搜档网
当前位置:搜档网 › 水力学实验报告

水力学实验报告

水力学实验报告
水力学实验报告

水力学实验报告

学院:

班级:

姓名:

学号:

第三组同学:

姓名: 学号:

姓名: 学号:

姓名: 学号:

2015、12、25

1 平面静水总压力实验

1、1实验目的

1、掌握解析法及压力图法,测定矩形平面上的静水总压力。

2、验证平面静水压力理论。

1、2实验原理

作用在任意形状平面上的静水总压力P 等于该平面形心处的压强p c 与平面面积A 的乘积:

A p P c =,

方向垂直指向受压面。

对于上、下边与水面平行的矩形平面上的静水总压力及其作用点的位置,可采用压力图法:静水总压力P 的大小等于压强分布图的面积Ω与以宽度b 所构成的压强分布体的体积。

b P Ω=

若压强分布图为三角形分布、如图3-2,则

H

e b gH P 312

1

2==

ρ

式中:e -为三角形压强分布图的形心距底部的距离。 若压强分布图为梯形分布,如图3-3,则

212121232

1

H H H H a e ab H H g P ++)+(?

==

ρ

式中:e -为梯形压强分布图的形心距梯形底边的距离。

图1-1 静水压强分布图(三角形) 图1-2 静水压强分布图(梯形)

本实验设备原理如图3-4,由力矩平衡原理。

图1-3 静水总压力实验设备图

10L P L G ?=?

其中:e L L -=1

求出平面静水总压力

1

L GL P =

1、3实验设备

在自循环水箱上部安装一敞开的矩形容器,容器通过进水开关K l ,放水开关K 2与水箱连接。容器上部放置一与扇形体相连的平衡杆,如图3-5所示。

??3-5 ??????

图 1-4 静水总压力仪 1、4实验步骤

1、熟悉仪器,测记有关常数。

2、用底脚螺丝调平,使水准泡居中。

3、调整平衡锤使平衡杆处于水平状态。

4、打开进水阀门K 1,待水流上升到一定高度后关闭。

5、在天平盘上放置适量砝码。若平衡杆仍无法达到水平状态,可通过进水开关进水或放水开关放水来调节进放水量直至平衡。

6、测记砝码质量及水位的刻度数。

7、重复步骤4~6,水位读数在100mm 以下做3次,以上做3次。

8、打开放水阀门K 2,将水排净,并将砝码放入盒中,实验结束。

1、5实验数据记录及处理

1、有关常数记录:

天平臂距离L 0= cm,扇形体垂直距离(扇形半径)L = cm,

扇形体宽b = cm,矩形端面高a 0= cm,33/100.1cm kg -?=

ρ 2、实验数据记录

水力学实验-参考答案

水力学实验1-参考答案 水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线?测压管水头指z?p,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当pB?0时,试根据记录数据,确定水箱内的真空区域。 pB?0,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定?0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由

式?whw??0h0 ,从而求得?0。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 h?4?cos? d? 式中,?为表面张力系数;?为液体容量;d为测压管的内径;h 为毛细升高。常温的水, ??0.073Nm,??0.0098Nm3。水与玻璃的浸润角?很小,可以认为cos??1.0。于是有 h?29.d (h、d均以mm计) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,?减小,毛细高度亦较净水小;当采用 有机下班玻璃作测压管时,浸润角?较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水 平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

高等土力学读书报告

高等土力学读书报告 姓名:杨耀辉 学院:水利与土木工程学院 专业:水利工程 学号: 1338020126

无粘性土颗粒组成的类型与基本性质 一 无粘性土颗粒组成类型与分类 1.颗粒组成 颗粒组成是研究无粘性土基本性质的主要依据,通常以各粒径含量的累积曲线或分布曲线表示。 均匀土:分布曲线是单峰形式,各粒径都有一定的含量,峰值粒径含量占绝对优势,其破坏形式主要是流土破坏。 单峰形:峰值远离中值,呈左偏峰,出现双峰时右峰较低,两峰连续,谷点里粒径至少占4%至5%,曲线无明显平缓段,集中在某段,无峰值。 不均匀土:级配连续和级配不连续。 双峰形:双峰间有间断,有的相连接,但最低点粒径含量小于或等于3%,累积曲线呈椅子形,出现台阶。 2.均匀土的区分原则和方法 均匀土特点:级配不良,压实性差,孔隙率大,稳定性差。 太沙基指出5,1.0<

