搜档网
当前位置:搜档网 › 生物化学》考研复习重点大题

生物化学》考研复习重点大题

生物化学》考研复习重点大题
生物化学》考研复习重点大题

中国农业大学研究生入学考试复习资料

《生物化学》重点大题

1.简述Chargaff定律的主要

内容。

答案:(1)不同物种生物的DNA碱基组成不同,而同一生物不同组织、器官

的DNA碱基组成相同。

(2)在一个生物个体中,DNA的碱基组成并不随年龄、营养状况

和环境变化而改变。

(3)几乎所有生物的DNA中,嘌呤碱基的总分子数等于嘧啶碱基的总分子数,腺嘌呤(A)和胸腺嘧啶(T)

的分子数量相等,鸟嘌呤(G)和胞嘧啶(C)的分子数量相等,即A+G=T+C。

这些重要的结论统称为Chargaff定律或碱基当量定律。

2.简述DNA右手双螺旋结构模型的

主要内容。

答案:DNA右手双螺旋结构模型的主要

特点如下:

(1)DNA双螺旋由两条反向平行的多核苷酸链构成,一条链的走向为5′→3′,另一条链的走向为

3′→5′;两条链绕同一中心轴一圈一圈上升,

呈右手双螺旋。

(2)由脱氧核糖和磷酸构成的骨架位于螺旋外侧,而碱

基位于螺旋内侧。

(3)两条链间A与T或C与G配对形成碱基对平面,碱基对平面与螺

旋的虚拟中心轴垂直。

(4)双螺旋每旋转一圈上升的垂直高度为(即34),需要10个碱基对,螺旋

直径是。

(5)双螺旋表面有两条深浅不同的凹沟,分别称

为大沟和小沟。

3.简述DNA的三级结

构。

答案:在原核生物中,共价闭合的环状双螺旋DNA分子,可再次旋转形成超螺旋,而且天然DNA中多为负超螺旋。真核生物线粒体、叶绿体DNA也是环形分子,能形成超螺旋结构。真核细胞核内染色体是DNA高级结构的主要表现形式,由组蛋白H2A、H2B、H3、H4各两分子形成组蛋白八聚体,DNA双螺旋缠绕其上构成核小体,核小体再经多步旋转折叠形成棒状染色体,存在于细胞核中。

4.简述tRNA的二级结构与功能

的关系。

答案:已知的tRNA都呈现三叶草形的二级结构,基本特征如下:(1)氨基酸臂,由7bp组成,3′末端

有-CCA-OH结构,与氨基酸在此缩合成氨基酰-tRNA,起到转运氨基酸的作用;(2)二氢尿嘧啶环(DHU、I环或D环),由8~12个核苷酸组成,以含有5,6-二氢

尿嘧啶为特征;(3)反密码环,其环中部的三个碱

基可与mRNA的三联体密码子互补配对,在蛋白质合成过程中可把正确的氨基

酸引入合成位点;(4)额外

环,也叫可变环,通常由3~21个核苷酸组成;(5)TψC环,由7个核苷酸组成环,和tRNA与核糖体的结合有关。

5.简述真核生物mRNA3′端polyA尾

巴的作用。

答案:真核生物mRNA的3′端有一段多聚腺苷酸(即polyA)尾巴,长约20~300个腺苷酸。该尾巴与mRNA由细胞核向细胞质的移动有关,也与mRNA的

半衰期有关;研究发现,polyA的长短与mRNA寿命呈正相关,刚合成的mRNA

寿命较长,“老”的mRNA寿命较短。

6.简述分子杂交的概念

及应用。

答案:把不同来源的DNA(RNA)链放在同一溶液中进行热变性处理,退火时,

它们之间某些序列互补的

区域可以通过氢键重新形成局部的DNA-DNA或DNA-RNA双链,这一过程称为

分子杂交,生成的双链称杂合双链。DNA与DNA的杂交叫做Southern杂交,DNA与RNA杂交叫做Northern杂交。

核酸杂交已被广泛应用于遗传病的产前诊断、致癌病原体的检测、癌基因的检

测和诊断、亲子鉴定和动

植物检疫等方面。

7.DNA热变性有何特点

答案:将DNA溶液加热到70~100℃几分钟后,双螺旋结构即发生破坏,氢键断裂,两条链彼此分开,形成无规则线团状,此过程为DNA的热变性。有以下特点:变性温度范围很窄;260nm处的紫外吸收增加;粘度下降;生物活性丧失;比旋度下降;酸碱滴定曲线改变。

8.试述下列因素如何影响DNA的复性过程:(1)阳离子的存在;(2)低于Tm的温度;(3)高浓度的DNA

链。

答案:(1)阳离子可中和DNA分子中磷酸基团的负电荷,减弱DNA链间的静电作用,促进DNA的复性;(2)低于Tm的温度可以促进DNA复性;(3)DNA链浓度增高可以加快互补链随机碰撞的速度和机会,从而促进DNA复性。

9.对一双链DNA而言,若一条链中(A+G)/(T+

C)=,则:(1)互补链中(A+G)/(T+C)=

(2)在整个DNA分子中(A+G)/(T+C)=

(3)若一条链中(A+T)/(G+C)=,则互补链中(A+T)/(G+C)=

(4)在整个DNA分子中(A+T)/(G+

C)=答案:

