

23

21

则该地区生活不能自理的老人中男性比女性约多_____________人。 解:由上表得15000

(2321)23060.500

-?

=?=

23.(上海理7)在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 解:已知

A C E F

B

C

D 、、、共线;、、共线;六个无共线的点生成三角形总数为:3

6C ;

可构成三角形的个数为:3

33643

15C C C --=,所以所求概率为:333

643

3

6

34C C C C --=; 24.上海文8.在平面直角坐标系中,从五个点:

(00)(20)(11)(02)(22)A B C D E ,,,,,,,,,中任取三个,

这三点能构成三角形的概率是 (结果用分数表示). 解: 由已知得

A C E

B

C

D 、、三点共线,、、三点共线,

所以五点中任选三点能构成三角形的概率为3

33

5

24

.5C C -= 25.(上海文10)已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20, 且总体的中位数为10.5.若要使该总体的方差最小,则a 、b 的取值分别 . 解:中位数为10.521,a b ?+=根据均值不等式知,只需10.5a

b ==时,总体方差最小.

26.(天津文11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的

别 人

健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________10________人.

解:依题意知抽取超过45岁的职工为

25

8010200

?=. 三、解答题 27.(安徽理19).

为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望3E ξ=,标准差σξ为

62

。 (Ⅰ)求n,p 的值并写出ξ的分布列;

(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率 解:(1)由233,()(1),2E np np p ξ

σξ===-=得112p -=,从而1

6,2

n p ==,

ξ的分布列为

ξ

1

2

3

4

5

6

P

1

64 664 1564 2064 1564 664 164

(2)记”需要补种沙柳”为事件A, 则()(3),P A P ξ=≤ 得

16152021

(),6432

P A +++=

=

或 156121

()1(3)16432

P A P ξ++=->=-

=

28.(安徽文18)

在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.

(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。

(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率。

解:(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g ”的概率为

3

10

,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为

333271*********

??= (2)设(1,2,3)i A i =表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g ”的事件,且其相应的概率为(),

i P A 则

127323107()40C C P A C == , 3

333

101

()120

C P A C == 因而所求概率为

2

3237111

()()()4012060

P A A P A P A +=+=

+= 29.(北京理17)

甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)

求甲、乙两人同时参加

A 岗位服务的概率;

(Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加

A 岗位服务的人数,求ξ的分布列.

解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3

324541

()40

A A P E C A ==,

即甲、乙两人同时参加

A 岗位服务的概率是

140

. (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541

()10

A P E C A ==,

所以,甲、乙两人不在同一岗位服务的概率是9()1()10

P E P E =-=

. (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ

=”是指有两人同时参加A 岗位服务,

则23

5334541

(2)4

C A P C A ξ===.

所以3

(1)1(2)4

P P ξξ==-==

,ξ的分布列是 ξ

1 3

P

3

4

14

30.(北京文18)(本小题共13分) 甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.

(Ⅰ)求甲、乙两人同时参加

A 岗位服务的概率;

(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.

解:(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3324541

()40

A A P E C A ==,

即甲、乙两人同时参加

A 岗位服务的概率是

140

. (Ⅱ)设甲、乙两人同时参加同一岗位服务为事件E ,那么4424541

()10

A P E C A ==,

所以,甲、乙两人不在同一岗位服务的概率是9

()1()10

P E P E =-=

. 31.(福建理20)(本小题满分12分)

某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。现某人参加这项考试,科目A 每次考试成绩合格的概率均

23

,科目B 每次考试成绩合格的概率均为

12

.假设各次考试成绩合格与否均互不影响。

(Ⅰ)求他不需要补考就可获得证书的概率;

(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ. 解:设“科目A 第一次考试合格”为事件1A ,“科目A 补考合格”为事件2A ;

“科目B 第一次考试合格”为事件1B ,“科目B 补考合格”为事件2B (Ⅰ)不需要补考就获得证书的事件为

11A B ,注意到1A 与1B 相互独立,

则1

111211

()()()323

P A B P A P B =?=?=.

答:该考生不需要补考就获得证书的概率为

13

. (Ⅱ)由已知得,ξ=2,3,4,注意到各事件之间的独立性与互斥性,可得

1112(2)()()P P A B P A A ξ==+

2111114.3233399

=

?+?=+= 112112122(3)()()()P P A B B P A B B P A A B ξ==++

2112111211114,3223223326693

=

??+??+??=++= 12221212(4)()()P P A A B B P A A B B ξ==+

12111211111,3322332218189

=

???+???=+= 故4418

2349993

E ξ

=?+?+?=, 答:该考生参加考试次数的数学期望为83.

32.(福建文(18)(本小题满分12分)

三人独立破译同一份密码,已知三人各自破译出密码的概率分别为

111

,,,543

且他们是否破译出密码互不影响。 (Ⅰ)求恰有二人破译出密码的概率;

(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由. 解:记“第i 个人破译出密码”为事件

(1,2,3)i A i =,依题意有

123111

(),(),(),54.3

P A P A P A ===且123,,A A A 相互独立.

(Ⅰ)设“恰好二人破译出密码”为事件B ,则有

123123123B A A A A A A A A A =++ 且 123123123,,A A A A A A A A A 彼此互斥

于是 123123123()()()()P B P A A A P A A A P A A A =++

31

4154314351324151??+??+??=20

3.

答:恰好二人破译出密码的概率为

20

3.

(Ⅱ)设“密码被破译”为事件C ,“密码未被破译”为事件D .

123D A A A =,且1A ,2

A ,

3A 互相独立,则有

123()()()()P D P A P A P A ==324354??=

5

2.

而3

()1()5

P C P D =-=

,故()()P C P D >. 答:密码被破译的概率比密码未被破译的概率大. 33.(广东理17.(本小题满分13分)

随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.

(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);

(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少? 解:ξ的所有可能取值有6,2,1,-2;126(6)0.63200P ξ

==

=,50

(2)0.25200

P ξ=== 20(1)0.1200P ξ==

=,4

(2)0.02200

P ξ=-== 故ξ的分布列为:

ξ

6 2 1 -2 P

0.63

0.25

0.1

0.02

(2)60.6320.2510.1(2)0.02 4.34E ξ

=?+?+?+-?=

(3)设技术革新后的三等品率为x ,则此时1件产品的平均利润为

()60.72(10.70.01)(2)0.01 4.76(00.29)E x x x x =?+?---+-?=-≤≤

依题意,() 4.73E x ≥,即4.76 4.73x -≥,解得0.03x ≤ 所以三等品率最多为3%

34.(广东文19)(本小题满分13分)

某初级中学共有学生2000名,各年级男、女生人数如下表:

初一年级 初二年级

初三年级

女生 373 x

y 男生

377

370

z

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

(1) 求x 的值;

(2) 现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?

