搜档网
当前位置:搜档网 › 基于单片机的温度控制外文文献及中文翻译

基于单片机的温度控制外文文献及中文翻译

基于单片机的温度控制外文文献及中文翻译
基于单片机的温度控制外文文献及中文翻译

Temperature Control Using a Microcontroller: An Interdisciplinary Undergraduate Engineering Design Project

James S. McDonald

Department of Engineering Science

Trinity University

San Antonio, TX 78212

Abstract:This paper describes an interdisciplinary design project which was done under the author’s supervision by a group of four senior students in the Department of Engineering Science at Trinity University. The objective of the project was to develop a temperature control system for an air-filled chamber. The system was to allow entry of a desired chamber temperature in a prescribed range and to exhibit overshoot and steady-state temperature error of less than 1 degree Kelvin in the actual chamber temperature step response. The details of the design developed by this group of students, based on a Motorola MC68HC05 family microcontroller, are described. The pedagogical value of the problem is also discussed through a description of some of the key steps in the design process. It is shown that the solution requires broad knowledge drawn from several engineering disciplines including electrical, mechanical, and control systems engineering.

1 Introduction

The design project which is the subject of this paper originated from a real-world application.

A prototype of a microscope slide dryer had been developed around an OmegaTM model

CN-390 temperature controller, and the objective was to develop a custom temperature control system to replace the Omega system. The motivation was that a custom controller targeted specifically for the application should be able to achieve the same functionality at a much lower cost, as the Omega system is unnecessarily versatile and equipped to handle a wide variety of applications.

The mechanical layout of the slide dryer prototype is shown in Figure 1. The main element of the dryer is a large, insulated, air-filled chamber in which microscope slides, each with a tissue sample encased in paraffin, can be set on caddies. In order that the paraffin maintain the proper consistency, the temperature in the slide chamber must be maintained at a desired (constant) temperature. A second chamber (the electronics enclosure) houses a resistive heater and the temperature controller, and a fan mounted on the end of the dryer blows air across the heater, carrying heat into the slide chamber. This design project was carried out during academic year 1996–97 by four students under the author’s supervision as a Senior Design project in the Department of Engineering Science at Trinity University. The purpose of this paper is

to describe the problem and the students’ solution in some detail, and to discuss some of the pedagogical opportunities offered by an interdisciplinary design project of this type. The students’ own report was presented at the 1997 Nat ional Conference on Undergraduate Research [1]. Section 2 gives a more detailed statement of the problem, including performance specifications, and Section 3 describes the students’ design. Section 4 makes up the bulk of the paper, and discusses in some detail several aspects of the design process which offer unique pedagogical opportunities. Finally, Section 5 offers some conclusions.

2 Problem Statement

The basic idea of the project is to replace the relevant parts of the functionality of an Omega CN-390 temperature controller using a custom-designed system. The application dictates that temperature settings are usually kept constant for long periods of time, but it’s nonetheless important that step changes be tracked in a “reasonable” manner. Thus the mai n requirements boil down to

·allowing a chamber temperature set-point to be entered,

·displaying both set-point and actual temperatures, and

·tracking step changes in set-point temperature with acceptable rise time, steady-state error, and overshoot.

Although not explicitly a part of the specifications in Table 1, it was clear that the customer desired digital displays of set-point and actual temperatures, and that set-point temperature entry should be digital as well (as opposed to, say, through a potentiometer setting).

3 System Design

The requirements for digital temperature displays and setpoint entry alone are enough to dictate that a microcontrollerbased design is likely the most appropriate. Figure 2 shows a block diagram of the students’ design.

The microcontroller, a MotorolaMC68HC705B16 (6805 for short), is the heart of the system. It accepts inputs from a simple four-key keypad which allow specification of the set-point temperature, and it displays both set-point and measured chamber temperatures using two-digit seven-segment LED displays controlled by a display driver. All these inputs and outputs are accommodated by parallel ports on the 6805. Chamber temperature is sensed using a

pre-calibrated thermistor and input via one of the 6805’s an alog-to-digital inputs. Finally, a pulse-width modulation (PWM) output on the 6805 is used to drive a relay which switches line power to the resistive heater off and on.

Figure 3 shows a more detailed schematic of the electronics and their interfacing to the 6805. The keypad, a Storm 3K041103, has four keys which are interfaced to pins PA0{ PA3 of Port A, configured as inputs. One key functions as a mode switch. Two modes are supported: set mode and run mode. In set mode two of the other keys are used to specify the set-point temperature: one increments it and one decrements. The fourth key is unused at present. The LED displays are driven by a Harris Semiconductor ICM7212 display driver interfaced to pins PB0{PB6 of Port B, configured as outputs. The temperature-sensing thermistor drives, through a voltage divider, pin AN0 (one of eight analog inputs). Finally, pin PLMA (one of two PWM outputs) drives the heater relay.