质仍取决于粗料。但随细料的含量的增加,混合料密度增加,孔隙相应减小,到细料超出一定含量时,混合料性质就取决于细料。最优级配的细料含量P=25%到30%。 混合料中开始参与骨架作用的细料含量 21n n n = ;并考虑到无粘性土一般21s s ρρ=;得出细料含量与孔隙率的关系 理想状态下的计算式: ()2 222 1 1 1n n n P d s d ?+?-?= ρρρ 其中 ()1 111 s d n ρρ?-=; 在理想状态下: n n n P --= 12。 为使P 含量与实际相符,就要考虑粗料孔隙体积被撑开的影响,由实验分 析知2n 随n 增大而增大,且223n n =?;我们取粗料孔隙率为0.3,则2 233.0n n += ∴ n n n P --+= 133.02 但在实际中,混合料中细料是多少要撑开粗料孔隙的,所以理论计算的P 要小于实际中的。 实际值小于它时表明细料没填满粗料孔隙; 实际值大于它时细料填满粗料孔隙且与粗料共同组成骨架; 当实际值等于它时认为混合料有最优级配料。 渗透系数与细料含量的关系; P 〈30%时填不满孔隙,对渗透系数起控制作用的是粗料。 P 〉30%时孔隙与细料产生关系。 P 〉70%时粗料只起填充作用,对渗透系数的影响减少直到消失。 4.级配连续土的基本性质 级配连续土的性质: Cu>10 1

水力学实验报告思考题答案(供参考)

水力学实验报告 实验一流体静力学实验 实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 实验三不可压缩流体恒定流动量定律实验 实验四毕托管测速实验 实验五雷诺实验 实验六文丘里流量计实验 实验七沿程水头损失实验 实验八局部阻力实验 实验一流体静力学实验 实验原理 在重力作用下不可压缩流体静力学基本方程 或 (1.1) 式中:z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 据此可用仪器(不用另外尺)直接测得S0。 实验分析与讨论

1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 (h、d单位为mm)

水力学实验报告

水力学实验扳告 院: 级: 名: 号: 第三组同学: 姓名: 学号: 姓名: 学号: 姓名: 学号: 201 5、12、25

1平面静水总压力实验 1x 1实验目得 1、 掌握解析法及压力图法,测定矩形平而上得静水总压力. 2、 验证平而静水压力理论。 1x 2实验原理 作用在任意形状平面上得静水总压力P 等于该平而形心处得压强处与平而而积 A 得乘积: 方向垂宜指向受压而0 对于上、下边与水而平行得矩形平面上得静水总压力及其作用点得位置,可 采 用压力图法:静水总压力P 得大小等于压强分布图得面积与以宽度h 所构成得压 强分布体得体积。 若压强分布图为三角形分布、如图3—2,则 式中"一为三角形压强分布图得形心距底部得距离。 若压强分布图为梯形分布,如图3 -3,则 式中:0-为梯形压强分布图得形心距梯形底边得距离. 本实验设备原理如图3-4. 由力矩平衡原理。 图M fff 水压强分布图(三角 图1-2静水压强分布图{梯

英中: 求出平面静水总压力 1x 3实验设备 在自循环水箱上部安装一敞开得矩形容器,容器通过进水开关Kh放水开关& 与水箱连接。容器上部放置一与扇形体相连得平衡杆,如图3-5所示。

1、4实验步骤 U 熟悉仪器,测记有关常数。 2、用底脚螺丝调平,使水准泡居中。 3、调整平衡锤使平衡杆处于水平状态。 4、 打开进水阀门IC,待水流上升到一定高度后关闭. 5、 在天平盘上放置适量舷码。若平衡杆仍无法达到水平状态,可通过进水开 关进水 或放水开关放水来调节进放水量直至平衡。 6、 测记舷码质量及水位得刻度数。 7、重复步骤4",水位读数在loom m 以下做3次,以上做3次. 8、打开放水阀门K2?将水排净,并将舷码放入盒中,实验结朿。 1、5实验数据记录及处理 3、实验结果 C m 1、 有关常数记录: 天平臂距离“ cm,扇形体垂直距离(扇形半径)£=_cm. 扇形体宽h= _____ C m,矩形端面高5= 2、

水力学实验报告思考题答案(想你所要)..