(3) 已知y ≥245,z ≥245,求初三年级中女生比男生多的概率.

解:(1

0.192000

x

= ∴ 380x =

(2)初三年级人数为y +z =2000-373+377+380+370)=500,

现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:

48

500122000

?= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知

500y z += ,且 ,y z N ∈,基本事件空间包含的基本事件有:

(245,255)、(246,254)、(247,253)、……(255,245)共11个 事件A 包含的基本事件有:

(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个 ∴ 5

()

11

P A =

35.(海南宁夏理19)(本小题满分12分)

A B ,两个投资项目的利润率分别为随机变量X 1

和X 2

.根据市场分析,X 1

和X 2

的分布列分别为

X 1 5% 10% P

0.8

0.2

(Ⅰ)在

A B ,两个项目上各投资100万元,Y 1

和Y 2

分别表示投资项目A 和B 所获得的利润,求方差DY 1

,DY 2

(Ⅱ)将(0100)x x ≤≤万元投资A 项目,100x -万元投资B 项目,()f x 表示投资A 项目所得利润的方差与

投资B 项目所得利润的方差的和.求

()f x 的最小值,并指出x 为何值时,

()f x 取到最小值.(注:

2()D aX b a DX

+=)

解:(Ⅰ)由题设可知1Y 和2Y 的分布列分别为

Y 1 5 10

P

0.8

0.2

150.8100.26EY =?+?=,

221(56)0.8(106)0.24DY =-?+-?=, 220.280.5120.38EY =?+?+?=,

X 2 2% 8% 12% P

0.2

0.5

0.3

Y 2

2 8 12 P

0.2

0.5

0.3

2222(28)0.2(88)0.5(128)0.312DY =-?+-?+-?=.

(Ⅱ)

12100()100100x x f x D Y D Y -????

=+ ? ?????

2

2

12100100100x x DY DY -????=+ ? ?????22

243(100)100x x ??=+-?? 22

2

4(46003100)100x x =

-+?, 当600

7524

x

=

=?时,()3f x =为最小值. 36.(海南宁夏文19)(本小题满分12分)

为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10。把这6名学生的得分看成一个总体。(1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本。求该样本平均数与总体平均数之差的绝对值不超过0.5的概率。

解:(1)总体平均数为

()1

56789107.56

+++++= (2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”

从总体中抽取2个个体全部可能的基本结果有:(5,6), (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9), (6,10), (7,8), (7,9), (7,10), (8,9), (8,10), (9,10),共15个基本结果。

事件A包含的基本结果有:(5,9), (5,10), (6,8), (6,9), (6,10), (7,8), (7,9),共有7个基本结果;所以所求的概率为()715

P

A =

37.(湖北理17)(本小题满分12分)

袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.

(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若a b ηξ=+, 1E η=,11D η=,试求a,b 的值.

解:(Ⅰ)ξ的分布列为:

ξ

0 1 2 3 4

P

1

2

120 110 320

15

∴11131

01234 1.5.22010205

E ξ=?

+?+?+?+?= 2222211131

(0 1.5)(1 1.5)(2 1.5)(3 1.5)(4 1.5) 2.75.22010205

ξ=-?+-?+-?+-?+-?=(Ⅱ)由

D a D η=ξ2,得a 2

×2.75=11,即 2.a =±又,E aE b η=ξ+所以

当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.

∴2,2a b =??

=-?或2,4

a b =-??=?即为所求.

38.(湖南理16)(本小题满分12分)

甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试

合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设每人面试合格的概率都是

1

2

,且

面试是否合格互不影响.求: (Ⅰ)至少有1人面试合格的概率; (Ⅱ)签约人数ξ的分布列和数学期望.

解: 用A ,B ,C 分别表示事件甲、乙、丙面试合格.由题意知A ,B ,C 相互独立,

且P (A )=P (B )=P (C )=

12

.

(Ⅰ)至少有1人面试合格的概率是317

1()

1()()()1().28

P ABC P A P B P C -=-=-=

(Ⅱ)ξ的可能取值为0,1,2,3.

(0)()()()P P ABC P AB C P ABC ξ==++

=()()()()()()()()()P A P B P C P A P B P C P A P B P C ++=3231113

(

)()().2228

++= (1)()()()P P ABC P ABC P ABC ξ==++

=()()()()()()()()()P A P B P C P A P B P C P A P B P C ++=3331113(

)()().2228

++= 1

(2)()()()().8

P P ABC P A P B P C ξ====

1

(3)()()()().8

P P ABC P A P B P C ξ====

所以, ξ的分布列是

ξ

0 1 2 3

P

38 38 18 18

ξ的期望3311

0123 1.8888

E ξ=?+?+?+?=

39.(湖南文16)(本小题满分12分)

甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约。甲表示只要面试 合格就签约,乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约。设每人

面试合格的概率都是

2

1,且面试是否合格互不影响。求:

(I )至少有一人面试合格的概率; (II )没有人签约的概率。

解:用A,B,C 分别表示事件甲、乙、丙面试合格.由题意知A,B,C 相互独立, 且1

()

()().2

P A P B P C ===

(I )至少有一人面试合格的概率是1()P A B C -??

317

1()()()1().28

P A P B P C =-=-=

(II )没有人签约的概率为()()()P A B C P A B C P A B C ??+??+?? ()()()()()()()()()P A P B P C P A P B P C P A P B P C ??+??+??

3331113

(

)()().2228

=++= 40.(江西理18)(本小题满分12分)

某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为上一年产量的1.25倍、1.0倍的概率分别是0.5、0.5. 若实施方案二,预计当年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5; 第二年可以使柑桔产量为上一年产量的1.2倍、

1.0倍的概率分别是0.4、0.6. 实施每种方案,第二年与第一年相互独立。令(1,2)i i ξ=表示方案i 实施两年后柑

桔产量达到灾前产量的倍数.(1).写出12ξξ、的分布列; (2).实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?