Software on the 6805 implements the temperature control algorithm, maintains the temperature displays, and alters the set-point in response to keypad inputs. Because it is not complete at this writing, software will not be discussed in detail in this paper. The control algorithm in particular has not been determined, but it is likely to be a simple proportional controller and certainly not more complex than a PID. Some control design issues will be discussed in Section 4, however.

4 The Design Process

Although essentially the project is just to build a thermostat, it presents many nice pedagogical opportunities. The knowledge and experience base of a senior engineering undergraduate are just enough to bring him or her to the brink of a solution to various aspects of the problem. Yet, in each case, realworld considerations complicate the situation significantly.

Fortunately these complications are not insurmountable, and the result is a very beneficial design experience. The remainder of this section looks at a few aspects of the problem which present the type of learning opportunity just described. Section 4.1 discusses some of the features

of a simplified mathematical model of the thermal properties of the system and how it can be

easily validated experimentally. Section 4.2 describes how realistic control algorithm designs can be arrived at using introductory concepts in control design. Section 4.3 points out some important deficiencies of such a simplified modeling/control design process and how they can be overcome through simulation. Finally, Section 4.4 gives an overview of some of the microcontroller-related design issues which arise and learning opportunities offered.

4.1 MathematicalModel

Lumped-element thermal systems are described in almost any introductory linear control systems text, and just this sort of model is applicable to the slide dryer problem. Figure 4 shows a second-order lumped-element thermal model of the slide dryer. The state variables are the temperatures Ta of the air in the box and Tb of the box itself. The inputs to the system are the power output q(t) of the heater and the ambient temperature T¥. ma and mb are the masses of the air and the box, respectively, and Ca and Cb their specific heats. μ1 and μ2 are heat transfer coefficients from the air to the box and from the box to the external world, respectively.

It’s not hard to show that the (linearized) state equationscorresponding to Figure 4 are

Taking Laplace transforms of (1) and (2) and solving for Ta(s), which is the output of interest, gives the following open-loop model of the thermal system:

where K is a constant and D(s) is a second-order polynomial.K, tz, and the coefficients of

D(s) are functions of the variousparameters appearing in (1) and (2).Of course the various parameters in (1) and (2) are completely unknown, but it’s not hard to show that, reg ardless of their values, D(s) has two real zeros. Therefore the main transfer function of interest (which is

the one from Q(s), since we’ll assume constant ambient temperature) can be written

Moreover, it’s not too hard to show that 1=tp1 <1=tz <1=tp2, i.e., that the zero lies between the two poles. Both of these are excellent exercises for the student, and the result is the openloop pole-zero diagram of Figure 5.

Obtaining a complete thermal model, then, is reduced to identifying the constant K and the three unknown time constants in (3). Four unknown parameters is quite a few, but simple experiments show that 1=tp1 _ 1=tz;1=tp2 so that tz;tp2 _ 0 are good approximations. Thus the open-loop system is essentially first-order and can therefore be written

(where the subscript p1 has been dropped).

Simple open-loop step response experiments show that,for a wide range of initial temperatures and heat inputs, K _0:14 _=W and t _ 295 s.1

4.2 Control System Design

Using the first-order model of (4) for the open-loop transfer function Gaq(s) and assuming for the moment that linear control of the heater power output q(t) is possible, the block diagram of Figure 6 represents the closed-loop system. Td(s) is the desired, or set-point, temperature,C(s) is the compensator transfer function, and Q(s) is the heater output in watts.

Given this simple situation, introductory linear control design tools such as the root locus method can be used to arrive at a C(s) which meets the step response requirements on rise time, steady-state error, and overshoot specified in Table 1. The upshot, of course, is that a proportional controller with sufficient gain can meet all specifications. Overshoot is impossible, and increasing gains decreases both steady-state error and rise time.

Unfortunately, sufficient gain to meet the specifications may require larger heat outputs than the heater is capable of producing. This was indeed the case for this system, and the result is that the rise time specification cannot be met. It is quite revealing to the student how useful such an oversimplified model, carefully arrived at, can be in determining overall performance limitations.

4.3 Simulation Model

Gross performance and its limitations can be determined using the simplified model of Figure 6, but there are a number of other aspects of the closed-loop system whose effects on performance are not so simply modeled. Chief among these are

·quantization error in analog-to-digital conversion of the measured temperature and

· the use of PWM to control the heater.

Both of these are nonlinear and time-varying effects, and the only practical way to study them is through simulation (or experiment, of course).