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 成果分析及讨论 1.测压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J 恒为正,即J>0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w1-2, h w1-2为损失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 2.流量增加,测压管水头线有何变化?为什么? 有如下二个变化: (1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头 ,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大, 就增大,则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减 小,故的减小更加显著。 (2)测压管水头线(P-P)的起落变化更为显著。 因为对于两个不同直径的相应过水断面有 式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。 3.测点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm), 表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 下述几点措施有利于避免喉管(测点7)处真空的形成: (1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。

土力学读书报告分析

高等土力学读书报告 学院:土木工程 专业:结构工程 指导教师: 姓名: 学号: 2015.12.30

本学期学了土的应力与应变,强度理论,全量理论,增量理论,模型理论,滑线场理论及极限分析。以下对这些理论做简要回顾。 应力应变 土的应力应变关系十分复杂,除了时间外,还有温度、湿度等影响因素。其中时间是一个主要影响因素。与时间有关的土的本构关系主要是指反映土流变性的理论。而在大多数情况下,可以不考虑时间对土的应力——应变和强度(主要是抗剪强度)关系的影响。土的强度是土受力变形发展的一个阶段,即在微小的应力增量作用下,土单元会发生无限大(或不可控制)的应变增量。因而它实际上是土的本构关系的一个组成部分。 由于土是岩石风化而成的碎散颗粒的集合体,一般包含有固、液、气三相,在其形成的漫长的地质过程中,受风化、搬运、沉积、固结和地壳运动的影响,其应力应变关系十分复杂,并且与诸多因素有关。其中主要的应力应变特性是其非线性、弹塑性和剪胀(缩)性。主要的影响因素是应力水平(Stresslevel、应力路径(Strespath)和应力历史(Stresshistor),亦称3S影响 土的强度理论 土在外力作用下达到屈服或破坏时的极限应力。由于剪应力对土的破坏起控制作用,所以土的强度通常是指它的抗剪强度。 确定强度的原则土的强度一般是由它的应力-应变关系曲线上某 些特征应力来确定的,如屈服应力、破坏应力(或峰值应力)等,这些特征应力值与土的种类和物理条件(如加载时间、加载速率和排水条件等)有关。在不考虑加载时间或加载速率对土强度影响的常规试验中,对于不同的土,大体上可获得三种典型的应力-应变关系曲线,一种是当应力随应变增大直至峰值时,土体出现破裂,随着应变进一步增大,应力由峰值逐渐降低,最后达到稳定应力值。对此,人们取峰值应力作为破坏强度,取最后稳定应力值作为破坏后的强度。第二种是当应力达到最大值后,应力虽然不增加,但应变继续增加,对此,也可取最大应力值作为破坏强度。第三种是,在较大应变下,应力仍未达到最大值,而是随

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

土力学结课论文及对工程案例的分析

高等土力学读书报告 对地基下沉问题的讨论 姓名刘兴顺 学号2014210046 年级2014 专业桥梁与隧道工程系(院)建筑工程学院指导教师陈颖辉 2015年5月26日

摘要 本论文主要是本人对高等土力学的学习总结,并根据工程中遇到的问题用土力学的知识进行分析(由于本人没有实际的工程经验,现主要是对比比较著名的一些工程)。土力学是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。主要用于土木、交通、水利等工程。本论文主要结合中外建筑物倾斜(意大利比萨斜塔和中国苏州虎丘塔)与地基严重下沉(中国上海展览中心馆和墨西哥市艺术馆)来讨论其中关于土力学的乱放,并运用土力学的方法进行分析。 关键词:高等土力学;工程实例;地基基础