(3).不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益10万元;两年后柑桔产量恰好达到灾前产量,预计可带来效益15万元;柑桔产量超过灾前产量,预计可带来效益20万元;问实施哪种方案所带来的平均效益更大?

解:(1)1ξ的所有取值为0.8 0.9 1.0 1.125 1.25、

、、、,2ξ的所有取值为0.8 0.96 1.0 1.2 1.44、、、、, 1ξ、2ξ的分布列分别为:

0.8 0.9 1.0 1.125 1.25 P

0.2 0.15 0.35 0.15 0.15 2ξ

0.8 0.96 1.0 1.2 1.44 P

0.3

0.2

0.18

0.24

0.08

(2)令A 、B 分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,

()0.150.150.3P A =+=, ()0.240.080.32P B =+=

可见,方案二两年后柑桔产量超过灾前产量的概率更大 (3)令i η表示方案i 所带来的效益,则

10 15 20 P

0.5

0.18

0.32

所以1

214.75,14.1E E ηη==,可见,方案一所带来的平均效益更大。

41.(江西文18)本小题满分12分)

因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4. (1)求两年后柑桔产量恰好达到灾前产量的概率; (2)求两年后柑桔产量超过灾前产量的概率.

10 15 20 P 0.35

0.35

0.3

解:(1)令A表示两年后柑桔产量恰好达到灾前产量这一事件

P A=?+?=

()0.20.40.40.30.2

(2)令B表示两年后柑桔产量超过灾前产量这一事件

P B=?+?+?=

()0.20.60.40.60.40.30.48

42.(辽宁理18)

某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:

周销售量 2 3 4

频数20 50 30

⑴根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;

⑵已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.

解(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.

(Ⅱ)ξ的可能值为8,10,12,14,16,且

P(ξ=8)=0.22=0.04,P(ξ=10)=2×0.2×0.5=0.2,P(ξ=12)=0.52+2×0.2×0.3=0.37,

P(ξ=14)=2×0.5×0.3=0.3,P(ξ=16)=0.32=0.09.

ξ的分布列为

ξ8 10 12 14 16

P 0.04 0.2 0.37 0.3 0.09

Eξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元)

43.(辽宁文18)(本小题满分12分)

某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:

周销售量 2 3 4

频数20 50 30

(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;

(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求

(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率;

(ⅱ)该种商品4周的销售量总和至少为15吨的概率.

解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3.

(Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3, 故所求的概率为 (ⅰ)4110.70.7599P =-=.

(ⅱ)3

342

40.50.30.30.0621P C =??+=.

44.(全国Ⅰ理20文20)(本小题满分12分)

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.(文科不求) 解:(Ⅰ)分别用

i A 、i B 表示依甲、乙方案需要化验i 次,则:

121411(),()5545P A P A ==?=,34311()5435P A =??=,44322

()5435

P A =??=

次数 1 2 3 4 概率

0.2

0.2

0.2

0.4

3214412331553231()0.6553C C C P B C C C =+?=+?=,21423315332

()0.453

C C P B C C =?=?=

次数 2 3 概率

0.6

0.4

()(22(30.20.60.60.72P A P P =+=?+=甲乙)甲次及以上).

(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.630.4 2.4E ξ=?+?=.

45.(全国Ⅱ理18)(本小题满分12分)

购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为4

1010.999-.

(Ⅰ)求一投保人在一年度内出险的概率

p ;

(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应

交纳的最低保费(单位:元).

解:各投保人是否出险互相独立,且出险的概率都是p ,

记投保的10 000人中出险的人数为ξ,则4~(10)B p ξ,.

(Ⅰ)记

A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=,

()1()P A P A =-1(0)P ξ=-=4

10

1(1)p =--,

又4

10()10.999

P A =-,故

0.001p =.

(Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,

盈利 10000(1000050000)a η

ξ=-+, 盈利的期望为 100001000050000E a E ηξ=--,

由43~(1010)B ξ

-,知,31000010E ξ-=?,

4441010510E a E ηξ=--?

4443410101010510a -=-??-?.

0E η≥4441010105100a ?-?-?≥1050a ?--≥15a ?≥(元). 故每位投保人应交纳的最低保费为15元. 46.(全国Ⅱ文19)(本小题满分12分)

甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2. 设甲、乙的射击相互独立.

(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;

(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 解:记

12A A ,分别表示甲击中9环,10环,

12B B ,分别表示乙击中8环,9环,

A 表示在一轮比赛中甲击中的环数多于乙击中的环数,

B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,

12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.

(Ⅰ)

112122A A B A B A B =++,

112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++

112122()()()()()()P A P B P A P B P A P B =++

0.30.40.10.40.10.40.2=?+?+?=.

(Ⅱ)12B C C =+,

2

2213()[()][1()]30.2(10.2)0.096P C C P A P A =-=??-=,

332()[()]0.20.008P C P A ===,

1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=.

47.(山东理18)(本小题满分12分)

甲、乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者对本队赢得一分,答错得零分.假设甲队中

每人答对的概率均为

2

3

,乙队中3人答对的概率分别为

221332

,,,且各人回答正确与否相互之间没有影响.用ξ表

示甲队的总得分.

(Ⅰ)求随机变量ξ的分布列和数学期望; (Ⅱ)用

A 表示“甲、乙两个队总得分之和等于3”这一事件,用

B 表示“甲队总得分大于乙队总得分”这一事件,

求()P AB .

解:(Ⅰ)解法一:由题意知,ξ的可能取值为0,1,2,3,且

30

3

21(0)1327

P C ξ??==?-=

???,2

1

3222(1)1339P C ξ??==??-= ???, 223224(2)1339P C ξ????==??-= ? ?????,3

3328(3)327P C ξ??==?=

???

. 所以ξ的分布列为

ξ

0 1 2 3

P

1

27 29

49

827

ξ的数学期望为124801232279927

E ξ=?

+?+?+?=. 解法二:根据题设可知,2~33B ξ

?? ???

,,

因此ξ的分布列为333

3

222()1333

k

k

k

k

k P k C C ξ-????==??-=? ? ?

????

,0123k =,,,.

因为2~33B ξ

??

???

,,所以2323E ξ=?=.