Figure 7 shows a SimulinkTM block diagram of the closed-loop system which incorporates these effects. A/D converter quantization and saturation are modeled using standard Simulink quantizer and saturation blocks. Modeling PWM is more complicated and requires a custom

S-function to represent it.

This simulation model has proven particularly useful in gauging the effects of varying the

basic PWM parameters and hence selecting them appropriately. (I.e., the longer the period, the larger the temperature error PWM introduces. On the other hand, a long period is desirable to avoid excessive relay “chatter,” among other things.) PWM is often difficult for students to grasp, and the simulation model allows an exploration of its operation and effects which is quite revealing.

4.4 The Microcontroller

Simple closed-loop control, keypad reading, and display control are some of the classic applications of microcontrollers, and this project incorporates all three. It is therefore an excellent all-around exercise in microcontroller applications. In addition, because the project is

to produce an actual packaged pro totype, it won’t do to use a simple evaluation board with the

I/O pins jumpered to the target system. Instead, it’s necessary to develop a complete embedded application. This entails the choice of an appropriate part from the broad range offered in a typical microcontroller family and learning to use a fairly sophisticated development environment. Finally, a custom printed-circuit board for the microcontroller and peripherals must be designed and fabricated.

Microcontroller Selection. In view of existing local expertise, the Motorola line of microcontrollers was chosen for this project. Still, this does not narrow the choice down much. A fairly disciplined study of system requirements is necessary to specify which microcontroller, out of scores of variants, is required for the job. This is difficult for students, as they generally lack the experience and intuition needed as well as the perseverance to wade through manufacturers’ selection guides.

Part of the problem is in choosing methods for interfacing the various peripherals (e.g., what kind of display driver should be used?). A study of relevant Motorola application notes [2, 3, 4] proved very helpful in understandingwhat basic approaches are available, and what microcontroller/peripheral combinations should be considered.

The MC68HC705B16 was finally chosen on the basis of its availableA/D inputs and PWMoutputs as well as 24 digital I/O lines. In retrospect this is probably overkill, as only one

A/D channel, one PWM channel, and 11 I/O pins are actually required (see Figure 3). The decision was made to err on the safe side because a complete development system specific to the chosen part was necessary, and the project budget did not permit a second such system to be purchased should the first

prove inadequate.

Microcontroller Application Development. Breadboarding of the peripheral hardware, development of microcontroller software, and final debugging and testing of a custom

printed-circuit board for the microcontroller and peripherals all require a development environment of some kind. The choice of a development environment, like that of the

microcontroller itself, can be bewildering and requires some faculty expertise. Motorola makes three grades of development environment ranging from simple evaluation boards (at around $100) to full-blown real-time in-circuit emulators (at more like $7500). The middle option was chosen for this project: the MMEVS, which consists of _ a platform board (which supports all 6805-family parts), _ an emulator module (specific to B-series parts), and _ a cable and target head adapter (package-specific). Overall, the system costs about $900 and provides, with some limitations, in-circuit emulation capability. It also comes with the simple but sufficient software development environment RAPID [5].

Students find learning to use this type of system challenging, but the experience they gain in real-world microcontroller application development greatly exceeds the typical first-course experience using simple evaluation boards.

Printed-Circuit Board. The layout of a simple (though definitely not trivial) printed-circuit board is another practical learning opportunity presented by this project. The final board layout, with package outlines, is shown (at 50% of actual size) in Figure 8. The relative simplicity of the circuit makes manual placement and routing practical—in fact, it likely gives better results than automatic in an application like this—and the student is therefore exposed to fundamental issues of printed-circuit layout and basic design rules. The layout software used was the very nice package pcb,2 and the board was fabricated in-house with the aid of our staff electronics technician.

中文翻译:

单片机温度控制:

一个跨学科的本科生工程设计项目

JamesS.McDonald

工程科学系三一大学德克萨斯州

圣安东尼奥市78212

摘要:本文所描述的是作者领导由四个三一大学高年级学生组成的团队进行的一个跨学科工程项目的设计。该项目的目标是设计一个气室内温度控制系统。该系统的要求是:当实际气室的温度阶跃响应时,规定范围内的温度进入气室后,稳定时的温度误差和超调量必须少于一个绝对温度。本组学生开发设计是基于摩托罗拉MC68HC05系列单片机。该问题的教学价值也通过某些步骤的关键描述在本文说明。研究结果表明,解决该方案需要具有广泛的工程学科知识,包括相关电子、机械和控制系统工程的知识。

1 引言

该设计项目来自一个实际应用问题,一个关于显微镜载玻片干燥剂温控器——欧米茄CN-390温度控制器,而这个设计的目标是研发一个自定义的通用温度控制系统取代欧米茄系统、一个以更低的成本实现相同功能的自定义控制器,就像欧米茄系统一样,并不需要能够全方位的处理各种问题。

