搜档网
当前位置:搜档网 › 水力学实验报告思考题答案解析

水力学实验报告思考题答案解析

水力学实验报告思考题答案解析
水力学实验报告思考题答案解析

水力学实验报告

实验一流体静力学实验

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验实验三不可压缩流体恒定流动量定律实验

实验四毕托管测速实验

实验五雷诺实验

实验六文丘里流量计实验

实验七沿程水头损失实验

实验八局部阻力实验

实验一流体静力学实验实验原理

在重力作用下不可压缩流体静力学基本方程

或 (1.1) 式中:z被测点在基准面的相对位置高度;

p被测点的静水压强,用相对压强表示,以下同;

p

水箱中液面的表面压强;

γ液体容重;

h 被测点的液体深度。

另对装有水油(图1.2及图1.3)U 型测管,应用等压面可得油的比重S 0有下列关系:

(1.2)

据此可用仪器(不用另外尺)直接测得S 0。

实验分析与讨论

1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。

2.当P B <0时,试根据记录数据,确定水箱内的真空区域。

,相应容器的真空区域包括以下三部分:

(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。

(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。

(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。

3.若再备一根直尺,试采用另外最简便的方法测定γ0。

最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和h 0,由式,从而求得γ0。

4.如测压管太细,对测压管液面的读数将有何影响?

设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算

式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有

(h、d单位为mm)

一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。

如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。

5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面?

不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。

6.用图1.1装置能演示变液位下的恒定流实验吗?

关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥

特容器的变液位下恒定流。

7.该仪器在加气增压后,水箱液面将下降而测压管液面将升高H,实验时,若以P

=0时的水箱液面作为测量基准,试分析加气增压后,实际压强(H+δ)与视在压强H的相对误差值。本仪器测压管内径为0.8cm,箱体内径为20cm。

加压后,水箱液面比基准面下降了,而同时测压管1、2的液面各比基准面升高了H,由水量平衡原理有

本实验仪d=0.8cm, D=20cm,

故H=0.0032

于是相对误差有

因而可略去不计。

其实,对单根测压管的容器若有D/d

10或对两根测压管的容器D/d

7

时,便可使0.01。

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验

实验原理

在实验管路中沿管内水流方向取n个过断面。可以列出进口断面(1)至另一断面(i)的能量方程式(i=2,3,……,n)

取a1=a2=…an=1,选好基准面,从已设置的各断面的测压管中读出值,测出通过管路

的流量,即可计算出断面平均流速v 及

,从而即可得到各断面测管水头和总水头。

成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么?

测压管水头线(P-P )沿程可升可降,线坡J P 可正可负。而总水头线(E-E )沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P <0。而据能量方程E 1=E 2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E 2恒小于E 1,(E-E )线不可能回升。(E-E) 线下降的坡度越大,即J 越大,表明单位流程上的水头损失越大,如图

2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。

2.流量增加,测压管水头线有何变化?为什么?

有 如 下 二 个 变 化 :

(1)流量增加,测压管水头线(P-P )总降落趋势更显著。这是因为测压管水头

,任一断面起始时的总水头E 及管道过流断面面积A 为定值时,

Q 增大,就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断

面上的总水头E 相应减小,故

的减小更加显著。 (2)测压管水头线(P-P )的起落变化更为显著。

因为对于两个不同直径的相应过水断面有

式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。

3.测点2、3和测点10、11的测压管读数分别说明了什么问题?

=均为37.1cm(偶有毛测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H

P

细影响相差0.1mm),表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。

4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。

下述几点措施有利于避免喉管(测点7)处真空的形成:

(1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降低管线位置往往就可完全避免真空。例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位能降至零,比压能p/γ得以增大(Z),从而可能避免点7处的真空。至于措施(4)其增压效果是有条件的,现分析如下:

当作用水头增大h 时,测点7断面上值可用能量方程求得。

取基准面及计算断面1、2、3,计算点选在管轴线上(以下水柱单位均为cm )。于是由断面1、2的能量方程(取a 2=a 3=1)有

(1)

因h w1-2可表示成此处c1.2是管段1-2总水头损失系数,式中e 、s 分别为进口和渐缩局部损失系数。

又由连续性方程有

故式(1)可变为

(2) 式中可由断面1、3能量方程求得,即

(3)

由此得

(4)

代入式( 2)有(Z 2+P 2/γ)随h 递增还是递减,可由(Z 2+P 2/γ)加以判别。因

(5)

若1-[(d3/d2)4+c1.2]/(1+c1.3)>0,则断面2上的(Z+p/γ) 随h 同步递增。反之,则递减。文丘里实验为递减情况,可供空化管设计参考。

在实验报告解答中,d 3/d 2=1.37/1,Z 1=50,Z 3=-10,而当h=0时,实验的(Z 2+P 2/γ)=6,

,将各值代入式(2)、(3),可得该管道阻力系数分别为c1.2=1.5,

c1.3=5.37。再将其代入式(5)得

表明本实验管道喉管的测压管水头随水箱水位同步升高。但因(Z 2+P 2/γ)接近于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不显著。变水头实验可证明该结论正确。