(Ⅱ)解法一:用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,所以AB C

D =,

且C D ,互斥,又

2

2322211121111()133332332332P C C ??????=??-???+??+?? ? ?????????410

3=,

3

33521114()33323

P D C ????=????= ? ?????,

由互斥事件的概率公式得4551043434()

()()333243

P AB P C P D =+=

+==. 解法二:用k A 表示“甲队得k 分”这一事件,用k B 表示“乙队得k 分”这一事件,0123k =,

,,. 由于事件

30A B ,21A B 为互斥事件,故有30

213021()()()()P AB P A B A B P A B P A B ==+.

由题设可知,事件3A 与0B 独立,事件

2A 与1B 独立,因此

30213021()()()()()()()P AB P A B P A B P A P B P A P B =+=+

3

221

322222211211123433232323243C C ??????=??+???+??=

? ? ?????

??. 48.(山东文18)(本小题满分12分) 现有8名奥运会志愿者,其中志愿者

123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,

通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;

(Ⅱ)求1B 和1C 不全被选中的概率.

解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名, 其一切可能的结果组成的基本事件空间

概率统计练习题答案

《概率论与数理统计》练习题7答案7 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设随机事件A 、B 互斥,(), (),P A P P B q ==则()P A B =( )。 A 、q B 、1q - C 、 p D 、1p - 答案:D 2、某类灯泡使用时数在500小时以上的概率为0.5,从中任取3个灯泡使用,则在使用500小时之后无一损坏的概率为:( )。 A 、 18 B 、2 8 C 、38 D 、 4 8 答案:A 3、设ξ的分布函数为1()F x ,η的分布函数为2()F x ,而12()()()F x aF x bF x =-是某随机 变量ζ的分布函数,则, a b 可取( )。 A 、32, 55a b = =- B 、2 3a b == C 、13 , 22a b =-= D 、13 , 22 a b ==- 答案:A 4、设随机变量ξ,η相互独立,其分布律为: 则下列各式正确的是( )。 A 、{}1P ξη== B 、{}14 P ξη== C 、{}12 P ξη== D 、{}0P ξη== 答案:C

^^ 5、两个随机变量的协方差为cov(,)ξη=( )。 A 、() () 2 2 E E E ηηξξ-- B 、()()E E E E ξξηη-- C 、()()2 2 E E E ξηξη-? D 、()E E E ξηξη-? 答案:D 6、设随机变量ξ在11,22?? -???? 上服从均匀分布sin ηπξ=的数学期望是( )。 A 、0 B 、1 C 、 1π D 、2π 答案:A 7、设12100,,,ξξξ???服从同一分布,它们的数学期望和方差均是2,那么 104n i i P n ξ=?? <<≥???? ∑( )。 A 、 12 B 、212n n - C 、12n D 、1 n 答案:B 8、设12, , , n X X X 是来自正态总体2(, )N μσ的样本( )。 A 、2 11~(,)n i i X X N n μσ==∑ B 、2 11()~(0, )n i X N n n σμ=-∑ C 、22 2111()~(1)n i i X n n μχσ=?--∑ D 、22 21 11()~()n i i X X n n χσ=?-∑ 答案:B 9、样本12(,, , )n X X X ,2n >,取自总体ξ,E μξ=,2D σξ=,则有( )。

统计学统计学概率与概率分布练习题

第5章 概率与概率分布 练习题 5.1 写出下列随机事件的基本空间: (1) 抛三枚硬币。 (2) 把两个不同颜色的球分别放入两个格子。 (3) 把两个相同颜色的球分别放入两个格子。 (4) 灯泡的寿命(单位:h )。 (5) 某产品的不合格率(%)。 5.2 假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球, 请写出这个随机试验的基本空间。 5.3 试定义下列事件的互补事件: (1) A ={先后投掷两枚硬币,都为反面}。 (2) A ={连续射击两次,都没有命中目标}。 (3) A ={抽查三个产品,至少有一个次品}。 5.4 向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、, 而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。试求炸毁这两个军火库的概率有多大。 5.5 已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品, 而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少 5.6 有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中 了一个色盲者,求这个人恰好是男性的概率。 根据这些数值,分别计算: (1) 有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。 (2) 只有不到2个空调器出现重要缺陷的可能性。 (3) 有超过5个空调器出现重要缺陷的可能性。 5.8 设X 是参数为4=n 和5.0=p 的二项随机变量。求以下概率: (1))2(

5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。求: (1) 晚班期间恰好发生两次事故的概率。 (2) 下午班期间发生少于两次事故的概率。 (3) 连续三班无故障的概率。 5.10 假定X 服从12=N ,7=n ,5=M 的超几何分布。求: (1))3(=X P 。(2))2(≤X P 。(3))3(>X P 。 5.11 求标准正态分布的概率: (1))2.10(≤≤Z P 。 (2))49.10(≤≤Z P 。 (3))048.0(≤≤-Z P 。 (4))037.1(≤≤-Z P 。 (5))33.1(>Z P 。 5.12 由30辆汽车构成的一个随机样本,测得每百公里的耗油量数据(单位:L )如下: 试判断该种汽车的耗油量是否近似服从正态分布 5.13 设X 是一个参数为n 和p 的二项随机变量,对于下面的四组取值,说明正态分布是否 为二项分布的良好近似 (1)30.0,23==p n 。(2)01.0,3==p n 。 (3)97.0,100==p n 。(4)45.0,15==p n 。

高中概率与统计试题

概 率与统计 1. (安徽理19). 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望 3E ξ=,标准差σξ为 2 (Ⅰ)求n,p 的值并写出ξ的分布列; (Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率 【解:】(1)由233,()(1),2E np np p ξσξ===-=得112p -=,从而1 6,2 n p ==, ξ的分布列为 (2)记”需要补种沙柳”为事件A,则()(3),P A P ξ=≤得 或156121 ()1(3)16432 P A P ξ++=->=-= 2. (安徽文18) 在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”. (Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。 (Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率。