该载玻片干燥机的机械布局如图1所示。干燥机的主体是一个足够大的绝缘充气室,里面依次存放着薄纸包着的石蜡。为了使石蜡保持适当稳定性,载玻片气室的温度必须维持稳定。第二个气筒(电子围绕元件)设有一个电阻加热器、一个温度控制器以及一个安装在干燥机上的风扇,是为了把风吹过加热器,把热量带到载玻片气室。

图1-1 载玻片干燥机的机械布局

自1996-97学年来,本文作者带领四位三一大学工程科学系的高年级学生开展此项目

的研究。本文的目的说明了提出一些问题并详细阐述学生的一些解决方案,而且讨论了这种类型的跨学科设计项目在教学方面应用的问题。这份学生报告曾经在1997年全国本科毕业生研讨会上提出过并讨论过。第2节给出该设计的更多详细情况,包括性能规格。第3节具体学生的设计。第4节是论文的主体,讨论该设计在教学应用方面的实施问题。最后,第5节全文总结。

2 问题阐述

该项目基本的思想是设计一个自定义温度控制系统来取代相关的欧米茄CN-390温度控制器。温度时通常保持在一个稳定的常数,但重要的是阶跃变化可以被“合理”的跟踪。因此主要要求如下:

·可以对空气室的温度进行设定,

·同时显示设定值和实际温度,

·以及在设定温度值情况下,可接受范围内的跟踪阶跃变化,稳态误差,超调量。

设定温度接口

设定温度显示

室内温度显示

范围精度准确度60-99 1°C ±1°C

室内温度阶梯响应

范围(稳定状态)

精度(稳定状态)

最大超调

设定时间(到±1°)60-99 ±1°C 1°C 120s

表1 精确的规格说明

尽管表1部分说明并不明确,但是它清楚的反映了人们对数字显示器在设定值和实际温度的要求和温度应该通过数值输入来设定(而不是,通过电位器设置)。

3.系统设计

根据微控设计,数字温度显示和单点输入的要求可能是最合适的。图2为学生的设计框图。

图2-2 温度控制器硬件结构图

摩托罗拉MC68HC705B16(简称6805),是系统的核心。它通过一个简单的4键小键盘对温度进行设定,同时使用两个显示驱动控制7段LED数码管来显示定值和气室温度的测量值。所有这些,输入和输出信号与6805的并行口相连。气室的温度值使用预校准热敏电阻测量,并通过6805的数模转换输入。最后,6085的脉冲宽度调制(PWM)输出用来驱动一个继电器,以控制线性电阻加热器的闭合和断开。

图3更详细的显示了6805的接口和电子器件。使用暴风3K041103型号四键键盘,通过PA0-PA3端口进行数据输入。其中一个重要的功能是进行模式切换。两种模式:固定模式和运行模式。在固定模式下,其他两个键用于设定温度,一个增加,一个减少,第四个按键暂无作用。LED显示屏由哈里斯半导体ICM7212进行驱动,通过PB0-PB6端口与芯片相连,作为输出。热敏电阻由电压分频器驱动,通过AN0针脚(八个模拟输入端口中的一个)相连。最后,PLMA针脚(两个PWM输出端口中的一个)驱动加热继电器。

图2-3 单片机原理图

图3单片机原理图是关于用软件实现温度控制算法、保持温度显示以及改变键盘输入响应,这将不会在本文详细讨论,因为这并不是本文的重点,也没有编译完成。软件部分还没有确定控制算法,但很可能是一个简单的比例控制,比PID算法简单。一些控制设计的问题将在第四节讨论。

4设计过程

虽然该项目的本质是建立一个恒温器,但它有许多很好的契机可以供教学借鉴。高级工程本科教育的知识只是能够让学生们具有解决问题的能力。然而,很多情况下,实际情况却和理论有些不同。不过,这些不是问题,参与这个项目的设计,将获得很多设计方面的宝贵经验。本节的其余部分着眼于其他的几个方面:4.1节讨论系统的一些特征,简化系统热性能的数学模型,以及一些简单理论的证明。4.2节介绍确定实际控制算法。4.3节指出控制设计程序的一些不足,并通过模拟环境,指出怎样克服问题。4.4节给出单片机的一些设计相关概述,以及出现问题和值得借鉴之处。

4.1数学模型

集总元件热系统符合线性控制,适用于载玻片干燥机的问题。图4显示了二阶集总元件热量模型的载玻片干燥机。状态变量是温度,Ta是箱内空气的温度,Tb是箱子本身的温度。该系统输入功率等于q(t)的热量和环境温度T的和。ma,mb分别对应空气和箱子的质量。