5.由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。

与毕托管相连通的测压管有1、6、8、12、14、16和18管,称总压管。总压管液面的连续即为毕托管测量显示的总水头线,其中包含点流速水头。而实际测绘的总水头是以实测的值加断面平均流速水头v2/2g 绘制的。据经验资料,对于园管紊流,只有在离管壁约0.12d 的位置,其点流速方能代表该断面的平均流速。由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水线偏高。

因此,本实验由1、6、8、12、14、16和18管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘总水头线才更准确。

实验三 不可压缩流体恒定流动量定律实验

实验原理

恒定总流动量方程为

取脱离体,因滑动摩擦阻力水平分离

,可忽略不计,故x 方向的动量方程化为

式中:h

——作用在活塞形心处的水深;

c

D——活塞的直径;

Q——射流流量;

V

——射流的速度;

1x

——动量修正系数。

β

1

,由给定的管嘴直径d和活塞实验中,在平衡状态下,只要测得Q流量和活塞形心水深h

c

值。其中,测压管直径D,代入上式,便可验证动量方程,并率定射流的动量修正系数β

1

的标尺零点已固定在活塞的园心处,因此液面标尺读数,即为作用在活塞园心处的水深。实验分析与讨论

1、实测β与公认值(β=1.02~1.05)符合与否?如不符合,试分析原因。

实测β=1.035与公认值符合良好。(如不符合,其最大可能原因之一是翼轮不转所致。为排除此故障,可用4B铅笔芯涂抹活塞及活塞套表面。)

2、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x方向的动量力有无影响?为什么?

无影响。

因带翼片的平板垂直于x轴,作用在轴心上的力矩T,是由射流冲击平板是,沿yz平面通过翼片造成动量矩的差所致。即

式中Q——射流的流量;

V

——入流速度在yz平面上的分速;

yz1

V

——出流速度在yz平面上的分速;

yz2

α

——入流速度与圆周切线方向的夹角,接近90°;

1

α

——出流速度与圆周切线方向的夹角;

2

r

——分别为内、外圆半径。

1,2

该式表明力矩T恒与x方向垂直,动量矩仅与yz平面上的流速分量有关。也就是说平板上附加翼片后,尽管在射流作用下可获得力矩,但并不会产生x方向的附加力,也不会影响x方向的流速分量。所以x方向的动量方程与平板上设不设翼片无关。

相同,试问对以上受力分析有无影响?

3、通过细导水管的分流,其出流角度与V

2

无影响。

当计及该分流影响时,动量方程为

垂直,则x方向的动量方程与设置导水管与否无关。

该式表明只要出流角度与V

1

4、滑动摩擦力为什么可以忽略不记?试用实验来分析验证的大小,记录观察结果。(提示:平衡时,向测压管内加入或取出1mm左右深的水,观察活塞及液位的变化) 因滑动摩擦力<5墸,故可忽略而不计。

=19.6cm,当向测压管内注入1mm左右深的水时,活塞所受的如第三次实验,此时h

c

静压力增大,约为射流冲击力的5。假如活动摩擦力大于此值,则活塞不会作轴向移动,变为9.7cm左右,并保持不变,然而实际上,此时活塞很敏感地作左右移动,自动亦即h

c

仍恢复到19.6cm为止。这表明活塞和活塞套之间的轴向动摩擦力几调整测压管水位直至h

c

乎为零,故可不予考虑。

5、V

若不为零,会对实验结果带来什么影响?试结合实验步骤7的结果予以说明。

2x

按实验步骤7取下带翼轮的活塞,使射流直接冲击到活塞套内,便可呈现出回流与x 方向的夹角α大于90°(其V 2x 不为零)的水力现象。本实验测得135°,作用于活塞套圆心处的水深h c ’=29.2cm ,管嘴作用水头H 0=29.45cm 。而相应水流条件下,在取下带翼轮的活塞前,V 2x =0,h c =19.6cm 。表明V 2x 若不为零,对动量立影响甚大。因为V 2x 不为零,则动量方程变为

(1)

就是说h c ’随V 2及α递增。故实验中h c ’> h c 。

实际上,h c ’随V 2及α的变化又受总能头的约束,这是因为由能量方程得

(2)

所以

从式(2)知,能量转换的损失较小时,

实验四 毕托管测速实验

实验原理

(4.1)

式中:u -毕托管测点处的点流速;

c -毕托管的校正系数;

-毕托管全压水头与静水压头差。

(4.2)

联解上两式可得(4.3)

式中:u -测点处流速,由毕托管测定;

-测点流速系数;

ΔH-管嘴的作用水头。

实验分析与讨论

1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?

毕托管、测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会使测压失真,从而造成误差。误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响量测精度。检验的方法是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。

2.毕托管的动压头h和管嘴上、下游水位差H之间的大关系怎样?为什么?

由于

一般毕托管校正系数c=11‰(与仪器制作精度有关)。喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。所以Δh<ΔH。

本实验Δh=21.1cm,ΔH=21.3cm,c=1.000。

3.所测的流速系数说明了什么?