ABSTRACT This thesis is mainly my learning of advanced soil mechanics summary,and according to the problems encountered in engineering with the knowledge of soil mechanics analysis (because I didn't have the practical engineering experience,now is mainly contrast compared to the well-known engineering).Soil mechanics is a branch of engineering mechanics,which is applied to study the stress-strain,stress-strain,time and strength of the stress strain time relationship and strength of the soil..To provide the theoretical basis and methods for quantitative study of geological effects that may occur in the engineering geology..Mainly used in civil engineering,transportation,water conservancy and other projects.This paper mainly combines(Leaning Tower of Pisa,Italy and China Suzhou Huqiu tower and ground sinking heavily(China Shanghai Exhibition Center Museum and Mexico City Museum of Art) inclined buildings at home and abroad is to discuss the misplacing on soil mechanics,and using the method of soil mechanics analysis. Key words:advanced soil mechanics;engineering examples;foundation foundation

水力学的实验报告

水力学的实验报告 水力学的实验报告 今天为大家收集资料整理回来了关于水力学实验报告,希望能够为大家带来帮助,希望大家会喜欢。 本学期我们进行了七周的水力学实验,从这些实验中我学到了很多。 例如,所有实验都是需要耐心地去测量一组一组的数据,还需要在实验后认真处理核对每一组数据。这些实验加强了我的动手能力,并且培养了我的独立思考能力。特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。 例如:数据处理时,遇到要进行数据获取,插入图表命令,这些就要求懂得excel软件一些基本操作。通过这几次的实验,我不仅学会了如何正确使用实验仪器,还学习到了认真严肃的科研精神,并且激发了我学习新事物的兴趣,这些我个人觉得都是极为可贵的。 在实验开始之前,我认为最为重要的就是提前预习实验内容:包括实验仪器、实验原理、实验步骤以及实验分析总结。我认为这里面需要我们花费很多心思去思考体会,想出自己对什么有疑问,以便上课时向老师提问寻求解答。 以我们的电拟实验为例:当时我们做这个实验时反复做了很多遍,也向老师提出了一些疑问。在开始时,仪器需要校准。因为上下游电势差不是10V,仅仅这一点我们就搞了很长时间。最终我们得出的误差原因是因为电笔接触不好影响实验进行,所以我们更换了其他不可使用仪器的完好的电笔,实验才得以进行。其次,实验分析阶段是培养我们自己独立思考、分析问题和解决问题的能力的阶段。

我认为培养这种能力的前题是你对每次实验的态度。如果我们每次对待实验都是随随便便的态度,抱着等老师教你怎么做,拿同学的报告去抄,必然会导致我们对待实验过程的懈怠。尽管可能也会的到好的成绩,但这对将来工作态度的养成是极为不利的。 最后,也是最为重要的就是关于实验的思考问题:哪些实验仪器能改进,哪些数据需要重新获取等都是我们要考虑的。像堰流实验,以为我们分析的实验误差很大,所以我和同组的王琦玮同学就去做了3遍才最终确定的数据,局部水头损失也是如此。关于动量方程实验仪器,做实验中砝码的固定和加载都是一项难题,同时这也对实验精确性产生了极大影响,对此,我想到是不是可以采用电磁体来代替人工加载(不知可不可行)。虽然没有对实验仪器改进产生正面意义,但是这促进了我深入思考,我想这便是让学生做实验的最终目的吧。