(1)互补链中(A+G)/(T+C)=1/=

(2)在整个DNA分子中,因为A=T,G=C,所以,A+G=T+C,

(A+G)/(T+C)=1(3)互补链中(A+T)/(G+C)=

(4)整个DNA分子中(A+T)/(G+C)=

10.在,LNaCl条件下,测得某一组织DNA样品的Tm为℃,求出四种碱基百分组成。答案:

大片段DNA的Tm计算公式为:(G+C)%=)×%,小于20bp的寡核苷酸的Tm的计算公式为:Tm

=4(G+C)+2(A+T)。

(G+C)%=(Tm–×%=,那么G%=C%=%(A+T)%=%=%,A%=T%=%]

11.为什么说蛋白质是生命活动所依赖的重要物质

基础答案:

1.①论述蛋白质的催化、代谢调节、物质运输、信息传递、运动、防御与进攻、营养与贮存、保护与支

持等生物学功能。②综上所述,蛋白质几乎参与生命活动的每一个过程,在错综复杂的生命活动过程中发挥着极其重要的作用,是生命活动所依赖的重要物质基础。没有蛋白质,就没有生命。

12.谷胱甘肽分子在结构上有何特点有何生理

功能答案:

谷胱甘肽(GSH)是由谷氨酸、半胱氨酸和甘氨酸组成的三肽。GSH的第一个肽键与一般肽键不同,是由

谷氨酸以γ-羧基而不是α-羧基与半胱氨酸的α-氨基形成肽键。GSH分子中半胱氨酸的巯基是该化合物的主要功能基团。

GSH的巯基具有还原性,可作为体内重要的还原剂保护体内蛋白质或酶分子中巯基免遭氧化,使蛋白质

或酶处在活性状态。此外,GSH的巯基还有嗜核特性,能与外源的嗜电子毒物

如致癌剂或药物等结合,

从而阻断这些化合物与机体DNA、RNA或蛋白质结合,以保护

机体免遭毒物损害。

13.简述蛋白质变性与沉淀的关系。

答案:

蛋白质沉淀和变性的概念是不同的。沉淀是指在某些因素的影响下,蛋白质

从溶液中析出的现象;而变性是指在变性因素的作用下蛋白质的空间结构被破坏,生物活性丧失,理化性质发生改变。变性的蛋白

质溶解度明显降低,易结絮、凝固而沉淀;但是沉淀的蛋白质却不一定变性,如

加热引起的蛋白质沉淀是由于蛋白质热变性所致,而硫酸铵盐析所得蛋白质沉

淀一般不会变性。

14.概述蛋白质一级结构测定的一般程

序。答案:

蛋白质一级结构测定的一般程序为:①测定蛋白质(要求纯度必须达到97%以上)的相对分子质量和它的氨基酸组成,推测所含氨基酸的大致数目。②测定

多肽链N-末端和C-末端的氨基酸,从而确定蛋白质分子中多肽链的数目。然后

通过对二硫键的测定,查明蛋白质分子中二硫键的有无及数目。如果蛋白质

分子中多肽链之间含有二硫键,则必须拆开二硫键,并对不同的多肽链进行分离提纯。③用裂解点不同的两种裂解方法(如胰蛋白酶裂解法和溴化氰裂解法)分别

将很长的多肽链裂解成两套较短的肽段。④分

离提纯所产生的肽段,用蛋白质序列仪分别测定它们的氨基酸序列。⑤应用肽

段序列重叠法确定各种肽段在多肽链中的排列次序,即确定多肽链中氨基酸排

列顺序。⑥如果有二硫键,需要确定其在多肽链中的位置。

15.试论蛋白质一级结构与空间结构的关

系。答案:

①以RNA酶变性与复性实验、有活性牛胰岛素的人工合成为例证实蛋白质一

级结构决定其空间结构。

②Anfinsen发现蛋白质二硫键异构酶(PDI)能加速蛋白质正确二硫键的形成;如RNA酶复性的过程是十分缓慢的,有时需要几个小时,而PDI在体外能帮助变性

后的RNA酶在2min内复性。分子伴侣在细胞内

能够帮助新生肽链正确组装成为成熟的蛋白质。由此可见,蛋白质空间结构的形

成既决定于其一级结构,

也与分子伴侣、蛋白质二硫键异构酶等助折叠蛋白的助折

叠作用密不可分。

16.概述凝胶过滤法测蛋白质相对分子质量的

原理。答案:

层析过程中,混合样品经过凝胶层析柱时,各个组分是按分子量从大到小的顺

序依次被洗脱出来的;并且

蛋白质相对分子质量的对数和洗脱体积之间呈线性关系。因此,将几种已知相

对分子质量(应小于所用葡聚糖凝胶的排阻极限)的标准蛋白质混合溶液上柱洗脱,记录各种标准蛋白质的洗脱体积;然后,以每种

蛋白质相对分子质量的对数为纵坐标,以相对应的洗脱体积为横坐标,绘制标准

曲线;再将待测蛋白质溶液在上述相同的层析条件下上柱洗脱,记录其洗脱体积,通过查标准曲线就可求得待测蛋白质的相对分

子质量。

17.概述SDS-PAGE法测蛋白质相对分子质

量的原理。答案:

(1)聚丙烯酰胺凝胶是一种凝胶介质,蛋白质在其中的电泳速度决定于蛋白质

分子的大小、形状和所带

电荷数量。(2)十二烷基硫酸钠(SDS)可与蛋白质大量结合,结合带来两个后果:①由于SDS是阴离子,

故使不同的亚基或单体蛋白质都带上大量的负电荷,掩盖了它们自身所带电荷

的差异;②使它们的形状都

变成杆状。这样,它们的电泳速度只决定于其相对分子质量的大小。(3)蛋白质分子在SDS-PAGE凝胶中

的移动距离与指示剂移动距离的比值称相对迁移率,相对迁移率与蛋白质相对分子质量的对数呈线性关

系。因此,将含有几种已知相对分子质量的标准蛋白质混合溶液以及待测蛋白溶液分别点在不同的点样孔中,进行SDS-PAGE;然后以标准蛋白质相对分子质量的对数为纵坐标,以相对应的相对迁移率为横坐

标,绘制标准曲线;再根据待测蛋白的相对迁移率,即可计算出待测

蛋白的相对分子质量。

18.简述蛋白质的抽提原理和方

法。答案:

抽提是指利用某种溶剂使目的蛋白和其他杂质尽可能分开的一种分离方法。其原理:不同蛋白质在某种

溶剂中的溶解度不同,所以可以通过选择溶剂,使得目的蛋白溶解度大,而其他杂蛋白溶解度小,然后经过离心,可以去除大多数杂蛋白。方法:溶剂的选择是抽提的关键,由于大多数蛋白质可溶于水、稀盐、稀碱或稀酸,所以可以选择水、稀盐、稀碱或稀酸为抽提溶剂;对于和脂类结合比较牢固或分子中非极性侧链较多的蛋白质分子可以选用有机溶剂进行抽提。

19.根据蛋白质一级氨基酸序列可以预测蛋白质的空间结构。假设有下列氨基酸序列:

Ile-Ala-His-Thr-Tyr-Gly-Pro-Glu-Ala-Ala-Met-Cys-Lys-Try-Glu-Ala-Gln-Pro-Asp-Gly-

Met-Glu-Cys-Ala-Phe-His-Arg(1)预测在该序列的哪一部位可能会出卷曲或β-转角。

(2)何处可能形成链内二

硫键

(3)假设该序列只是大的球蛋白的一部分,试分析在Asp、Try、Gln、Val、Lys、Thr、Leu中,哪些可能分布在该蛋白的外表面,哪些分布在内部

答案:

(1)可能在7位和18位氨基酸打弯,因为脯氨酸常

出现在打弯处。

(2)12位和23位的半胱氨酸可形成二硫键。

(3)分布在外表面的为极性带电荷的残基:Asp、Gln和Lys;分布在内部的是非极性的氨基酸残基:Try、

Leu和Val;Thr尽管有极性,但疏水性也很强,因此,它出现在外表面

和内部的可能性都有。

20.简述抑制剂对酶活性的抑制作用与酶变

性的不同点。

答案:(1)抑制剂对酶有一定的选择性,一种抑制剂只能引起某一类或某几类酶的抑制;而使酶变性失活的因素,如强酸、强碱等,对酶没有选择性;(2)抑制剂虽然可使酶失活,但它并不明显改变酶的结构,

不引起酶蛋白变性,去除抑制剂后,酶又可恢复活性。而变性因素常破坏酶分子的非共价键,部分或全部地改变酶的空间结构,从而导致酶活性的降低或丧失。

21.在很多酶的活性中心均有His残基参与,

请解释

答案:酶蛋白分子中组氨酸的侧链咪唑基pK值为~,在生理条件下,一半解离,一半不解离,因此既可以作为质子供体(不解离部分),又可以作为质子受体(解离部分),既是酸,又是碱,可以作为广

义酸碱共同催化反应,因此常参与构成酶

的活性中心。

22.以糖原磷酸化酶激活为例,说明级联系统是怎样实现

反应信号放大的

答案:(1)级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶

被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。糖原磷酸化酶的激活过程就是一个例子。

(2)放大过程:激素(如肾上腺素)使腺苷酸环化酶活化,催化ATP和生成cAMP;

cAMP使蛋白激酶活化,使无活力的磷酸化酶b激酶转变成有活力的磷酸化酶b激酶;磷酸化酶b激酶使

磷酸化酶b转变成激活态磷酸化酶a;磷酸化酶a使糖原分

解为磷酸葡萄糖。

23.对活细胞的实验测定表明,酶的底物浓度通常就在这种底物的Km值附近,请解释其生理意义为什么底物浓度不是大大高于Km或大大低于Km呢

答案:据V-[S]的米氏曲线可知,当底物浓度大大低于Km值时,酶不能被底物饱和,从酶的利用角度而

言,很不经济;当底物浓度大大高于Km值时,酶趋于被饱和,随底物浓度改变,反应速度变化不大,不利于反应速度的调节;当底物浓度在Km值附近时,反应速度对底物浓度的变化较为敏感,有利于反应速度的调节。

24.举例说明竞争性抑制的特点及实际意义。有时别构酶的活性可以被低浓度的竞争性抑制剂激活,请解释

答案:竞争性抑制剂的特点:(1)抑制剂以非共价键与酶结合,用超滤、透析等物理方法能够解除抑制;(2)抑制剂的结构与底物结构相似,可与底物竞争酶的活性中心;(3)抑制剂使反应速度降低,Km值增大,

但对Vmax并无影响,(4)增加底物浓度可降低或解除

对酶的抑制作用。

竞争性抑制作用的原理可用来阐明某些药物的作用原理和指导新药合成。例如某些细菌以对氨基苯甲

酸、二氢喋呤啶及谷氨酸为原料合成二氢叶酸,并进一步生成四氢叶酸,四氢叶酸是细菌核酸合成的辅酶。磺胺药物与对氨基苯甲酸结构相似,是细菌二氢叶酸合成酶的竞争性抑制剂。它通过降低菌体内四氢叶酸的合成能力,阻碍核酸的生物合成,抑制细菌的繁殖,达到抑菌的作用。