【解:】(1)每次测试中,被测试者从10张卡片中随机抽取1张卡片上,拼音带有后鼻音“g ”的概率为 3 10 ,因为三位被测试者分别随机抽取一张卡片的事件是相互独立的,因而所求的概率为 33327 1010101000 ??= (2)设(1,2,3)i A i =表示所抽取的三张卡片中,恰有i 张卡片带有后鼻音“g ”的事件,且其相应的概率为(),i P A 则 127323107()40C C P A C == ,3333101 ()120 C P A C == 因而所求概率为 3. (北京理17) 甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列. 【解:】(Ⅰ)记甲、乙两人同时参加A 岗位服务为事件A E ,那么3 324541 ()40 A A P E C A ==, 即甲、乙两人同时参加A 岗位服务的概率是 1 40 . (Ⅱ)记甲、乙两人同时参加同一岗位服务为事件E ,那么4424541 ()10 A P E C A ==, 所以,甲、乙两人不在同一岗位服务的概率是9()1()10 P E P E =-= . (Ⅲ)随机变量ξ可能取的值为1,2.事件“2ξ=”是指有两人同时参加A 岗位服务, 则23 5334541 (2)4 C A P C A ξ===. 所以3 (1)1(2)4 P P ξξ==-== ,ξ的分布列是

概率统计习题及答案

1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( D )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( C ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( B ) A.91 9910098 .02.0C B.i i i i C -=∑100100 9 10098 .02.0 C.i i i i C -=∑100100 10 10098 .02.0 D.i i i i C -=∑- 1009 0100 98 .02.01 4、设)3,2,1(39)(=-=i i X E i ,则)( )3 12 53(32 1=+ +X X X E B A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 23 2 1X X X X X c +++? 服从t 分布。( C ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14(N ,则其概率密度为( A ) A.6 )14(2 61- -x e π B. 3 2 )14(2 61- - x e π C. 6 )14(2 321- - x e π D. 2 3 )14(2 61-- x e π 7、321,,X X X 为总体),(2 σμN 的样本, 下列哪一项是μ的无偏估计( A ) A. 32 12 110 351X X X + + B. 32 1416131X X X ++ C. 32 112 5 2 13 1X X X + + D. 32 16 13 13 1X X X + + 8 、设离散型随机变量X 的分布列为 则常数C 为( C ) (A )0 (B )3/8 (C )5/8 (D )-3/8

概率与数理统计复习题及答案

Word 资料. 复习题一 一、选择题 1.设随机变量X 的概率密度21 ()01x x f x x θ-?>=?≤?,则θ=( )。 A .1 B. 12 C. -1 D. 3 2 2.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。 A . 12 B. 23 C. 16 D. 1 3 3.设)(~),(~22221221n n χχχχ,2 221,χχ独立,则~2221χχ+( )。 A .)(~22221n χχχ+ B. ~2 221χχ+)1(2 -n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212 n n +χ 4.若随机变量12Y X X =+,且12,X X 相互独立。~(0,1)i X N (1,2i =),则( )。 A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N 5.设)4,1(~N X ,则{0 1.6}P X <<=( )。 A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题 1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B =U 3.设()D X =5, ()D Y =8,,X Y 相互独立。则()D X Y += 4.设随机变量X 的概率密度?? ?≤≤=其它 , 010, 1)(x x f 则{}0.2P X >= 三、计算题 1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0 ()0, 0x Be x f x x -?>=?≤? (1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。

概率统计习题含答案

作业2(修改2008-10) 4. 掷一枚非均匀的硬币,出现正面的概率为(01)p p <<,若以X 表示直至掷到正、反面 都出现为止所需投掷的次数,求X 的概率分布. 解 对于2,3,k =L ,前1k -次出现正面,第k 次出现反面的概率是1(1)k p p --,前1k -次出现反面,第k 次出现正面的概率是1(1)k p p --,因而X 有概率分布 11()(1)(1)k k P X k p p p p --==-+-,2,3,k =L . 5. 一个小班有8位学生,其中有5人能正确回答老师的一个问题.老师随意地逐个请学生回答,直到得到正确的回答为止,求在得到正确的回答以前不能正确回答问题的学生个数的概率分布. 第1个能正确回答的概率是5/8, 第1个不能正确回答,第2个能正确回答的概率是(3/8)(5/7)15/56=, 前2个不能正确回答,第3个能正确回答的概率是(3/8)(2/7)(5/6)5/56=, 前3个不能正确回答,第4个能正确回答的概率是(3/8)(2/7)(1/6)(5/5)1/56=, 前4个都不能正确回答的概率是(3/8)(2/7)(1/6)(0/5)0=. 设在得到正确的回答以前不能正确回答问题的学生个数为X ,则X 有分布 6. 设某人有100位朋友都会向他发送电子邮件,在一天中每位朋友向他发出电子邮件的概率都是0.04,问一天中他至少收到4位朋友的电子邮件的概率是多少?试用二项分布公式和泊松近似律分别计算. 解 设一天中某人收到X 位朋友的电子邮件,则~(100,0.04)X B ,一天中他至少收到4位朋友的电子邮件的概率是(4)P X ≥. 1) 用二项分布公式计算 3 1001000(4)1(4)10.04(10.04)0.5705k k k k P X P X C -=≥=-<=--=∑. 2) 用泊松近似律计算 331004 1000 04(4)1(4)10.04(10.04)10.5665! k k k k k k P X P X C e k --==≥=-<=--≈-=∑ ∑ .