龙岩市中考满分作文 土力学读书报告

土力学读书报告 一、土的工程特性有哪些。 1、土的结构有哪些,这些结构都有哪些特点,对土的工程特性有何影响? 土的结构是在成土的过程中逐渐形成的,它反映了土的成分、成因和年代对土的工程性质的影响,其结构按其颗粒的排列和联结可分为三种基本类型。a、单粒结构,单粒结构是碎石土和砂土的结构特征。其特点是土粒间没有联结存在,或联结非常微弱,可以忽略不计。疏松状态的单粒结构在荷载作用下,特别在振动荷载作用下会趋向密实,土粒移向更稳定的位置,同时产生较大的变形;密实状态的单粒结构在剪应力作用下会发生剪胀,即体积膨胀,密度变松。单粒结构的紧密程度取决于矿物成分、颗粒形状、粒度成分及级配的均匀程度。片状矿物颗粒组成的砂土最为疏松;浑圆的颗粒组成的土比带棱角的容易趋向密实;土粒的级配愈不均匀,结构愈紧密。b、蜂窝状结构,蜂窝状结构是以粉粒为主的土的结构特征。粒径在0.02~0.002 mm左右的土粒在水中沉积时,基本上是单个颗粒下沉,在下沉过程中、碰上已沉积的土粒时,如土粒间的引力相对自重而言已经足够地大,则此颗粒就停留在最初的接触位置上不再下沉,形成大孔隙的蜂窝状结构。c、絮状结构,絮状结构是粘土颗粒特有的结构特征。悬浮在水中的粘土颗粒当介质发生变化时,土粒互相聚合,以边-边、面-边的接触方式形成絮状物下沉,沉积为大孔隙的絮状结构。 土的结构形成以后,当外界条件变化时,土的结构会发生变化。 2、地基岩土的工程分类 作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、粘性土和人工填土。、岩石应为颗粒间牢固联结,呈整体或具有节理裂隙的岩体。a、碎石土为粒径大于2mm的颗粒含量超过全重50%的土。b、砂土为粒径大于2mm的颗粒含量不超过全重50%、粒径大于0.075mm的颗粒超过全重50%的土。c、粘性土为塑性指数I p大于10的土。d、粉土为介于砂土与粘性土之间,塑性指数I p≤10且粒径大于0.075mm的颗粒含量不超过全重50%的土。e、人工填土根据其组成和成因,可分为素填土、压实填土、杂填土、冲填土。 二、地基中的应力计算,何谓基底压力,地基反力,基底附加压力,土中附加应力。 1、地下水位的升降对土自重应力有何影响? 地下水位升降会引起土体中有效应力的变化,从而会影响土的变形。由有效

水力学的实验报告

水力学的实验报告 今天小编为大家收集资料整理回来了关于水力学实验报告,希望能够为大家带来帮助,希望大家会喜欢。 本学期我们进行了七周的水力学实验,从这些实验中我学到了很多。 例如,所有实验都是需要耐心地去测量一组一组的数据,还需要在实验后认真处理核对每一组数据。这些实验加强了我的动手能力,并且培养了我的独立思考能力。特别是在做实验报告时,因为在做数据处理时出现很多问题,如果不解决的话,将会很难的继续下去。 例如:数据处理时,遇到要进行数据获取,插入图表命令,这些就要求懂得excel 软件一些基本操作。通过这几次的实验,我不仅学会了如何正确使用实验仪器,还学习到了认真严肃的科研精神,并且激发了我学习新事物的兴趣,这些我个人觉得都是极为可贵的。 在实验开始之前,我认为最为重要的就是提前预习实验内容:包括实验仪器、实验原理、实验步骤以及实验分析总结。我认为这里面需要我们花费很多心思去思考体会,想出自己对什么有疑问,以便上课时向老师提问寻求解答。 以我们的电拟实验为例:当时我们做这个实验时反复做了很多遍,也向老师提出了一些疑问。在开始时,仪器需要校准。因为上下游电势差不是10V,仅仅这一点我们就搞了很长时间。最终我们得出的误差原因是因为电笔接触不好影响实验进行,所以我们更换了其他不可使用仪器的完好的电笔,实验才得以进行。其次,实验分析阶段是培养我们自己独立思考、分析问题和解决问题的能力的阶段。 我认为培养这种能力的前题是你对每次实验的态度。如果我们每次对待实验都是随随便便的态度,抱着等老师教你怎么做,拿同学的报告去抄,必然会导致我们对待实验过程的懈怠。尽管可能也会的到好的成绩,但这对将来工作态度的养成是极为不利的。 最后,也是最为重要的就是关于实验的思考问题:哪些实验仪器能改进,哪些数据需要重新获取等都是我们要考虑的。像堰流实验,以为我们分析的实验误差很