25.在一个符合米氏方程的酶促反应体系中,已知:无抑制剂时,双倒数图中

横轴的截距是-2L/mmol,

纵轴的截距是mmol,当加入可逆抑制剂后,横轴的截距没有变,而纵轴的截距是mmol。问:

(1)上述双倒数示意图怎么表示

(2)无抑制剂时,反应最大速度和米氏常数各是多少(3)有抑制剂时,反应最大速度和米氏常数又分别是多少

(4)该抑制剂是何种类

型的

答案:

(略)

26.简述G蛋白耦联受体介导的跨膜信号转导

的基本过程。

激素是第一信使,与靶细胞膜上的受体结合,使G蛋白活化,进而激活膜上的腺苷酸环化酶(AC)系统。

AC催化ATP转变为cAMP。cAMP作为第二信使可激活蛋白激酶A(PKA),继而激活磷酸化酶并催化细胞内磷酸化反应,引起靶细胞特定的生理效应:腺细胞分泌、肌细胞收缩与舒张、神经细胞膜电位变化、

细胞通透性改变、细胞分裂与分化以及各种

酶促反应等。

(该题也可问:简述依赖于cAMP的蛋白激酶A的激活

机制)答案:(略)

27.简述酶耦联受体介导的跨膜信号转导

的基本过程。

答案:(1)具有酪氨酸激酶的受体:该受体简单,只有一个横跨细胞膜的α螺旋,有两种类型,①受体具有酪氨酸激酶的结构域,即受体与酪氨酸激酶是同一个蛋白质分子;当与相应的化学信号结合时,直接激活自身的酪氨酸激酶结构域,导致受体自身或细胞内靶蛋白的磷酸化。②受体本身没有酶的活性,但

当它被配体激活时立即与酪氨酸激酶结合,并使之激活,通过对自身和底物蛋白的磷酸化作用,把信号传入细胞内。

(2)具有鸟苷酸环化酶的受体:该受体也只有一个跨细胞膜的α螺旋,其膜内侧有鸟苷酸环化酶,当配体

与它结合后,即将鸟苷酸环化酶激活,催化细胞内GTP生成cGMP,cGMP又

可激活蛋白激酶G(PKG),

PKG促使底物蛋白质磷酸化,产

生效应。

上述几种跨膜信号转导过程并不是截然分开的,相互之间存在着错综复杂的

联系,形成所谓的信号网络。

分子乙酰CoA彻底氧化生成CO2和H2O,可提供几分子

ATP为什么

答案:可提供10分子ATP。具体情况如下:(1)在异柠檬酸脱氢酶作用下,异柠檬酸脱下两个氢生成α-

酮戊二酸和NADH+H+;(2)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸脱氢生成琥珀酰CoA和NADH

+H+;(3)在琥珀酰CoA合成酶作用下,琥珀酰CoA水解生成琥珀酸,产生1分子GTP;(4)在琥珀酸脱氢酶作用下,琥珀酸脱氢生成延胡索酸和FADH2;(5)在苹果酸脱氢酶催化下,苹果酸脱氢生成草酰乙酸和NADH+H+。

1分子NADH进入NADH呼吸链氧化可提供分子ATP,而1分子FADH2进入FADH2呼吸链氧化可提

供分子ATP,所以1分子乙酰CoA彻底氧化生成CO2和H2O,可提供10分子ATP(3×++1)。

29.何谓三羧酸循环它有何生

理意义

答案:在线粒体中,乙酰CoA和草酰乙酸缩合生成柠檬酸,经过一系列酶促反应重新生成草酰乙酸,而将乙酰CoA彻底氧化生成H2O和CO2,并释放能量。这个循环反应称为三羧酸循环,又称柠檬酸循环或Krebs循环。

生理学意义:(1)糖的有氧分解是产生动物生理活动所需能量的主要来源;(2)三羧酸循环是糖、脂肪、

蛋白质在体内彻底氧化的共同代谢途径;(3)三羧酸循环是糖、脂肪、蛋白质及

其他有机物质代谢的联系枢纽。

30.为什么说三羧酸循环是糖类、脂类和蛋白质分

解的共同通路

答案:(1)葡萄糖经甘油醛-3-磷酸、丙酮酸等物质生成乙酰CoA,而乙酰CoA

必须进入三羧酸循环才能被彻底氧化分解。(2)脂肪分解产生的甘油和脂肪酸,甘油可以经磷酸二羟丙酮进入糖有氧氧化途径,

最终的氧化分解也需要进入三羧酶循环途径;而脂肪酸经β-氧化途径产生乙酰CoA,乙酰CoA可进入三羧酸循环氧化。(3)蛋白质分解产生氨基酸,氨基酸脱去氨基后产生的碳骨架可进入三羧酸循环,同时,