概率与统计单元测试题

《概率与统计》单元测试题 时量:120分钟,总分:100分 一、选择题(本大题共12个小题,每小题 3分,满分36分。) 1?给出下列四对事件:①某人射击一次, “射中7环”与“射中8环”;②甲、乙两人各射击一次, “甲射中7环”与“乙射中8环”;③甲、乙两人各射击一次, 有射中目标”;④甲乙两人各射击一次,“至少有一人射中目标” 目标”。其中属于互斥事件的有 A.1对 B.2对 C.3对 2. 把三枚硬币一起抛出,出现两枚正面向上和一枚反面向上的概率是 A - B.丄 C.-3 D.丄 . 8 4 8 2 3. 如图所示的电路,有 A 、 B 、 C 三个开关,每个开关开与关的概率都是 0.5, 那么用电器能正常 工作的概率是 “两人均射中目标”与“两人均没 与"甲射中目标, 但乙没有射中 D.4对 B.4 C.8 D.2 8 2 4. 甲乙两人下棋,甲获胜的概率是 A.82 % B.41 % 5. 某人罚篮的命中率为 0.6,连续进行 A.0.432 B.0.288 6. (文)一个试验仅有四个互斥的结果: 且是相互独立的, 8.(文)某班有50名同学,现在采用逐一抽取的方法从中抽取 5名同学参加夏令营,学生甲最后 个去抽,则他被选中的概率为 A.0.1 B.0.02 C.0 或 1 (理)设~B(n,p),已知E = 3, D(2 +1) = 9,贝U n 与p 的值分别为 A.12 与 4 B.12 与三 C.24 与-1 4 4 4 D.以上都不对 D.24与弓 9.有4所学校共有20000名学生,且这4所学校的学生人数之比为 3 : 2.8 : 2.2 : 2,现用分层抽 样的方法抽取一个容量为 200的样本,则这4所学校分别应抽取的人数为: A.40、44、56、60 B.60、56、44、40 C.6000、5600、4400、400 D.50、50、50、50 10.标准正态总体在区间(一1.98,1.98)内取值的概率为 A.0.9762 B.0.9706 C.0.9412 11. 平均数为0的正态总 体的概率密度函数为 f (x ),则f (x ) 一 定是 A.奇函数 C.既是奇函数,又是偶函数 12. 一个电路如图所示, 关出故障的概率都是 B.偶函数 D.既不是奇函数,也不是偶函数 A 、 B 、 C 、 D 、 E 、 F 为六个开关,每个开 0.5,且是相互独立的,则线路正常的概率是 C.」 8 D.0.9524 E 18%,乙获胜的概率是 C.59 % 3次罚篮,则恰好有 C.0.144 23 %,则甲不输的概率是 D.77 % 2次命中的概率为 D.0.096 A 、 B 、 C 、 D ,检查下面各组概率允许的一组是 A. P (A) = 0.31 , P(B) = 0.27, P(C) = 0.28, P(D) = 0.35; B. P (A) = 0.32, P(B) = 0.27, P(C) = - 0.06, P(D) = 0.47; C. P (A) = 1 , P(B) = -1,P(C) = 1 , P(D)= 2 4 8 D. P (A) = , P(B) = 1 , P(C) = 1 , P(D) 18 6 3 (理)下面表示某个随机变量的分布列的是 丄. 16 ; 2。 9 7.大、中、小三个盒子中分别装有同种产品 个容量为25的样本,较为恰当的抽样方法是 A.分层抽样 B.简单随机抽样 120个、60个、20个,现在需从这三个盒子中抽取一 C.系统抽样 D.以上三种均可 A 」 B.戲 .64 64 二、填空题(本大题共 13.(文)若以连续掷两次骰子分别得到的点数 (m,n )作为点P 的坐标,则P 落在圆x 2 + y 2= 16内的概 率是 4个小题,每小题 3分,满分12分。) (理)随机变量是一个用来表示 ____________ 的变量;若对随机变量可能取的一切值,我们都 可以按一定次序一一列出,则这样的随机变量叫做 ______________ ;而连续型随机变量的取值 可以是 ___________________ 。 14.某中学要向一所大学保送一批学生, 条件是在数理化三科竞赛中均获得一等奖, 已知该校学生 获数学一等奖的概率是 0.02,获物理一等奖的概率是 0.03,获化学一等奖的概率是 0.04,则该中 学某学生能够保送的概率为 ______ 。 15. 从含有503个体的总体中,按系统抽样,抽取容量为 50的样本,则间隔为 _______ 。 16. 某县农民年均 收入服从 J = 500元,二=20元的正态分布,则此县农民年均收入在 500~520元 之间的人数的百分比为 ______ 。 三、解答题(本大题共6个小题,满分52分。) 17. (本题满分8分) 有一摆地摊的非法赌主把 8个白球和8个黑球放入一个袋中,并规定,凡愿摸彩者,每人次交费 1元就可以从袋中摸出 5个球,中奖情况为:摸出 5个白的中20元,摸出4个白的中2元;摸出 3个白的中价值5角的纪念品一件,其它无任何奖励。试计算: (1)中20元彩金的概率(精确到0.0001); ⑵中2元彩金的概率(精确到0.0001)。

高中数学专题――概率统计专题.

专题二概率统计专题 【命题趋向】概率与统计是高中数学的重要学习内容,它是一种处理或然问题的方法,在工农业生产和社会生活中有着广泛的应用,渗透到社会的方方面面,概率与统计的基础知识成为每个公民的必备常识.概率与统计的引入,拓广了应用问题取材的范围,概率的计算、离散型随机变量的分布列和数学期望的计算及应用都是考查应用意识的良好素材.在高考试卷中,概率与统计的内容每年都有所涉及,以解答题形式出现的试题常常设计成包含离散型随机变量的分布列与期望、统计图表的识别等知识为主的综合题,以考生比较熟悉的实际应用问题为载体,以排列组合和概率统计等基础知识为工具,考查对概率事件的识别及概率计算.解答概率统计试题时要注意分类与整合、化归与转化、或然与必然思想的运用.由于中学数学中所学习的概率与统计内容是最基础的,高考对这一部分内容的考查注重考查基础知识和基本方法.该部分在高考试卷中,一般是2—3个小题和一个解答题. 【考点透析】概率统计的考点主要有:概率与统计包括随机事件,等可能性事件的概率,互斥事件有一个发生的概率,古典概型,几何概型,条件概率,独立重复试验与二项分布,超几何分布,离散型随机变量的分布列,离散型随机变量的期望和方差,抽样方法,总体分布的估计,正态分布,线性回归等.【例题解析】 题型1 抽样方法 -)中,在公证部门监督下按照随机抽取的方法确【例1】在1000个有机会中奖的号码(编号为000999 定后两位数为的号码为中奖号码,该抽样运用的抽样方法是() A.简单随机抽样B.系统抽样C.分层抽样D.以上均不对 分析:实际“间隔距离相等”的抽取,属于系统抽样. 解析:题中运用了系统抽样的方法采确定中奖号码,中奖号码依次为:088,188,288,388,488,588,688,788,888,988.答案B. 点评:关于系统抽样要注意如下几个问题:(1)系统抽样是将总体分成均衡几个部分,然按照预先定出的规则从每一部分抽取一个个体,得到所需要的样本的一种抽样方法.(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第一段中用简单随机抽样确定起始的个体编号;④按事先研究的规则抽取样本.(3)适用范围:个体数较多的总体. 例2(2008年高考广东卷理3)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为() A.24B.18C.16D.12 Array 分析:根据给出的概率先求出x的值,这样就可以知道三年级的学生人数,问题就解决了. x=?=,这样一年级和二年级学生的解析:C 二年级女生占全校学生总数的19%,即20000.19380 +++=,三年级学生有500人,用分层抽样抽取的三年级学生应是总数是3733773803701500 64 50016 ?=.答案C. 2000 点评:本题考查概率统计最基础的知识,还涉及到一点分析问题的能力和运算能力,题目以抽样的等可能性为出发点考查随机抽样和分层抽样的知识. 例3.(2009江苏泰州期末第2题)一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系, 2500,3500(元)月收入段应抽要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[) 出人.