若管嘴出流的作用水头为H,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有

称作管嘴流速系数。

若相对点流速而言,由管嘴出流的某流线的能量方程,可得

式中:为流管在某一流段上的损失系数;为点流速系数。

本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。

4.据激光测速仪检测,距孔口2-3cm轴心处,其点流速系数为0.996,试问本实验的毕托管精度如何?如何率定毕托管的修正系数c?

若以激光测速仪测得的流速为真值u,则有

而毕托管测得的该点流速为203.46cm/s,则ε=0.2‰

欲率定毕托管的修正系数,则可令

本例:

5.普朗特毕托管的测速范围为0.2-2m/s,轴向安装偏差要求不应大于10度,试说明原因。(低流速可用倾斜压差计)。

(1)施测流速过大过小都会引起较大的实测误差,当流速u小于0.2m/s时,毕托管测得的压差Δh亦有

若用30倾斜压差计测量此压差值,因倾斜压差计的读数值差Δh为

那么当有0.5mm的判读误差时,流速的相对误差可达6%。而当流速大于2m/s时,由于水流流经毕托管头部时会出现局部分离现象,从而使静压孔测得的压强偏低而造成误差。(2)同样,若毕托管安装偏差角(α)过大,亦会引起较大的误差。因毕托管测得的流速u 是实际流速u在其轴向的分速ucosα,则相应所测流速误差为

α若>10,则

6.为什么在光、声、电技术高度发展的今天,仍然常用毕托管这一传统的流体测速仪器?

毕托管测速原理是能量守恒定律,容易理解。而毕托管经长期应用,不断改进,已十分完善。具有结构简单,使用方便,测量精度高,稳定性好等优点。因而被广泛应用于液、气流的测量(其测量气体的流速可达60m/s)。光、声、电的测速技术及其相关仪器,虽具有瞬时性,灵敏、精度高以及自动化记录等诸多优点,有些优点毕托管是无法达到的。但往往因其机构复杂,使用约束条件多及价格昂贵等因素,从而在应用上受到限制。尤其是传感器与电器在信号接收与放大处理过程中,有否失真,或者随使用时间的长短,环境温度的改变是否飘移等,难以直观判断。致使可靠度难以把握,因而所有光、声、电测速仪器,包括激光测速仪都不得不用专门装置定期率定(有时是利用毕托管作率定)。可以认为至今毕托管测速仍然是最可信,最经济可靠而简便的测速方法。

实验五雷诺实验

实验原理

实验分析与讨论

⒈流态判据为何采用无量纲参数,而不采用临界流速?

雷诺在1883年以前的实验中,发现园管流动存在两种流态——层流和紊流,并且存在着层流转化为紊流的临界流速V ’,V ’与流体的粘性ν及园管的直径d 有关,即

(1)

因此从广义上看,V ’不能作为流态转变的判据。

为了判别流态,雷诺对不同管径、不同粘性液体作了大量的实验,得出了用无量纲参数(vd/ν)作为管流流态的判据。他不但深刻揭示了流态转变的规律,而且还为后人用无量纲化的方法进行实验研究树立了典范。用无量纲分析的雷列法可得出与雷诺数结果相同的无量纲数。

可以认为式(1)的函数关系能用指数的乘积来表示。即

(2)

其中K 为某一无量纲系数。

式(2)的量纲关系为

(3)

从量纲和谐原理,得

L :2α1+α2=1

T :-α1=-1

联立求解得α1=1,α2=-1

将上述结果,代入式(2),得

雷诺实验完成了K值的测定,以及是否为常数的验证。结果得到K=2320。于是,无量纲数vd/ν便成了适应于任何管径,任何牛顿流体的流态转变的判据。由于雷诺的奉献,vd/ν定命为雷诺数。

随着量纲分析理论的完善,利用量纲分析得出无量纲参数,研究多个物理量间的关系,成了现今实验研究的重要手段之一。

⒉为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流与紊流的判据?实测下临界雷诺数为多少?

根据实验测定,上临界雷诺数实测值在3000~5000范围内,与操作快慢,水箱的紊动度,外界干扰等密切相关。有关学者做了大量实验,有的得12000,有的得20000,有的甚至得40000。实际水流中,干扰总是存在的,故上临界雷诺数为不定值,无实际意义。只有下临界雷诺数才可以作为判别流态的标准。凡水流的雷诺数小于下临界雷诺数者必为层流。一般实测下临界雷诺数为2100左右。

⒊雷诺实验得出的圆管流动下临界雷诺数2320,而目前一般教科书中介绍采用的下临界雷诺数是2000,原因何在?

下临界雷诺数也并非与干扰绝对无关。雷诺实验是在环境的干扰极小,实验前水箱中的水体经长时间的稳定情况下,经反复多次细心量测才得出的。而后人的大量实验很难重复得出雷诺实验的准确数值,通常在2000~2300之间。因此,从工程实用出发,教科书中介绍的园管下临界雷诺数一般是2000。

⒋试结合紊动机理实验的观察,分析由层流过渡到紊流的机理何在?