三羧酸循环的中间产物可作为氨基酸的碳骨架,接受NH3重新生成氨基酸。所以,三羧酸循环是三大物质共同通路。

31.磷酸戊糖途径的主要生理意义

是什么

答案:(1)中间产物核糖-5-磷酸是动物体内合成多种物质的重要原料;(2)产生的NADPH(还原力)参与

多种代谢反应;(3)磷酸戊糖途径与糖的有氧分解及糖的无氧分解相互联系;(4)通过转酮基和转醛基反应,使丙糖、丁糖、戊糖、己糖、庚糖互相转化。

32.简述葡萄糖激酶和己糖激酶

的差别。

答案:己糖激酶和葡萄糖激酶的主要差别在于:①葡萄糖激酶只存在于肝脏中,而己糖激酶在肝脏和肌

肉中都存在;②己糖激酶的Km值为L,葡萄糖激酶的Km值为10mmol/L;③己糖

激酶受产物葡萄糖-6-磷酸的反馈抑制,葡萄糖激酶不受产物葡萄糖-6-磷酸的反

馈抑制。所以,当血液中葡萄糖浓度低时,己糖激酶起主要作用;当血液中葡萄

糖浓度高时,葡萄糖激酶起主要作用,结果肝脏糖原浓度高于肌肉糖原浓度。33.试述丙酮酸氧化脱羧反应受哪

些因素调控

答案:(1)变构调控:丙酮酸氧化脱羧作用的两个产物乙酰CoA和NADH都抑制

丙酮酸脱氢酶复合体,

乙酰CoA抑制二氢硫辛酰胺乙酰转移酶(E2),NADH抑制二氢硫辛酰胺脱氢酶(E3)组分。

(2)化学修饰调控:丙酮酸脱氢酶磷酸化后,酶活性受到抑制,去磷酸化后活性

恢复。(3)丙酮酸脱氢酶(E1)组分受GTP抑制,为AMP所活化。

34.呼吸链是由哪些成分组成的各有何作用

答案:主要有五大类:①NAD+,在呼吸链中传递氢,传递氢和电子;②FMN和FAD,传递氢;③铁硫蛋

白,传递电子;④CoQ,传递氢;⑤细胞色素体系,是一类以铁卟啉为辅基的结合

蛋白,传递电子,电子在细胞色素中的传递顺序为b→c1→c→aa3。

35.为什么说在呼吸链中,辅酶Q是一种特殊灵活的载体

答案:辅酶Q是呼吸链中唯一的非蛋白质组分,其结构中含有由数目不同的类异戊二烯组成的侧链,所

以它是非极性分子,可以在线粒体内膜的疏水相中快速扩散,也有的CoQ结合于内膜上。另外,它也是

呼吸链中惟一不与蛋白质紧密结合的传递体,因此,可以在黄素蛋白和细胞色素

类之间作为一种特殊灵活的载体而起作用。

36.铁硫蛋白和细胞色素是如何传递电子的答案:铁硫蛋白和细胞色素传递电子的方式是相同的,都是通过铁的价变,即Fe2+和Fe3+的互变来进行电子的传递。这两类蛋白质的差别在于细胞色素中的铁是血红素铁,铁与血红素分子紧密结合;而铁硫蛋白中的铁是非血红素铁,与蛋白质中半胱氨酸的硫和无机硫原子结合在

一起,形成一个铁硫中心。

37.试述体内能量的生成方式以及水的生成。

答案:ATP的生成有两种方式,分别为底物水平磷酸化作用和氧化磷酸化作用(二者概念略),后者是主要的。

体内水的生成方式主要是代谢物脱氢经呼吸链传递与激活的氧化合;除此以外,

非线粒体氧化体系中的

氧化酶、过氧化氢酶等催化的反应也能生成水。

38.阐述一对电子从NADH传递至氧是如何生成个A TP的

答案:每对电子通过呼吸链传递复合体I、复合体Ⅲ和复合体Ⅳ时,分别有4个

H+、4个H+和2个H

+从基质泵出,导致线粒体内膜两侧形成跨膜的质子梯度。当这些质子通过ATP合酶返回基质时,能够促使ATP合成。已知每3个H+通过ATP合酶可促

使1分子ATP合成,同时,产生的ATP从线粒体基质进入胞质需消耗1个H+,所以每形成1个ATP需4个H+,这样一对电子从NADH传递至氧共生成个ATP[(4+4+2)/4

39.一对电子从FADH2传递至氧可产生多少分子ATP为什么

答案:一对电子从FADH2传递至氧产生个ATP。由于FADH2直接将电子传送给呼

吸链传递复合体II,不经过呼吸链传递复合体I,所以当一对电于从FADH2传递

至氧时只有6个H+由基质泵出,合成1分子ATP需4个H+,共形成个ATP[(4

+2)/4]。

40.化学渗透学说的要点是什么答案:化学渗透学说的要点是:(1)呼吸链中各递

氢体和递电子体按特定的顺序排列在线粒体内膜上;(2)呼吸链中复合体Ⅰ、复

合体Ⅲ和复合体Ⅳ都具有质子泵的作用,在传递电子的过程中将H+泵出内膜,所以呼吸链的电子传递系统是一个主动运输质子的体系;(3)质子不能自由通过线粒体内膜,泵出膜外的

H+不能自由返回膜内侧,使膜内外形成H+浓度的跨膜梯度;(4)线粒体内膜上有ATP合酶,当质子通

过ATP合酶返回线粒体基质时,释放出自由能,驱动ADP和Pi合成ATP。

41.简述ATP合成酶的结构特点及功能。

答案:ATP合酶主要有两个功能单位:F1和F0。

(1)F1由5种亚基组成(α3β3γδε),是一种可溶性的膜周边蛋白,具有催化ATP 合成的功能;其中,α和β亚基上有ADP和ATP结合位点;β亚基为催化亚基,单独存在时,不具有ATP合酶的作用,但能使ATP水解。