Ca和Cb则分别是其对应热量。m1和m2分别是空气与箱子间以及箱子与外界间的传热系数。

图4-1 集总元件热模型

由图4可以推出(线性)状态方程

拉普拉斯变换(1)和(2)等式,并整理Ta(s)。有趣的是,可以推出一个开环的热系统方程。

其中K是一个常数,D(s)是一个二阶的多项式。K,tz,以及系数D(s)和在(1)和(2)等式中出现的系数功能相近。当然,在(1)和(2)等式中各种参数在未知的情况下,不难证明D(s)与其他参数的值无关,具有两个零点。因此传递函数可以写成(我们假设环境温度为常数)

此外,可以推出1/tp1<1/tz<1/tp2,即,零点在两极之间。开环零极点如图5所示。

图4-2 Gaq(s)的零极点

为了获取完整的热模型,从(3)式中除去常数K和3个未知的时间常数。四个未知参数并不少,但由简单的实验表明,1/tp1<<1/tz,1/tp2统基本上是一阶函数,且tz,tp2近似为0。因此,开环系可以写成:

(下标p1已经被去掉了)

过初始温度和热量值大范围内的设置,简单的开环阶跃响应实验结果表明,K≈0.14o/W,τ≈295S。

4.2 控制系统设计

使用(4)式的一阶开环传递函数Gaq(s),并且假定加热器的输出函数q(t)为线性,图6是系统框图代表闭环系统。Td(s)是设定温度的函数,C(s)是传递函数,Q(s)是热量输出,单位是瓦特。

图6简化的闭环系统框图鉴于这种简单情况,前面所指的线性控制设置,例如,根轨迹法设计法可以使C(s)中符合要求的阶跃响应对应的上升时间、稳态误差和超调量符合表格1所示。当然,一个有足够增益的比例控制器就可以满足各种要求。超调量改变是不可能既增加增益又减少稳态误差和上升时间的。不幸的是,如果要获得足够增益,需要生产

超过实际生产能力的大容量加热器。这是本系统的实际问题,将会致使上升时间不符合要求。这要求学生们如何利用这个经过仔细计算的简化模型,在整体性能上达到最佳控制。

4.3模型仿真

该设计的大部分性能和限制功能,应该可以使用图6简化模型来完成。但有一个数据对闭环系统其他方面的影响并非能够如此简单的仿真。其中最主要的是:·量化误差的模拟和数模转换,

·测量温度和使用PWM控制加热器。

这两种都是非线性的、时变的。所以唯一切实可行的方法就是通过仿真(或实验)加以研究。

图7Simulink仿真闭环系统框图显示了Simulink情况下的闭环系统框图,其中包括A/D转换和使用标准Simulink量化饱和块建立的饱和量化模型。建立PWM调制模型比较复杂,需要一个自定义的S函数来表示。

图4-3 仿真闭环系统框图

这种仿真模型已经被证明在衡量不同的PWM基本参数对设计的影响以及适当参数的选择中特别有用。(即时间越长,PWM调制会产生更多温度误差。另一方面,时间越长,继电器抖动机率越小。)PWM调制方法往往很难让学生掌握,并且仿真模型允许研究测试运行和明显的影响。

4.4单片机

简单的闭环控制、键盘输入和显示控制是经典单片机应用技术,这个设计项目包含上述三个方面。因此这是一个优秀的全面的单片机应用练习。

此外,由于该项目是来源于现实,它不会是一个简单的输入输出设计就能完成的。相反,这个项目需要制定一个完整的嵌入式应用。这需要从大量的单片机型号中选取适当的芯片并学着使用一个相当复杂的开发环境。最后,必须设计和选取印刷电路板和单片机,以及外接元件。

4.4.1单片机选择

从现有的实际经验来看,经常选用摩托罗拉公司的单片机。不过,芯片的选择不应该局限于此。研究表明,系统要求符合工作需求的单片机。这对学生很困难,因为他们缺乏良好的经验与判断能力,只能通过制造商的产品选择指南决定单片机的选择。部分问题是各种外围设备(例如,应该使用哪种显示驱动程序?)连接方法的选择。摩托罗拉的相关应用研究[2,3,4]中的证明是非常有用的,基本阐述了可实用性的连接方法以及单片机和外围连接的组合方式。在最终要求的基础上,选择MC68HC705B16,其现有A/D输入和PWM 输出以及24个数字I/O线。这样选择是有必要的,因为此项目需要一个A/D通道、一个PWM通道和11个I/O引脚(见图3)。该决定为了安全方面,因为选择一个完整的开发系统是有必要的,该项目预算中没有足够的资金再次购买元件。