水力学实验1-参考答案

水力学实验 参考答案 静水压强实验 1.同一静止液体内的测压管水头线是根什么线? 测压管水头指p z +,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面内的测压管水头线是一根水平线。 2.当0?B p 时,试根据记录数据,确定水箱内的真空区域。 0?B p ,相应容器的真空区域包括以下三个部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占区域,均为真空区域。 (2)同理,过箱顶小不杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区域。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定0γ。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h 和0h ,由式00h h w w γγ= ,从而求得0γ。 4.如测压管太细,对于测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 γ θσd h cos 4= 式中,σ为表面张力系数;γ为液体容量;d 为测压管的内径;h 为毛细升高。常温的水,

m N 073.0=σ,30098.0m N =γ。水与玻璃的浸润角θ很小,可以认为0.1cos =θ。于是有 d h 7.29= (h 、d 均以mm 计) 一般来说,当玻璃测压管的内径大于10mm 时,毛细影响可略而不计。另外,当水质不洁时,σ减小,毛细高度亦较净水小;当采用有机下班玻璃作测压管时,浸润角θ较大,其h 较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C 点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具有下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),相对管5和水箱中的液体而言,该水平面不是水平面。 6、用该实验装置能演示变液位下的恒定水流吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由C 进入水箱。这时阀门的出流就是变液位下的恒定水流。因为由观察可知,测压管1的液面始终与C 点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称这为马利奥特容器的变液位下恒定流。

水力学实验报告思考题答案(想你所要)

水力学实验报告思考题答案(想你所要)

实验二不可压缩流体恒定流能量方程(伯诺利方程)实验 果分析及讨论 压管水头线和总水头线的变化趋势有何不同?为什么? 测压管水头线(P-P)沿程可升可降,线坡J P可正可负。而总水头线(E-E)沿程只降不升,线坡J恒为正,即J>水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测降低,Jp>0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,J P<0。而据能量方程E1=E2+h w 失能量,是不可逆的,即恒有h w1-2>0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。 量增加,测压管水头线有何变化?为什么? 下二个变化: 流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水头,任一 的总水头E及管道过流断面面积A为定值时,Q增大,就增大,则必减小。而且随流量的增加阻力损失亦 任一过水断面上的总水头E相应减小,故的减小更加显著。 测压管水头线(P-P)的起落变化更为显著。 对于两个不同直径的相应过水断面有 为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)化就更为显著。 点2、3和测点10、11的测压管读数分别说明了什么问题? 测点2、3位于均匀流断面(图2.2),测点高差0.7cm,H P=均为37.1cm(偶有毛细影响相差0.1mm),表明均 上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水头差为7.3cm,表明急变流断性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。 问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的 几点措施有利于避免喉管(测点7)处真空的形成: 减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。 显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降往往就可完全避免真空。例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位比压能p/γ得以增大(Z),从而可能避免点7处的真空。至于措施(4)其增压效果是有条件的,现分析如下:

高等土力学读书报告第二章

第二章 土的本构关系 2.1 概述 材料的本构关系是反映材料的力学性状的数学表达式,表示形式一般为应力-应变-时间关系。与时间有关的土的本构关系主要是指反映土流变性的理论,本章介绍的主要是与时间无关的本构关系。 土力学的基本理论有土的莫尔-库伦强度理论、有效应力原理和饱和粘土的一维固结理论。但人们总是在实际中将问题分类为变形问题和稳定问题,前者一般基于弹性理论计算,后者多用刚塑性或理想塑性的理论(如极限平衡分析)。 多年来本构关系已经得到很大的发展,进而推动了岩土数值计算的发展和土工试验的发展。下文将对土的本构关系进行详细论述。 2.2应力和应变 1、应力 (1)应力分量与应力张量 设土体中的一点为M (x,y,z )的应力状态用通过该点的微小立方体上的应力分量表示。即: []?= ???? ? ????????z zy zx yz y yx xz xy x ττττττ=???????????????????333231232221131211亦即{σ}T ={zx yz xy z y x τ ττ???}。 土力学中正应力正方向规定压为正。剪应力,在正面(外法向与坐标轴一致的面),剪应力与坐标轴方向相反为正;在负面(外法向与坐标轴方向相反),剪应力与坐标轴方向一致为正。 (2)应力张量的坐标变换 二阶张量 ij ?在任一新坐标系下的分量 [ [j i ?应满足:[[j i ?=kl l j k i ?[[αα,其中l j k i [[αα与为新坐标系 轴与老坐标系轴夹角的余弦。 (3)应力张量的主应力和应力不变量 在过一点的斜截面上,如果只有法向应力而无剪应力时,这个斜截面就是主应力面。 第一应力不变量:kk z y x I σσσσ=++=1 第二应力不变量: 2 222zx yz xy x z z y y x I τττσσσσσσ---++=