概率统计练习题8答案

《概率论与数理统计》练习题8答案 考试时间:120分钟 题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分) 1、设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( )。 A 、0 B 、1 4 C 、18 D 、15 答案:D 2、如果,A B 为任意事件,下列命题正确的是( )。 A 、如果,A B 互不相容,则,A B 也互不相容 B 、如果,A B 相互独立,则,A B 也相互独立 C 、如果,A B 相容,则,A B 也相容 D 、AB A B =? 答案:B 3、设随机变量ξ具有连续的分布密度()x ξ?,则a b ηξ=+ (0,a b ≠是常数)的分布密度为( )。 A 、 1y b a a ξ?-?? ? ?? B 、1y b a a ξ?-?? ??? C 、1y b a a ξ?--?? ??? D 、 1y b a a ξ??? - ? ??? 答案:A 4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。 A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布, C 、{,}Max ζξη=服从[0,1]上的均匀分布,

D 、(,)ξη服从区域01 01x y ≤≤??≤≤? 上的均匀分布 答案:D 5、~(0, 1), 21,N ξηξ=-则~η( )。 A 、(0, 1)N B 、(1, 4)N - C 、(1, 2)N - D 、(1, 3)N - 答案:B 6、设1ξ,2ξ都服从区间[0,2]上的均匀分布,则12()E ξξ+=( )。 A 、1 B 、2 C 、0.5 D 、4 答案:B 7、设随机变量ξ满足等式{||2}116P E ξξ-≥=,则必有( )。 A 、14D ξ= B 、14 D ξ> C 、1 4 D ξ< D 、{} 15216 P E ξξ-<= 答案:D 8、设1(,,)n X X 及1(,,)m Y Y 分别取自两个相互独立的正态总体21(, )N μσ及 2 2(, )N μσ的两个样本,其样本(无偏)方差分别为21 S 及22 S ,则统计量2 122 S F S =服从F 分 布的自由度为( )。 A 、(1, 1)n m -- B 、(, )n m C 、(1, 1)n m ++ D 、( 1, 1,)m n -- 答案:A 9、在参数的区间估计中,给定了置信度,则分位数( )。 A 、将由置信度的大小唯一确定; B 、将由有关随机变量的分布唯一确定; C 、可按置信度的大小及有关随机变量的分布来选取; D 、可以任意规定。 答案:C 10、样本容量n 确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有( )。

《统计与概率》练习题

《统计与概率》练习题 说明:本卷练习时间120分钟,总分150分 班级 座号 姓名 成绩 一、填空题(每小题3分,共36分) 1. 在2.0012.0022..0032.0042.0052. 006的数字串中,2的频率是__________. 2. 为了解某校初三年级300名学生的身高状况,从中抽查了50名学生, 所获得的样本容量是______________. 3. 若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为_________. 4. 一射击运动员在一次射击练习中打出的成绩(单位:环)是: 7,8,9,8,6,8,10,7,这组数据的众数是_____ ____. 5. 一口袋中放有3只红球和4只黄球, . 随机从口袋中任取一只球,取到黄球的概率是6. 如果一组数据3,x,1,7的平均数是4,则x=__________. 7. 某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果, 标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图). 转盘可以自由转动。参与者转动转盘,当转盘停止时,指针落在哪一区域, 就获得哪种奖品,则获得钢笔的概率为____________. 8. 下表给出了某市2005年5月28日至6月3日的最高气温, 则这些最高气温的极差是___________℃ 9. 掷一枚各面分别标有1,2,3,4,5,6的普通的正方体骰子, (第7题)

掷出的数字为偶数的概率是_______________. 10. 某学生在一次考试中,语文、数学、英语三门学科的平均成绩是80分,物理、 化学两门学科的平均成绩为85分,则该学生这五门学科的平均成绩是___________分. 11. 对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下: 机床甲:x 甲=10,2S 甲 =0.02;机床乙:x 乙 =10,2S 乙 =0.06, 由此可知:________(填甲或乙)机床性能好. 12. 掷一枚均匀的硬币两次,两次正面都朝上的概率是__________. 二、选择题(每小题4分,共24分) 13. 六个学生进行投篮比赛,投进的个数分别为2、3、10、5、13、3, 这六个数的中位数为() (A)3 (B)4 (C)5 (D)6 14. 下列事件中,为必然事件是(). (A)打开电视机,正在播广告. (B)从一个只装有白球的缸里摸出一个球,摸出的球是白球. (C)从一定高度落下的图钉,落地后钉尖朝上. (D)今年5月1日,泉州市的天气一定是晴天. 15. 下列调查方式合适的是() (A)了解炮弹的杀伤力,采用普查的方式. (B)了解全国中学生的睡眠状况,采用普查的方式. (C)了解人们保护水资源的意识,采用抽样调查的方式. (D)对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式.