4.4.2单片机应用开发

外围设备的电路硬件、软件的开发、最终调试、单片机的自定的印刷电路板和外设都需要某种形式的发展环境。

如同单片机本身,一个开发环境的选择是令人困惑并需要一些教师的专业知识。摩托罗拉三级发展环境,包括从简单的评估板(在约100美元)到全面的实时在线仿真器(在大约7500元)。中间选项被选为本项目的MMEVS,其中包括:

·平台板(支持所有6805-family部分),

·模拟器模块(具体到B系列部分),和

·电缆头和目标适配器(简明包装)。

总体而言,该系统的成本为900美元,并且在一定局限下,提供了在线仿真能力。它还配备了简单但足够的软件开发环境RAPID[5]。

学生发现学习使用这类系统的挑战。但他们在现实世界的微控制器应用获得的经验大大超过了第一使用典型的简单评估板的经验。

4.4.3印刷电路板

一个简单的(虽然布局绝对不平凡)印刷电路板是这个工程提供的另一个现实学习的机会。图8显示最后的板布局与包轮廓(50%实际大小)。相对简单的电路使手工安置和路由实践方面更实际,它有可能提供更好的结果比一个这样的应用程的自动性。学生因此接触到基本印刷电路布局问题和基本的设计规则。本排版软件使用的是非常漂亮的包装印刷电路板,板制作是在内部电子技术员的帮助下完成的。

图4-4 单片机印刷版布局

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

步进电机及单片机英文文献及翻译

外文文献: Knowledge of the stepper motor What is a stepper motor: Stepper motor is a kind of electrical pulses into angular displacement of the implementing agency. Popular little lesson: When the driver receives a step pulse signal, it will drive a stepper motor to set the direction of rotation at a fixed angle (and the step angle). You can control the number of pulses to control the angular displacement, so as to achieve accurate positioning purposes; the same time you can control the pulse frequency to control the motor rotation speed and acceleration, to achieve speed control purposes. What kinds of stepper motor sub-: In three stepper motors: permanent magnet (PM), reactive (VR) and hybrid (HB) permanent magnet stepper usually two-phase, torque, and smaller, step angle of 7.5 degrees or the general 15 degrees; reaction step is generally three-phase, can achieve high torque output, step angle of 1.5 degrees is generally, but the noise and vibration are large. 80 countries in Europe and America have been eliminated; hybrid stepper is a mix of permanent magnet and reactive advantages. It consists of two phases and the five-phase: two-phase step angle of 1.8 degrees while the general five-phase step angle of 0.72 degrees generally. The most widely used Stepper Motor. What is to keep the torque (HOLDING TORQUE) How much precision stepper motor? Whether the cumulative: The general accuracy of the stepper motor step angle of 3-5%, and not cumulative.

关于力的外文文献翻译、中英文翻译、外文翻译

五、外文资料翻译 Stress and Strain 1.Introduction to Mechanics of Materials Mechanics of materials is a branch of applied mechanics that deals with the behavior of solid bodies subjected to various types of loading. It is a field of study that i s known by a variety of names, including “strength of materials” and “mechanics of deformable bodies”. The solid bodies considered in this book include axially-loaded bars, shafts, beams, and columns, as well as structures that are assemblies of these components. Usually the objective of our analysis will be the determination of the stresses, strains, and deformations produced by the loads; if these quantities can be found for all values of load up to the failure load, then we will have obtained a complete picture of the mechanics behavior of the body. Theoretical analyses and experimental results have equally important roles in the study of mechanics of materials . On many occasion we will make logical derivations to obtain formulas and equations for predicting mechanics behavior, but at the same time we must recognize that these formulas cannot be used in a realistic way unless certain properties of the been made in the laboratory. Also , many problems of importance in engineering cannot be handled efficiently by theoretical means, and experimental measurements become a practical necessity. The historical development of mechanics of materials is a fascinating blend of both theory and experiment, with experiments pointing the way to useful results in some instances and with theory doing so in others①. Such famous men as Leonardo da Vinci(1452-1519) and Galileo Galilei (1564-1642) made experiments to adequate to determine the strength of wires , bars , and beams , although they did not develop any adequate theo ries (by today’s standards ) to explain their test results . By contrast , the famous mathematician Leonhard Euler(1707-1783) developed the mathematical theory any of columns and calculated the critical load of a column in 1744 , long before any experimental evidence existed to show the significance of his results ②. Thus , Euler’s theoretical results remained unused for many years, although today they form the basis of column theory. The importance of combining theoretical derivations with experimentally determined properties of materials will be evident theoretical derivations with experimentally determined properties of materials will be evident as we proceed with

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

单片机方面毕业设计外文文献翻译

单片机方面毕业设计外文文献翻译

中文译文 单片机 单片机也被称为微控制器(Microcontroller Unit),常见英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是经过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL 的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,而且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。当前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和