水力学实验总结报告

水力学实验总结报告 经过八个星期的学习与实验,我学到了很多相关的知识,也对水力学实验部分有了自认为较为清醒的体会与感悟。 因为之前有做过大学物理实验,明白在实验过程的注意事项和实验结束后的数据处理在实验的整个过程尤为重要,于是在水力学实验开课之前我仔细阅读了水力学实验课本第^一章和第十二章关于测量误差及精度分析与实验数据的处理的内容,从中学到了很多需要在实验时与实验后处理时特别注意的方面,这对我后续所有实验的进行起了很好的指导作用。 在每一次实验前,老师都会向我们讲解实验的大概原理与操作步骤,因为有两个班和很多组的关系,老师的讲解我们也不是能听的很清楚,这就要求我们在实验准备阶段仔细的弄清实验原理与可能得出的实验结果,以便我们在做实验的过程中及时判断实验数据的准确性,从而避免因错误的实验操作导致的错误结果。当然在这一部分我们做的相对并不是很好,有时甚至在上课 前并未对实验原理及过程进行很好的预习。在做实验的过程中,我们不能简单的按照实验步骤来操作,在实验的过程中应仔细分析每一次得出的结果(当然,太固执与每一次的结果是无益的。),及时验算并发现错误,以便后续实验步骤的进行。 实验中要注意的事项有很多,一个小小的疏忽就很有可能导致整个实验的失败。我们也吃了这方面的亏,做第一个实验静水

压强实验时没有很好的理解装置的原理与应该特别注意的细节, 得出来的实验结果也不是特别的令人满意,在后续处理数据的时 候发现有一个实验结果得出的误差很大,效果很不好。开始时我 们打算舍弃所有的数据等到第二周重做,可是后来我们在分析思考题时发现在用实验数据来计算油的密度来验算结果时,有一项 结果是具有前后联系的,因而它的变化范围也是具有一定区间的,所以我们发现实验的误差来源于我们数据读数的估读位的误差,然后我们将这一数据的估读位做了一小幅度的调整,得出的 结果便相对十分准确了。从中我们便明白了一个实验并不是说实验结束了,数据处理完了,它就结束了,相反,在一个实验结束后对它的结果的思考与理解却是整个实验中最关键的一环。 而对于我来说,对一个实验最好的理解无益于在处理实验数据的时候了,有时候通过对计算公式的理解,对结果的分析,对思考题的解读,确实促进了我对水力学每一相关部分的认识。相对于以前需要无数次死记硬背的部分,难以理解的公式,通过对 水力学实验这一阶段的学习,我发现再去理解与记忆他们变得容易多了,这确实是一份难得的收获与体会。 当然,在处理实验数据与得出结果的过程中,也并不总是一 帆风顺的,我们也遇到了很多难题,最让我印象深刻的是水电比拟实验中流网的绘制与计算。因为实验时仪器总是并不能满足中线附近不能满足电压等于5V的缘故,我们5V的等势线偏向左边0.9厘米左右,这就造成了我们的等势线的左右不对称,给我们