从紊动机理实验的观察可知,异重流(分层流)在剪切流动情况下,分界面由于扰动引发细微波动,并随剪切流速的增大,分界面上的波动增大,波峰变尖,以至于间断面破

裂而形成一个个小旋涡。使流体质点产生横向紊动。正如在大风时,海面上波浪滔天,水气混掺的情况一样,这是高速的空气和静止的海水这两种流体的界面上,因剪切流动而引起的界面失稳的波动现象。由于园管层流的流速按抛物线分布,过流断面上的流速梯度较大,而且因壁面上的流速恒为零。相同管径下,如果平均流速越大则梯度越大,即层间的剪切流速越大,于是就容易产生紊动。紊动机理实验所见的波动→破裂→旋涡→质点紊动等一系列现象,便是流态从层流转变为紊流的过程显示。

⒌分析层流和紊流在运动学特性和动力学特性方面各有何差异?

层流和紊流在运动学特性和动力学特性方面的差异如下表:

运动学特性: 动力学特性:

层流: 1.质点有律地作分层流动 1.流层间无质量传输

2.断面流速按抛物线分布 2.流层间无动量交换

3.运动要素无脉动现象 3.单位质量的能量损失与流速的一次方成正比

紊流: 1.质点互相混掺作无规则运动 1.流层间有质量传输

2.断面流速按指数规律分布 2.流层间存在动量交换

3.运动要素发生不规则的脉动现象 3.单位质量的能量损失与流速的(1.75~2)次方成正比

实验六文丘里流量计实验

实验原理

根据能量方程式和连续性方程式,可得不计阻力作用时的文氏管过水能力关系式

式中:Δh 为两断面测压管水头差。 由于阻力的存在,实际通过的流量Q 恒小于Q ’。今引入一无量纲系数μ=Q/Q’(μ称为流量系数),对计算所得的流量值进行修正。

另,由水静力学基本方程可得气—水多管压差计的Δh 为

实验分析与讨论

⒈本实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对d 2=0.7cm 的管道而言,若因加工精度影响,误将(d 2-0.01)cm 值取代上述d 2值时,本实验在最大流量下的μ值将变为多少?

由式

可见本实验(水为流体)的μ值大小与Q 、d 1、d 2、Δh 有关。其中d 1、d 2影响最敏感。本实验中若文氏管d 1 =1.4cm ,d 2=0.71cm ,通常在切削加工中d 1比d 2测量方便,容易掌握好精度,d 2不易测量准确,从而不可避免的要引起实验误差。例如当最大流量时μ值为0.976,若d 2的误差为-0.01cm ,那么μ值将变为1.006,显然不合理。

⒉为什么计算流量Q ’与实际流量Q 不相等?

因为计算流量Q’是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力,Q

⒊试证气—水多管压差计(图6.4)有下列关系:

如图6. 4所述,,

⒋试应用量纲分析法,阐明文丘里流量计的水力特性。

运用量纲分析法得到文丘里流量计的流量表达式,然后结合实验成果,便可进一步搞清流量计的量测特性。

对于平置文丘里管,影响ν

1的因素有:文氏管进口直径d

1

,喉径d

2

、流体的密度ρ、动

力粘滞系数μ及两个断面间的压强差ΔP。根据π定理有

从中选取三个基本量,分别为:

共有6个物理量,有3个基本物理量,可得3个无量纲π数,分别为:

根据量纲和谐原理,π1的量纲式为

分别有 L :1=a 1+b 1-3c 1

T :0=- b 1

M :0= c 1

联解得:a 1=1,b 1=0,c 1=0,则

同理

将各π值代入式(1)得无量纲方程为

或写成

进而可得流量表达式为

(2) 式(2)与不计损失时理论推导得到的

(3)

水力学实验-参考答案

水力学实验1-参考答案 水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线?测压管水头指z?p,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当pB?0时,试根据记录数据,确定水箱内的真空区域。 pB?0,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定?0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由

式?whw??0h0 ,从而求得?0。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 h?4?cos? d? 式中,?为表面张力系数;?为液体容量;d为测压管的内径;h 为毛细升高。常温的水, ??0.073Nm,??0.0098Nm3。水与玻璃的浸润角?很小,可以认为cos??1.0。于是有 h?29.d (h、d均以mm计) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,?减小,毛细高度亦较净水小;当采用 有机下班玻璃作测压管时,浸润角?较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水 平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

工程水文水力学思考题和计算题(25题思考问答题,20题计算题答卷)