高中数学概率与统计测试题

概率与统计 1.如果一个整数为偶数的 概率为 (1)a+b 为偶数的概率; (2)a+b+c 为偶数的概率。 0.6 ,且 a,b,c 均为整数,求 2.从 10 位同学 (其中 6 女,4 男)中随机选出 3 位参加测验,每位女同学能通过测验的概率 43 均为,每位男同学能通过测验的概率均为,求55 (1)选出的 3 位同学中,至少有一位男同学的概率; (2)10 位同学中的女同学甲和男同学乙同时被选中且通过测验的概率。 3.袋中有 6 个白球, 4 个红球,甲首先从中取出 3 个球,乙再从余下的 7 个球中取出 4 个球,凡取得红球多者获胜。试求 (1)甲获胜的概率; (2)甲,乙成平局的概率。 4.箱子中放着 3 个 1 元硬币, 3 个 5 角硬币, 4 个 1 角硬币,从中任取 3 个,求总钱数超过 1 元 8 角的概率。 5.有 10 张卡片,其号码分别位 1,2,3?,10,从中任取 3 张。 (1)求恰有 1 张的号码为 3 的倍数的概率; (2)记号码为 3 的倍数的卡片张数为ξ,求ξ的数学期望。 6.某种电子玩具按下按钮后,会出现白球或绿球,已知按钮第一次按下后,出现红球与绿球 1 的概率都是,从按钮第二次按下起,若前次出现红球,则下次出现红球、绿球的概率2 1 2 3 2 分别为, ;若前次出现绿球,则下次出现红球、绿球的概率分别为, ,记第 n(n ∈ 3 3 5 5 N,n ≥1) 次按下后,出现红球的概率为P n

(1)求P2的值; (2)当 n∈N,n ≥2 时,求用P n 1表示P n的表达式; (3)求P n关于 n 的表达式。 7.有甲、乙两个盒子 ,甲盒子中有 8 张卡片 ,其中两张写有数字 0,三张写有数字 1 ,三张写有数字 2 ;乙盒子中有 8 张卡片,其中三张写有数字 0,两张写有数字1,三张写有数字 2 , (1) 如果从甲盒子中取两张卡片,从乙盒子中取一张卡片,那么取出的 3 张卡片都写有 1 的概率是多少? (2)如果从甲、乙盒子中各取一张卡片,设取出的两张卡片数字之和为ξ,求ξ的分布列和期望。 8.甲、乙两位同学做摸球游戏,游戏规则规定:两人轮流从一个放有 1 个白球, 3 个黑球, 2 个红球且只有颜色不同的 6 个小球的暗箱中取球,每次每人只取一球,每取出一个后立即放回,另一个人接着取,取出后也立即放回,谁先取到红球,谁为胜者,现甲先取 (1) 求甲摸球次数不超过三次就获胜的概率; (2) 求甲获胜的概率。 9.设有均由 A,B,C 三个部件构成的两种型号产品甲和乙,当A或 B 是合格品并且 C 是合格 品时,甲是正品;当 A, B 都是合格品或者 C 是合格品时,乙是正品。若 A 、 B、C 合格的概率均是 P,这里 A ,B,C 合格性是互相独立的。 (1) 产品甲为正品的概率P1是多少? (2)产品乙为正品的概率P2 是多少? (3)试比较P1与P2的大小。 10.一种电路控制器在出厂时每四件一等品装成一箱,工人在装箱时不小心把两件二等品和两件一等品装入了一箱,为了找出该箱的二等品,我们对该箱中的产品逐一取出进行测试。 (1) 求前二次取出的都是二等品的概率; (2) 求第二次取出的是二等品的概率; (3)用随机变量ξ表示第二个二等品被取出时共取的件数,求ξ的分布列及数学

概率统计例题

已知二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 ,; ,, 010104),(y x xy y x f 则X 与Y 相互独立 【解:由二维连续型随机向量),(Y X 的联合密度函数为 ?? ?<<<<=其他。 , ; ,, 010104),(y x xy y x f 可得两个边缘密度函数分别为: ?? ?<<==?∞+∞ -其他。, ; , 0102),()(x x dy y x f x f X ?? ?<<==? ∞ +∞ -其他。 , ; , 0102),()(y y dx y x f y f Y 从而可得)()(),(y f x f y x f Y X ?=,所以X 与Y 相互独立。 ■12、设二维随机变量(X , Y ) ~4,01,01 (,)0,xy x y f x y <<<===??? ()1()0.5P Y X P X Y ≥=->=】

高中数学统计与概率测试题

高中数学统计与概率测试题 一选择题 1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( ) A.1000名学生是总体 B.每名学生是个体 C.每名学生的成绩是所抽取的一个样本 D.样本的容量是100 2.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是() A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高 C.购买奖品的费用平均数为9.25元 D.购买奖品的费用中位数为2元 3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2,?,2000,适当分组后在第一组采用 [1,820]的人做问卷简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间 A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为() A. 23 B. 24 C. 25 D. 26 4.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=( ) A.13 B.12 C.10 D.9 A B C D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车 5 ,,, 只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或

高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+=++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数 :()() n n i i i i x x y y x y nx y r ---?∑∑= = 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -=++++

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

六年级下册统计与概率测试题

3、统计与概率 (1)统计 一、填空。 2、扇形统计图的优点是可以很清楚地表示出()与( 3、()统计图是用长短不同、宽窄一致的直条表示数量,从图上很容易看出()。 4、为了表示某地区一年内月平均气温变化的情况,可以把月平均气温制成()统计图。 5、4、7.7、8.4、6.3、7.0、6.4、7.0、8. 6、9.1这组数据的众数是(),中位数是(),平均数是()。 6、在一组数据中,( )只有一个, 有时( )不止一个,也可能没有( )。(填众数或中位数) 一、选择题。 1、对于数据 2、4、4、5、 3、9、 4、 5、1、8,其众数、中位数与平均数分别为()。 A 4, 4, 6 B 4, 6, 4.5 C 4, 4, 4. 5 D 5, 6, 4.5 2、对于数据2,2,3,2,5,2,10,2,5,2,3,下面的结论正确有()。 ①众数是2 ②众数与中位数的数值不等③中位数与平均数相等 ④平均数与众数数值相等。 A 1个 B 2个 C 3个 D 4个 三、下面记录的是六(1)班第一组学生期中考试成绩(单位:分) 83、89、81、55、62、70、78、94、84、97、86、100、66、75 请根据上面的记录的分数填写下表,并回答问题。 (1)该小组的平均成绩是()分。 (2)优秀率(接满分80分以上计算)是()%。 (3)及格率是()%。

(4)优秀学生比其他学生多()人,多()%。 四、将下面的两个表格填完整。 (表1)某服装厂去年和今年产量情况统计表 (表2)进入某市旅游人数统计表 五、六年级一班第一组男、女生体重情况如下表。(单位:千克) (1)这个组男生体重的平均数和中位数分别是多少?女生呢? (2)你认为表示这个组男生体重的一般情况,平均数和中位数哪个更合适? 六、应用题。

相关主题