(2)F0是由多亚基组成的不溶于水的跨膜蛋白,含有大量的疏水性氨基酸,在

内膜中形成了跨膜的质子通道,便于质子回流。

42.试述影响氧化磷酸化的因素及其作用机制。

答案:(1)呼吸链抑制剂:鱼藤酮、杀粉蝶菌素、安密妥与复合体I中的铁硫

蛋白结合,抑制电子传递;抗霉素A、二巯基丙醇抑制复合体Ⅲ;一氧化碳、氰化物、叠氮化物、硫化氢抑制复合体Ⅳ。(2)解偶联剂:该类典型代表是2,4-二

硝基苯酚。在线粒体内膜外侧pH较低,2,4-二硝基苯酚的羟基

不能解离,可自由进入线粒体;进入线粒体后,2,4-二硝基苯酚的羟基解离带负电荷。1分子2,4-二硝基苯酚进入线粒体就相当于从内膜外侧带入线粒体内1

个H+,破杯了内膜两侧的H+梯度,使ATP不

能合成,而电子传递继续进行,结果使电子传递的氧化和磷酸化两个过程分离。(3)氧化磷酸化抑制剂:寡霉素可阻止质子从F0质子通道回流,抑制磷酸化并

间接抑制电子在呼吸链上传递。

(4)ADP的调节作用:ADP浓度升高,氧化磷酸化速度加快,反之,氧化

磷酸化速度减慢。

43.试比较电子传递抑制剂、氧化磷酸化抑制剂和解偶联剂对生物氧化作用

的影响。

答案:(1)电子传递抑制剂使电子传递链的某一部位阻断,电子不能传递,氧

的消耗停止,同时ATP的合成停止。(2)氧化磷酸化抑制剂的作用位点在ATP

合酶,使ATP合酶被抑制,而不能合成ATP,结果

电子传递也被抑制,氧消耗停止。(3)解偶联剂的作用是使电子传递和氧化磷

酸化两个过程分离,结果是电子传递失去控制,氧消耗增加,ATP却不能合成,产生的能量以热的形式散失,使体温升高。

44.在脂肪酸合成中,乙酰CoA.羧化酶起什么作用乙酰CoA羧化酶受哪些因

素调控

答案:乙酰CoA羧化酶的作用是催化乙酰CoA和CO2合成丙二酸单酰CoA,为脂肪酸合成提供二碳化合物。乙酰CoA羧化酶是脂肪酸合成反应中的一种限速调节酶,柠檬酸和异柠檬酸可增强该酶的活性,而长链脂肪酸则抑制该酶的活性。此酶经磷酸化后活性丧失,胰高血糖素及肾上腺素等能促进这种磷酸化

作用,从而抑制脂肪酸的合成;而胰岛素则能促进酶的去磷酸化作用、增强乙酰CoA羧化酶的活性。

45.试比较脂肪酸β-氧化与其生物合成的差异。

答案:(1)进行的部位不同,脂肪酸β-氧化在线粒体内进行,脂肪酸的合

成在胞液中进行。

(2)主要中间代谢物不同,脂肪酸β-氧化的主要中间产物是乙酰CoA,脂肪酸合成的主要中间产物是丙

二酸单酚CoA。

(3)脂肪酰基的转运载体不同,脂肪酸β-氧化的脂肪酰基转运载体是CoA,脂肪

酸合成的脂肪酰基转运载体是ACP。

(4)参与的辅酶不同,参与脂肪酸β-氧化的辅酶是FAD和NAD+,参与脂肪酸

合成的辅酶是NADPH。(5)脂肪酸β-氧化不需要CO2,而脂肪酸的合成需要CO2。(6)反应发生时ADP/ATP比值不同,脂肪酸β-氧化在ADP/ATP比值高时发生,而脂肪酸合成在ADP/ATP

比值低时进

行。

(7)柠檬酸发挥的作用不同,柠檬酸对脂肪酸β-氧化没有激活作用,但能激

活脂肪酸的生物合成。

(8)脂酰CoA的作用不同,脂酰辅酶A对脂肪酸β-氧化没有抑制作用,但能

抑制脂肪酸的生物合成。

46.图示鸟氨酸循环的过程,并简述该途径的

生理意义。答案:图略

意义:(1)机体内,氨是有毒化合物,通过该途径合成尿素,尿素是中性无毒物质,从而起到解氨毒的

作用,这是哺乳动物最终排出氨的方式;(2)通过该途径也可以清除氨基氮及二氧化碳,能够减少体内CO2

溶于血液所造成的

酸性。

47.简述天冬氨酸在体内转变成葡萄糖的主

要代谢途径。

答案:(1)天冬氨酸经转氨基作用或联合脱氨基作用形成草酰乙酸;(2)草酰乙酸由磷酸烯醇式丙酮酸羧

激酶催化形成磷酸烯醇式丙酮酸;(3)然后沿着糖酵解途径的逆反应,依次生成甘油酸-2-磷酸、甘油酸-3-磷酸、甘油酸-1,3-二磷酸、甘油醛-3-磷酸、磷酸二羟丙酮和果糖-1,6-二磷酸;果糖-1,6-二磷酸在果糖二磷酸酶的催化下形成果糖-6-磷酸、葡萄糖-6-磷酸;(4)葡萄糖-6-磷酸水解生成葡萄糖,反应由葡萄糖-6- 磷酸酶催化。