工程水文水力学思考题和计算题 一、思考问答 1、水文现象是一种自然现象,它具有什么特性,各用什么方法研究? 答:1)成因分析法: 根据水文变化的成因规律,由其影响因素预报、预测水文情势的方法。如降雨径流预报法、河流洪水演算法等。 2)数理统计法:根据水文现象的统计规律,对水文观测资料统计分析,进行水文情势预测、预报的方法。如设计年径流计算、设计洪水计算、地区经验公式等。 水文计算常常是二种方法综合使用,相辅相成,例如由暴雨资料推求设计洪水,就是先由数理统计法求设计暴雨,再按成因分析法将设计暴雨转化为设计洪水。此外,当没有水文资料时,可以根据水文现象的变化在地区分布上呈现的一定规律(水文现象在各流域、各地区的分布规律)来研究短缺和无资料地区的水文特征值。 2、何谓水量平衡?试叙闭合流域水量平衡方程在实际工作中的应用和意义。 答:对任一地区、任一时段进入的水量与输出的水量之差,必等于其蓄水量的变化量,这就是水量平衡原理,是水文计算中始终要遵循的一项基本原理。 依此,可得任一地区、任一时段的水量平衡方程。对一闭合流域:设P 为某一特定时段的降雨量,E 为该时段内的蒸发量,R 为该时段该流域的径流量,则有:P=R+EC+△U △U为该时段流域内的蓄水量,△U=U1+U 2。 对于多年平均情况,△U =0,则闭合流域多年平均水量平衡方程变为:影响水资源的因素十分复杂,水资源的许多有关问题,难于由有关的成因因素直接计算求解,而运用水量平衡关系,往往可以使问题得到解决。因此,水量平衡原理在水文分析计算和水资源规划的分析计算中有广泛的应用。如利用水量平衡式可以用已知的水文要素推求另外的未知要素。例如:某闭合流域的多年平均降雨量,多年平均径流深R=420mm,试求多年平均蒸发量。-=600mm。

水力学实验报告思考题答案(供参考)

水力学实验报告 实验一流体静力学实验 实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 实验三不可压缩流体恒定流动量定律实验 实验四毕托管测速实验 实验五雷诺实验 实验六文丘里流量计实验 实验七沿程水头损失实验 实验八局部阻力实验 实验一流体静力学实验 实验原理 在重力作用下不可压缩流体静力学基本方程 或 (1.1) 式中:z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 据此可用仪器(不用另外尺)直接测得S0。 实验分析与讨论

1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 (h、d单位为mm)

流体力学实验-参考答案

流体力学实验思考题 参考答案 流体力学实验室 静水压强实验

1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

水力学习题(上)

1-1 已知某水流流速分布为10 /172.0y u =,u 的单位为m/s ,y 为距壁面的距离,单位 为m 。(1)求y=0.1、0.5、1.0m 处的流速梯度;(2)若水的运动粘滞系数s cm /1010.02=ν,计算相应的切应力。 解:(1)依题知 10 9072.010910 172.0101 72.0- =-?=∴ =y y dy du y u Θ ①当y=0.1时,s y dy du 1 9.01 .0572 .0)1.0(072.0--=≈?= ②当y=0.5时,1 9.05 .0134.0)5.0(0072.0--=≈?=s dy du y ③当y=1.0时,19.01 .0072.0)0.1(072.0--==?=s dy du y (2)依题知 2 41000101.01000m S N u dy du u ???=?== =-νρτΘ ①当y=0.1时,Pa 41078.5572.000101.0-?≈?=τ ②当y=0.5时,Pa 41035.1134.000101.0-?≈?=τ ③当y=1.0时, Pa 41027.7072.000101.0-?≈?=τ 1-2 已知温度20℃时水的密度3 /2.998m kg =ρ,动力粘滞系数 23/10002.1m s N ??=-μ,求其运动粘滞系数ν? 解: s m 263 10004.12.99810002.1--?≈?==∴?=ρμνν ρμΘ 1-3 容器盛有液体,求下述不同情况时该液体所受单位质量力?(1)容器静止时;(2)容

器以等加速度g 垂直向上运动;(3)容器以等加速度g 垂直向下运动。 解:(1)依题知 g m mg f f f z y x =-= ==,0 (2)依题知 g g m mg mg f f f z y x 2,0-=--= == (3)依题知 g 0,0=-= ==m mg mg f f f z y x 1-4 根据牛顿摩擦定律,推导动力粘滞系数μ和运动粘滞系数ν的量纲。 1-5 两个平行边壁间距为25mm ,中间为粘滞系数为μ=0.7Pa ·s 的油,有一

水力学的实验报告

水力学的实验报告 水力学的实验报告 今天为大家收集资料整理回来了关于水力学实验报告,希望能够为大家带来帮助,希望大家会喜欢。 本学期我们进行了七周的水力学实验,从这些实验中我学到了很多。 例如,所有实验都是需要耐心地去测量一组一组的数据,还需要在实验后认真处理核对每一组数据。这些实验加强了我的动手能力,并且培养了我的独立思考能力。特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。 例如:数据处理时,遇到要进行数据获取,插入图表命令,这些就要求懂得excel软件一些基本操作。通过这几次的实验,我不仅学会了如何正确使用实验仪器,还学习到了认真严肃的科研精神,并且激发了我学习新事物的兴趣,这些我个人觉得都是极为可贵的。 在实验开始之前,我认为最为重要的就是提前预习实验内容:包括实验仪器、实验原理、实验步骤以及实验分析总结。我认为这里面需要我们花费很多心思去思考体会,想出自己对什么有疑问,以便上课时向老师提问寻求解答。 以我们的电拟实验为例:当时我们做这个实验时反复做了很多遍,也向老师提出了一些疑问。在开始时,仪器需要校准。因为上下游电势差不是10V,仅仅这一点我们就搞了很长时间。最终我们得出的误差原因是因为电笔接触不好影响实验进行,所以我们更换了其他不可使用仪器的完好的电笔,实验才得以进行。其次,实验分析阶段是培养我们自己独立思考、分析问题和解决问题的能力的阶段。