使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至能够直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不但远超过PC机和其它计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。 单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元即可......用它来做一些控制电器一类不

10kV小区供配电英文文献及中文翻译

在广州甚至广东的住宅小区电气设计中,一般都会涉及到小区的高低压供配电系统的设计.如10kV高压配电系统图,低压配电系统图等等图纸一大堆.然而在真正实施过程中,供电部门(尤其是供电公司指定的所谓电力设计小公司)根本将这些图纸作为一回事,按其电脑里原有的电子档图纸将数据稍作改动以及断路器按其所好换个厂家名称便美其名曰设计(可笑不?),拿出来的图纸根本无法满足电气设计的设计意图,致使严重存在以下问题:(也不知道是职业道德问题还是根本一窍不通) 1.跟原设计的电气系统货不对板,存在与低压开关柜后出线回路严重冲突,对实际施工造成严重阻碍,经常要求设计单位改动原有电气系统图才能满足它的要求(垄断的没话说). 2.对消防负荷和非消防负荷的供电(主要在高层建筑里)应严格分回路(从母线段)都不清楚,将消防负荷和非消防负荷按一个回路出线(尤其是将电梯和消防电梯,地下室的动力合在一起等等,有的甚至将楼顶消防风机和梯间照明合在一个回路,以一个表计量). 3.系统接地保护接地型式由原设计的TN-S系统竟曲解成"TN-S-C-S"系统(室内的还需要做TN-C,好玩吧?),严格的按照所谓的"三相四线制"再做重复接地来实施,导致后续施工中存在重复浪费资源以及安全隐患等等问题.. ............................(违反建筑电气设计规范等等问题实在不好意思一一例举,给那帮人留点混饭吃的面子算了) 总之吧,在通过图纸审查后的电气设计图纸在这帮人的眼里根本不知何物,经常是完工后的高低压供配电系统已是面目全非了,能有百分之五十的保留已经是谢天谢地了. 所以.我觉得:住宅建筑电气设计,让供电部门走!大不了留点位置,让他供几个必需回路的电,爱怎么折腾让他自个怎么折腾去.. Guangzhou, Guangdong, even in the electrical design of residential quarters, generally involving high-low cell power supply system design. 10kV power distribution systems, such as maps, drawings, etc. low-voltage distribution system map a lot. But in the real implementation of the process, the power sector (especially the so-called power supply design company appointed a small company) did these drawings for one thing, according to computer drawings of the original electronic file data to make a little change, and circuit breakers by their the name of another manufacturer will be sounding good design (ridiculously?), drawing out the design simply can not meet the electrical design intent, resulting in a serious following problems: (do not know or not know nothing about ethical issues) 1. With the original design of the electrical system not meeting board, the existence and low voltage switchgear circuit after qualifying serious conflicts seriously hinder the actual construction, often require changes to the original design unit plans to meet its electrical system requirements (monopoly impress ). 2. On the fire load and fire load of non-supply (mainly in high-rise building in) should be strictly sub-loop (from the bus segment) are not clear, the fire load and fire load of non-qualifying press of a circuit (especially the elevator and fire elevator, basement, etc.

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

at89c52单片机中英文资料对照外文翻译文献综述

at89c52单片机简介 中英文资料对照外文翻译文献综述 A T89C52 Single-chip microprocessor introduction Selection of Single-chip microprocessor 1. Development of Single-chip microprocessor The main component part of Single-chip microprocessor as a result of by such centralize to be living to obtain on the chip,In immediate future middle processor CPU。Storage RAM immediately﹑memoy read ROM﹑Interrupt system、Timer /'s counter along with I/O's rim electric circuit awaits the main microcomputer section,The lumping is living on the chip。Although the Single-chip microprocessor r is only a chip,Yet through makes up and the meritorous service be able to on sees,It had haveed the calculating machine system property,calling it for this reason act as Single-chip microprocessor r minisize calculating machine SCMS and abbreviate the Single-chip microprocessor。 1976Year the Inter corporation put out 8 MCS-48Set Single-chip microprocessor computer,After being living more than 20 years time in development that obtain continuously and wide-ranging application。1980Year that corporation put out high performance MCS -51Set Single-chip microprocessor。This type of Single-chip microprocessor meritorous service capacity、The addressing range wholly than early phase lift somewhat,Use also comparatively far more at the moment。1982Year that corporation put out the taller 16 Single-chip microprocessor MCS of performance once