48.鸟氨酸循环、三羧酸循环和转氨基作用是如何联系

的答案:图略,

鸟氨酸循环过程中,天冬氨酸不断被消耗转变为延胡索酸。延胡索酸可以经过三羧酸循环转化为苹果酸,苹果酸再氧化成草酰乙酸,后者可再与谷氨酸进行转氨基反应,重新生成天冬氨酸。而谷氨酸又可通过

其他的各种氨基酸把氨基转移给α-酮戊二酸生成。因此,其他的各种氨基酸的氨基可以通过天冬氨酸的形式用于合成尿素。天冬氨酸和延胡索酸可使尿素循环、三羧酸循环和转氨基作用联系起来。

50.简述保证DNA复制忠实性的因素

及其功能

(1)半保留复制的

原则,

(2)碱基互补配对的规律,A-

TG-C。

(3)DNA聚合酶I的校对

作用,

(4)引物的切

除,

51.简述DNA复制时所需的主要酶类

及其功能。

答案:(1)DNA聚合酶:催化核苷酸之间生成磷酸二酯键,也具有一定的校正功能;(2)拓扑异构酶:催化

DNA超螺旋解开,使之变为双螺旋;(3)解旋酶:解开DNA双链,使之变为单

链;(4)单链结合蛋白:和单链DNA结合,使之变为能够作为复制模板的稳定单链;(5)引物酶:以解旋后的单链DNA为模板,催

化合成一小段带有3′-OH的RNA;(6)DNA连接酶:催化DNA双链中的一条单链缺口处游离的3′末端

-OH与5′末端磷酸形成磷酸二酯键,从而把两段相邻的DNA

链连成完整的链。

52.真核生物染色体的端粒是怎

样复制的

答案:(1)端粒DNA的3′端和端粒酶所含的RNA分子的3′端形成碱基配对;(2)端粒酶利用RNA为模板,将dNTP加到端粒DNA的3′端,这个逆转录过程一直进行到RNA模板的第35位;(3)DNA-RNA杂交链之间发生相对滑动,新生长的端粒DNA链3′端再和RNA3′端形成新的碱基配对,重新暴露出部分RNA模板序列;(4)继续逆转录过程。该结合→聚合→转位的过程周而复始,直至在端粒DNA的3′端

形成了足够长度(提供后随链回旋时所需的长度)的单链突出;(5)该3′突出端能够弯转过来成为后随链

合成的起始端,然后由DNA聚合酶复制DNA5′端空缺的DNA,

最后由连接酶连接。

53.简述转录过程和复制过程的

不同点。

答案:(1)复制时两条DNA链均为模板,转录时一条DNA链均为模板;(2)复制时dNTP为底物,转录时NTP为底物;(3)复制时需要DNA聚合酶、连接酶等,转录时仅需要RNA聚合酶;(4)复制产物为子产物代双链DNA,转录产物为mRNA、tRNA、rRNA;(5)复制时A=T、G≡C配对,转录时A=U、G≡C、T=A配对;(6)复制时需要一小段RNA为引物,转录时不需引物。

54.简述转录起始阶段的几

个反应。

答案:起始阶段包括下面几个反应:①RNA聚合酶全酶的σ亚基识别模板DNA 的启动子,并与之紧密结合;②局部解开双螺旋,以使模板链可与核糖核苷酸进行碱基配对;③RNA聚合酶催化底物核苷酸脱去焦

磷酸形成磷酸二酯键,合成RNA链最初的2~9个核苷酸后,σ亚基

脱离,起始阶段结束。

55.简述真核生物与原核生物转录的

不同点。

答案:真核生物的转录在很多方面与原核生物不同,具有某些特

殊规律,主要包括:

(1)转录单位一般为单基因(单顺反子),而原核生物的转录单位多

为多基因(多顺反子);(2)真核生物的三种成熟的RNA分别由三种

不同的RNA聚合酶催化合成;

(3)在转录的起始阶段,RNA聚合酶必须在特定的转录因子的

参与下才能起始转录;

(4)组织或时间特异表达的基因转录常与增强子有关,增强子是位于转录起始点上游的远程调控元件,具有增强转录效率的作用;

(5)转录调节方式以正调节为主,调节蛋白的种类是转录因子或调节转录

因子活性的蛋白因子。

56.简述操纵子模型,并阐明各组分

的功能。

答案:操纵子是原核生物基因表达调控的功能单位,由调节基因、启动子、操纵基因和一个或多个功能相关的结构基因组成。

各组分的功能如下:①启动子是与RNA聚合酶结合并启动转录的特异性DNA 序列;②调节基因位于操纵

子的上游,编码阻遏蛋白,阻遏蛋白能与一些小分子诱导物或辅阻遏物结合,从而决定它能否与操纵基因结合,并进一步调控操纵基因的“开”与“关”;③操纵基因在启动子和结构基因之间,是激活阻遏蛋白的

结合位点,由它来开启和关闭相应结构基因的转录;④结构基因是

转录mRNA的模板。

57.简述乳糖操纵子的正调控机理。为什么葡萄糖水平对正

调控作用有影响

答案:乳糖操纵子的启动子是弱启动子,RNA聚合酶与之结合的能力很弱。但

乳糖操纵子中有降解物基因激活蛋白(CAP)结合位点。当细胞内cAMP浓度较高时,cAMP与CAP结合形成复合物,该复合物结

合到启动子上游的CAP结合位点,可促进RNA聚合酶与启动子结合,使转录得以进行。所以说CAP是一种转录起始的正调节物,对结构基因的转录起正调节

作用。

因为细胞内CAP的正调控作用与cAMP水平有关,而cAMP水平又与葡萄糖水平密切相关。当有葡萄糖

时,葡萄糖分解代谢的降解物能抑制腺苷酸环化酶活性,同时活化磷酸二酯酶,所以cAMP水平很低;当葡萄糖缺乏时,腺苷酸环化酶活性升高,催化ATP生成cAMP。因此,葡萄糖水平对CAP的正调控作用有影响。