我认为培养这种能力的前题是你对每次实验的态度。如果我们每次对待实验都是随随便便的态度,抱着等老师教你怎么做,拿同学的报告去抄,必然会导致我们对待实验过程的懈怠。尽管可能也会的到好的成绩,但这对将来工作态度的养成是极为不利的。 最后,也是最为重要的就是关于实验的思考问题:哪些实验仪器能改进,哪些数据需要重新获取等都是我们要考虑的。像堰流实验,以为我们分析的实验误差很大,所以我和同组的王琦玮同学就去做了3遍才最终确定的数据,局部水头损失也是如此。关于动量方程实验仪器,做实验中砝码的固定和加载都是一项难题,同时这也对实验精确性产生了极大影响,对此,我想到是不是可以采用电磁体来代替人工加载(不知可不可行)。虽然没有对实验仪器改进产生正面意义,但是这促进了我深入思考,我想这便是让学生做实验的最终目的吧。

流体力学实验思考题解答全

流体力学课程实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线就是根什么线? 答:测压管水头指γp Z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压 管水头线指测压管液面的连线。从表1、1的实测数据或实验直接观察可知,同一静止液面的测压管水头线就是一根水平线。 2、 当0

武大水力学习题第2章 水静力学

第二章水静力学 1、相对压强必为正值。 ( ) 2、图示为一盛水容器。当不计瓶重时, 作用于地面上的力等于水作用于瓶底的总压力。 ( ) 3、静水总压力的压力中心就是受力面面积的形心。 ( ) 4、二向曲面上的静水总压力的作用点就是静水总压力的水平分力与铅直分力的交点。 ( ) 5、一个任意形状的倾斜平面与水面的夹角为α。则该平面上的静水总压力P=ρgy D A sinα。(y D为压力中心D的坐标,ρ为水的密度,A 为斜面面积) () 6、图示为二块置于不同液体中的矩形平板,它们的宽度b,长度L及倾角α均相等,则二板上的静水总压力作用点在水面以下的深度是相等的。 ( ) 7、作用于两种不同液体接触面上的压力是质量力。 ( ) 8、静水压强仅是由质量力引起的。 ( ) 9、在一盛水容器的侧壁上开有两个小孔A、B,并安装一 U 形水银压差计,如图所示。由于A、B 两点静水压强不等,水银液面一定会显示出?h 的差值。 ( ) 10、物体在水中受到的浮力等于作用于物体表面的静水总压力。 ( ) 11、选择下列正确的等压面: ( ) (1) A ? A (2) B ? B (3) C ? C (4) D ? D

12、压力中心是( ) (1) 淹没面积的中心; (2) 压力体的中心;(3) 总压力的作用点;(4) 受压面的形心。 13、平衡液体中的等压面必为( ) (1) 水平面; (2) 斜平面; (3) 旋转抛物面; (4) 与质量力相正交的面。 14、图示四个容器内的水深均为H,则容器底面静水压强最大的是( ) (1) a ; (2) b ; (3) c ; (4) d 。 15、欧拉液体平衡微分方程 ( ) (1) 只适用于静止液体; (2) 只适用于相对平衡液体; (3) 不适用于理想液体; (4) 理想液体和实际液体均适用。 16、容器中盛有两种不同重度的静止液体,如图所示,作用在容器A B 壁面上的静水压强分布图应 为 ( ) (1) a (2) b (3) c (4) d 17、液体某点的绝对压强为 58 kP a,则该点的相对压强为 ( ) (1) 159.3 kP a; (2) 43.3 kP a; (3) -58 kP a (4) -43.3 kP a。 18、图示的容器a 中盛有重度为ρ1的液体,容器b中盛有密度为ρ1和ρ2的两种液体,则两个容 器中曲面AB 上压力体及压力应为 ( ) (1) 压力体相同,且压力相等; (2) 压力体相同,但压力不相等; (3) 压力体不同,压力不相等; (4) 压力体不同,但压力相等。

流体力学实验思考题解答(全)

流体力学课程实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

水力学实验1-参考答案

水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,

m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。 6、用该实验装置能演示变液位下的恒定水流吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C 进入水箱。这时阀门的出流就是变液位下的恒定水流。因为由观察可知,测压管1的液面始终与C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称这为马利奥特容器的变液位下恒定流。

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

水力学思考题

Ⅰ思考题: 0.1 质量、重量、密度、容重的定义,密度和容重间存在着什么关系?各物理 量的量纲和量测单位是什么? 0.2 什么叫做粘滞性?粘滞性对液体运动起什么作用? 0.3 固体之间的磨擦力与液体之间的内磨擦力有何原则上的区别?何谓牛顿内 磨擦定律,该定律是否适用于任何液体? 0.4 什么是理想液体?理想液体与实际液体的根本区别何在? 0.5为什么可以把液体当作“连续介质”?运用这个假设对研究液体运动规律有 何意义? 0.6 作6作用于液体上的力可以分为哪两类?二者有何区别?试举例说明之。 思考题: 1.1静水压强有哪些特性?静水压强的分布规律是什么? 1.2 试分析图中压强分布图错在哪里? 图1.2 1.3 何谓绝对压强,相对压强和真空值?它们的表示方法有哪三种?它们之间 有什么关系? 1.4 图示一密闭水箱,试分析水平面A-A,B-B,C-C是否皆为等压面?何 谓等压面?等压面的条件有哪些?