高等土力学读书报告

高等土力学读书报告 张文川220132524 指导老师:缪林昌教授摘要:《土工原理》是土力学专著,系统地总结和介绍了国内外在土力学重要领域内的理论发展,重在阐述原理。内容包括土的组成和基本性质,土的压缩性与沉降计算,土的强度,土体渗流原理与计算,土的三向变形与本构模型,有限单元法在土工中的应用,土的固结理论,土体的流变理论,土坡的稳定性,砂土液化与地震永久变形,城市环境岩土工程,地基承载力。 1、土的应力应变关系的特征及其影响因素:非线性、弹塑性、剪胀性、(各向异性、结构性、流变性);应力水平、应力路径、应力历史。 2、邓肯—张模型分析总结:应变仅由偏应力贡献,球应力没有贡献。优点:①能反映土体变形的主要特征,非线性、应力历史、应力路径;②简单,容易为工程接受;③模型参数容易确定,积累了丰富的确定模型的经验。缺点:不能反映土体变形的剪胀性、软化、各向异性和结构性。 3、剑桥模型的试验基础和基本假设:①试验基础:正常固结土和弱超固结土试验基础上建立②基本假设:帽子屈服面,相适应的流动规则,以塑性体应变为硬化参数(加工硬化定律)。只要有三个试验场数:各向等压固结系数λ,回弹系数k,破坏常数m。 4、土的强度的三个特点:由于土的碎散性、多相性造成土①强度主要由颗粒相互作用力决定,土的破坏主要是剪切破坏,其强度主要表现为粘聚力和摩擦力;②研究时要考虑孔隙水压力、吸力等土特有的影响强度的因素;③土的地质历史造成土强度强烈的多变性、结构性和各向异性。 5、屈服与破坏的关系:对于刚弹性体和弹性—理想塑性体屈服即意味着破坏,对于增量弹性模量屈服和破坏并不是同一概念。土的屈服与强度与人们选择的理论模型有关,土体破坏与边值问题的具体边界有关。 6、影响土的抗剪强度的因素:①内部因素:土的组成(如矿物成分、颗粒大小、级配、含水量等)、土的状态(如密度、孔隙比)、土的结构(如絮凝结构);②外部因素:温度、应力应变因素(如围压、中主应力)、应力历史、主应力方向、加载速率、排水条件等。 7、一维渗流固结理论的基本假定:①土层是均质的、完全饱和的;②土粒与水均为不可压缩介质;③外荷载一次性瞬时施加到土体上,在固结过程中保持不变;④土体他应力与应变之间存在线性关系,压缩系数为常数;⑤在外力作用下,土体中只引起上下方向的渗流与压缩;⑥土中水的渗流服从达西定律,渗透系数保持不变;⑦土体变形完全是由孔隙水排出和超静水压力消散所引起的。 8、 Biot理论与准三维固结理论比较:①二者建立方程的依据基本一致:小变形、线弹性、渗流符合达西定律,但准三维固结理论假设法向总应力随时间不变,而Biot理论不作此假定;②Biot理论考虑土骨架变形孔压的影响,即位移与孔压相互耦合,而准三维固结理论对土体变形和孔 压消散分别加以计算,其直接后果是后者无法解释Mandel-Cryer效应。 9、常规三轴试验的优缺点:①近似单元体试验,试样内στ、相对对均匀;②σ状态和路径明确;③排水条件清楚,可控制;④破坏面非人为固定;⑤操作复杂,现场无法试验;⑥不能反映2σ的影响;⑦边界条件、膜嵌入的影响。 10、割线模型与切线模型的比较:①割线模型考虑了应力应变全量关系,能反映土变形的非线性及应力水平的影响,可用于应变软化阶段。但理论不严密,不能保证解的唯一性;②切线模型为分段线性化的增量形式的胡克定律,能反映土变形全过程。 11、在直剪、単剪、环剪试验中,试样的应力和应变的特点:①直剪:破坏面人为确定,应力和应变不均匀且十分复杂,试样内各点应力状态及应力路径不同。在初始状态,剪切面土单元与试样中其他单元一样是K0应力状态,即3001vKKσσσ==。在剪切破坏时,剪切面附近土单元主应力大小和方向决定与强度包线;②単剪:试样内所施加的应力被认为是纯剪,加载过程中竖直应力vσ和水平应力hσ保持常数,()vhhv ττ不断增加。应力莫尔圆圆心不变,其直径逐渐扩大,直至与强度包线相切;③剪切面的总面积不变。

相关主题