英文论文及中文翻译

International Journal of Minerals, Metallurgy and Materials Volume 17, Number 4, August 2010, Page 500 DOI: 10.1007/s12613-010-0348-y Corresponding author: Zhuan Li E-mail: li_zhuan@https://www.sodocs.net/doc/9511864453.html, ? University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2010 Preparation and properties of C/C-SiC brake composites fabricated by warm compacted-in situ reaction Zhuan Li, Peng Xiao, and Xiang Xiong State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China (Received: 12 August 2009; revised: 28 August 2009; accepted: 2 September 2009) Abstract: Carbon fibre reinforced carbon and silicon carbide dual matrix composites (C/C-SiC) were fabricated by the warm compacted-in situ reaction. The microstructure, mechanical properties, tribological properties, and wear mechanism of C/C-SiC composites at different brake speeds were investigated. The results indicate that the composites are composed of 58wt% C, 37wt% SiC, and 5wt% Si. The density and open porosity are 2.0 g·cm–3 and 10%, respectively. The C/C-SiC brake composites exhibit good mechanical properties. The flexural strength can reach up to 160 MPa, and the impact strength can reach 2.5 kJ·m–2. The C/C-SiC brake composites show excellent tribological performances. The friction coefficient is between 0.57 and 0.67 at the brake speeds from 8 to 24 m·s?1. The brake is stable, and the wear rate is less than 2.02×10?6 cm3·J?1. These results show that the C/C-SiC brake composites are the promising candidates for advanced brake and clutch systems. Keywords: C/C-SiC; ceramic matrix composites; tribological properties; microstructure [This work was financially supported by the National High-Tech Research and Development Program of China (No.2006AA03Z560) and the Graduate Degree Thesis Innovation Foundation of Central South University (No.2008yb019).] 温压-原位反应法制备C / C-SiC刹车复合材料的工艺和性能 李专,肖鹏,熊翔 粉末冶金国家重点实验室,中南大学,湖南长沙410083,中国(收稿日期:2009年8月12日修订:2009年8月28日;接受日期:2009年9月2日) 摘要:采用温压?原位反应法制备炭纤维增强炭和碳化硅双基体(C/C-SiC)复合材

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

MCS_51系列单片机中英文资料对照外文翻译文献综述

MCS-51系列单片机 中英文资料对照外文翻译文献综述 Structure and function of the MCS-51 series Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have, such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same.8051 daily representatives-51 serial one-chip computers. A one-chip computer system is made up of several following parts: (1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositing not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. (3) Procedure memory ROM/EPROM (4KB/8K B ), is used to preserve the

(完整word版)单片机外文文献翻译

中文资料原文 单片机 单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。

英文文献及中文翻译

毕业设计说明书 英文文献及中文翻译 学院:专 2011年6月 电子与计算机科学技术软件工程

https://www.sodocs.net/doc/9511864453.html, Overview https://www.sodocs.net/doc/9511864453.html, is a unified Web development model that includes the services necessary for you to build enterprise-class Web applications with a minimum of https://www.sodocs.net/doc/9511864453.html, is part of https://www.sodocs.net/doc/9511864453.html, Framework,and when coding https://www.sodocs.net/doc/9511864453.html, applications you have access to classes in https://www.sodocs.net/doc/9511864453.html, Framework.You can code your applications in any language compatible with the common language runtime(CLR), including Microsoft Visual Basic and C#.These languages enable you to develop https://www.sodocs.net/doc/9511864453.html, applications that benefit from the common language runtime,type safety, inheritance,and so on. If you want to try https://www.sodocs.net/doc/9511864453.html,,you can install Visual Web Developer Express using the Microsoft Web Platform Installer,which is a free tool that makes it simple to download,install,and service components of the Microsoft Web Platform.These components include Visual Web Developer Express,Internet Information Services (IIS),SQL Server Express,and https://www.sodocs.net/doc/9511864453.html, Framework.All of these are tools that you use to create https://www.sodocs.net/doc/9511864453.html, Web applications.You can also use the Microsoft Web Platform Installer to install open-source https://www.sodocs.net/doc/9511864453.html, and PHP Web applications. Visual Web Developer Visual Web Developer is a full-featured development environment for creating https://www.sodocs.net/doc/9511864453.html, Web applications.Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.sodocs.net/doc/9511864453.html,ing the development tools in Visual Web Developer,you can develop https://www.sodocs.net/doc/9511864453.html, Web pages on your own computer.Visual Web Developer includes a local Web server that provides all the features you need to test and debug https://www.sodocs.net/doc/9511864453.html, Web pages,without requiring Internet Information Services(IIS)to be installed. Visual Web Developer provides an ideal environment in which to build Web sites and then publish them to a hosting https://www.sodocs.net/doc/9511864453.html,ing the development tools in Visual Web Developer,you can develop https://www.sodocs.net/doc/9511864453.html, Web pages on your own computer.

相关主题