图1.4 1.5一密闭水箱(如图)系用橡皮管从C点连通容器Ⅱ,并在A、B两点各接一 测压管问。 (1)AB两测压管中水位是否相同?如相同时,问AB两点压强是否相等?(2)把容器Ⅱ提高一些后,p0比原来值增大还是减小?两测压管中水位变化如 何? 图1.5 1.6 什用6什么叫压力体?如何确定压力体的范围和方向? 思考题: 2.1 “恒定流与非恒定流”,“均匀流与非均匀流”,“渐变流与急变流”等三个 概念是如何定义的?它们之间有么联系?渐变流具有什么重要的性质? 2.2 图(a)表示一水闸正在提升闸门放水,图(b)表示一水管正在打开阀门 放水,若它们的上游水位均保持不变,问此时的水流是否符合A1V1=AaVa 的连续方程?为什么?

流体力学实验思考题解答

流体力学实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

水力学复习题

目录 目录 (1) 复习题一 (2) 参考答案 (5) 复习题二 (8) 参考答案 (12)

复习题一 一、填空题(每小题2分,共10分) 1、 一般情况下,给水管道中的流速不大于 ,不小于 。 2、能量方程中g v 22 α项的能量含义为: 。 3、圆管半径m r 1=,满管流动时的水力半径R 为 米;如果正常水深m h 20=,则水力半径R 为 米。 4、从流体内部结构来看,流体的运动形态可以分成 流与 流。 5、只有途泄流量管道的水头损失是相同流量的管道的水头损失的 。 二、判断题(每小题2分,共10分) 1、15℃时水的[动力]粘度小于20℃时水的[动力]粘度。( ) 2、恒定流时的流线与迹线二者重合。 ( ) 3、有压管道的测压管水头线只能沿程降低 ( ) 4、工业管道的沿程摩阻系数λ在紊流粗糙区随e R 增加而增加( ) 5、均匀流的同一过水断面上,各点流速相等。 ( ) 三、名词解释(每小题3分,共15分) 1、粘滞性 2、流线 3、阻力平方区 4、当量粗糙度 5、断面比能 四、简答题(每小题5分,共10分) 1、水力学对液体做了哪些物理模型化假设?请写出相应内容。 2、 均匀流水力特性如何? 五、作图题(共15分) 1、作出标有字母的平面压强分布图并注明各点相对压强的大小(3分) 2、作出下面的曲面上压力体图并标明垂直方向分力的方向(4分)

3、请作出明渠恒定流的水面曲线 (4分) 4、请定性作出下图总水头线与测压管水头线(两段均为缓坡)(4分) 六、计算与证明题(8分 + 8分+6分+10分+8分,共40分) 1、水平放置的压力管,渐变段起点的相对压强a kp p 4001=进口管径流量s m Q /8.13 =,m D 50.1=,出口管 径 m d 1=,不计水头损失,求镇墩所受的轴向推力为多少。

水力学实验2

工程流体力学实验指导与报告 专业___________________ 学号___________________ 姓名___________________ 西南交大峨眉校区水力学实验室 2010、5

目录 第一章结论 (1) 1.1 工程流体力学(水力学)教学实验的目的 (1) 1.2 工程流体力学(水力学)教学实验的要求……………………‥1 第二章流体基本物理量的室内量测技术 (3) 2.1 压强的量测 (3) 2.2 水位的量测 (7) 2.3 流量的量测 (8) 2.4 流速的量测 (12) 第三章流体静力学实验 (20) 3.1流体静力学实验 (20) 第四章流体动力学基础实验 (23) 4.1 流动显示实验 (23) 4.2 管路测压管水头线实验 (24) 4.3 毕托管测速实验 (27) 4.4 文丘里流量计实验 (31) 第五章流动阻力与水头损失实验 (35) 5.1 雷诺实验 (35) 5.2 管路沿程水头损失实验 (38) 5.3 管路局部阻力损失实验 (42) 5.4 管路沿程阻力实验 (46) 第六章孔口与管嘴实验 (49) 6.1 孔口与管嘴实验 (49) 第七章明渠水流实验 (53) 7.1 水跃实验 (53) 7.2 明渠恒定非均匀流水面曲线实验 (56) 第八章堰流实验 (59) 8.1 宽顶堰溢流实验 (59) 8.2 小桥过流演示实验 (62) 参考文献 (63)

第一章绪论 1.1 工程流体力学(水力学)教学实验的目的 工程流体力学(水力学)是应用性较强的专业技术基础课。从学科发展看,工程流体力学(水力学)属于技术基础学科,实验方法是促进其发展的重要研究手段。由于流体运动的复杂性,工程流体力学(水力学)的研究就更加离不开科学实验。现代工程流体力学(水力学)的蓬勃发展,更是和飞跃进步的现代实验技术分不开的。因此,工程流体力学(水力学)实验是学习理论知识、探索流体运动规律的重要教学环节。 工程流体力学(水力学)教学实验的目的为: 1、观察流动现象,扩大感性认识,提高理论分析能力。 2、根据实测资料验证工程流体力学(水力学)的基本理论或根据所观察的流动现象进行某些深入的思考,以加强和巩固理论知识的学习。 3、会使用工程流体力学(水力学)实验的基本量测仪器,掌握一定的实验技术,培养实验研究的初步能力。 4、培养分析实验数据、整理实验成果和编写实验报告的能力。 5、培养严谨踏实的科学作风和融洽合作的其事态度,为将来进行科学研究打下良好的基础。 1.2 工程流体力学(水力学)教学实验的要求 一、实验要求 1、在每次实验前,必须了解本次实验的目的、实验原理和实验所要验证的理论。为此,实验前应预习实验指示书和教科书中的有关内容。 2、进入实验室后,应注意听取指导教师对实验方法的讲授,待完全弄清楚实验方法与步骤后,方能动手实验。 3、实验时应爱护仪器设备及实验室其它公物,未经允许不得随便打开可关闭实验室的电路开关及与所做实验无关的水阀。如有损坏应立即报告指导教师,并按学校有关规定处理。在整个实验过程中,均须保持实验场所整洁安静,做到文明实验。 总之,对待实验应有严肃的态度,严格的要求,严密的方法。只有这样才能完成好实验技能的训练任务。 二、实验报告要求 1、实验报告一般应包括以下内容: (1)、班级、姓名、同组人入实验日期; (2)、实验名称; (3)、实验目的; (4)、实验装置简图及仪器; (5)、流动现象的描述及实验原始记录;

流体力学实验思考题解答

流体力学实验思考题解答 (一)流体静力学实验 1、 同一静止液体内的测压管水头线是根什么线? 答:测压管水头指γ p Z + ,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测 压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、 当0

水力学实验总结报告

水力学实验总结报告 —经过八个星期的学习与实验,我学到了很多相关的知识,也对水力学实验部分有了自认为较为清醒的体会与感悟。 因为之前有做过大学物理实验,明白在实验过程的注意事项和实验结束后的数据处理在实验的整个过程尤为重要,于是在水力学实验开课之前我仔细阅读了水力学实验课本第十一章和第十二章关于测量误差及精度分析与实验数据的处理的内容,从中学到了很多需要在实验时与实验后处理时特别注意的方面,这对我后续所有实验的进行起了很好的指导作用。 在每一次实验前,老师都会向我们讲解实验的大概原理与操作步骤,因为有两个班和很多组的关系,老师的讲解我们也不是能听的很清楚,这就要求我们在实验准备阶段仔细的弄清实验原理与可能得出的实验结果,以便我们在做实验的过程中及时判断实验数据的准确性,从而避免因错误的实验操作导致的错误结果。当然在这一部分我们做的相对并不是很好,有时甚至在上课前并未对实验原理及过程进行很好的预习。在做实验的过程中,我们不能简单的按照实验步骤来操作,在实验的过程中应仔细分析每一次得出的结果(当然,太固执与每一次的结果是无益的。),及时验算并发现错误,以便后续实验步骤的进行。 实验中要注意的事项有很多,一个小小的疏忽就很有可能导致整个实验的失败。我们也吃了这方面的亏,做第一个实验静水

压强实验时没有很好的理解装置的原理与应该特别注意的细节,得出来的实验结果也不是特别的令人满意,在后续处理数据的时候发现有一个实验结果得出的误差很大,效果很不好。开始时我们打算舍弃所有的数据等到第二周重做,可是后来我们在分析思考题时发现在用实验数据来计算油的密度来验算结果时,有一项结果是具有前后联系的,因而它的变化范围也是具有一定区间的,所以我们发现实验的误差来源于我们数据读数的估读位的误差,然后我们将这一数据的估读位做了一小幅度的调整,得出的结果便相对十分准确了。从中我们便明白了一个实验并不是说实验结束了,数据处理完了,它就结束了,相反,在一个实验结束后对它的结果的思考与理解却是整个实验中最关键的一环。 而对于我来说,对一个实验最好的理解无益于在处理实验数据的时候了,有时候通过对计算公式的理解,对结果的分析,对思考题的解读,确实促进了我对水力学每一相关部分的认识。相对于以前需要无数次死记硬背的部分,难以理解的公式,通过对水力学实验这一阶段的学习,我发现再去理解与记忆他们变得容易多了,这确实是一份难得的收获与体会。 当然,在处理实验数据与得出结果的过程中,也并不总是一帆风顺的,我们也遇到了很多难题,最让我印象深刻的是水电比拟实验中流网的绘制与计算。因为实验时仪器总是并不能满足中线附近不能满足电压等于5V的缘故,我们5V的等势线偏向左边0.9厘米左右,这就造成了我们的等势线的左右不对称,给我们