58.简述色氨酸操纵子的反馈阻遏调

控机理。

答案:(1)当大肠杆菌培养基中没有色氨酸时,大肠杆菌色氨酸操纵子的调节基因编码产生没有活性的

阻遏蛋白,它不能与操纵基因结合,结构基因可以转录,并翻译生成合成色氨酸所需要的5种酶。(2)

当大肠杆菌培养基中有色氨酸时,色氨酸作为辅阻遏物与阻遏蛋白结合,使阻遏蛋白由无活性的构象变

成有活性的构象,辅阻遏物-阻遏蛋白复合物与操纵基因结合,RNA聚合酶不能移动,结构基因不能转录。这种以结构基因表达的酶所催化产生的终产物来阻

止基因转录的作用称为反馈阻遏。

59.某一肽链中有一段含15圈α-螺旋的结构,问:

(1)这段肽链的长度为多少毫微米含有多少个氨基酸残基

(2)翻译的模板链是何种生物分子它对应这段α-螺旋片段至少由多少个基本结构单位组成

(3)在合成这段肽链过程中,若以氨基酸为原料,活化阶段至少消耗多少ATP

延长阶段至少消耗多少GTP

答案:(1)肽链长度:15*= 氨基酸残基数:15*=54(个)

(2)模板是mRNA分子,对应这段α-螺旋片段的mRNA至少含有162个核苷酸(54*3=162)。

(3)活化阶段消耗ATP数:54*2=108延长阶段消耗GTP数:54*2=108 60.简要真核生物的蛋白质合成

特点。

答案:真核生物的蛋白质合成与原核生物基本相同,只是过程更加复杂一些,其特点如下:

(1)真核生物核糖体更大更复杂,分子量为80S,小亚基40S、大亚基60S。(2)真核细胞的起始氨基酸也是甲硫氨酸(蛋氨酸),但不需要进行甲酰化。

(3)真核细胞的mRNA无SD序列,但其5′端有“帽子”结构,该结构可促进mRNA与核糖体的结合及蛋白质合成起始复合物的形成。

(4)真核细胞mRNA是单顺反子,即一种RNA只能翻译产生一种蛋白质。

(5)真核生物的蛋白质合成与mRNA的转录过程不同时进行。

(6)真核生物的翻译过程需要更多的蛋白因子参与。有13种起始因子、2种延长因子和1种终止因子。

《生物化学》考研复习重点大题

中国农业大学研究生入学考试复习资料 《生物化学》重点大题 1.简述Chargaff 定律的主要内容。 答案:(1)不同物种生物的DNA 碱基组成不同,而同一生物不同组织、器官的DNA 碱基组成相同。(2)在一个生物个体中,DNA 的碱基组成并不随年龄、营养状况和环境变化而改变。 (3)几乎所有生物的DNA 中,嘌呤碱基的总分子数等于嘧啶碱基的总分子数,腺嘌呤(A)和胸腺嘧啶(T) 的分子数量相等,鸟嘌呤(G)和胞嘧啶(C)的分子数量相等,即A+G=T+C。这些重要的结论统称 为Chargaff 定律或碱基当量定律。 2.简述DNA 右手双螺旋结构模型的主要内容。 答案:DNA 右手双螺旋结构模型的主要特点如下: (1)DNA 双螺旋由两条反向平行的多核苷酸链构成,一条链的走向为5′→3′,另一条链的走向为3′→5′;两条链绕同一中心轴一圈一圈上升,呈右手双螺旋。 (2)由脱氧核糖和磷酸构成的骨架位于螺旋外侧,而碱基位于螺旋内侧。 (3)两条链间A 与T 或C 与G 配对形成碱基对平面,碱基对平面与螺旋的虚拟中心轴垂直。 (4)双螺旋每旋转一圈上升的垂直高度为3.4nm(即34?),需要10 个碱基对,螺旋直径是2.0nm。(5)双螺旋表面有两条深浅不同的凹沟,分别称为大沟和小沟。 3.简述DNA 的三级结构。 答案:在原核生物中,共价闭合的环状双螺旋DNA 分子,可再次旋转形成超螺旋,而且天然DNA 中多为负超螺旋。真核生物线粒体、叶绿体DNA 也是环形分子,能形成超螺旋结构。真核细胞核内染色体是DNA 高级结构的主要表现形式,由组蛋白H2A、H2B、H3、H4 各两分子形成组蛋白八聚体,DNA 双螺旋缠绕其上构成核小体,核小体再经多步旋转折叠形成棒状染色体,存在于细胞核中。 4.简述tRNA 的二级结构与功能的关系。 答案:已知的tRNA 都呈现三叶草形的二级结构,基本特征如下:(1)氨基酸臂,由7bp 组成,3′末端有-CCA-OH 结构,与氨基酸在此缩合成氨基酰-tRNA,起到转运氨基酸的作用;(2)二氢尿嘧啶环(DHU、I 环或D 环),由8~12 个核苷酸组成,以含有5,6-二氢尿嘧啶为特征;(3)反密码环,其环中部的三个碱基可与mRNA 的三联体密码子互补配对,在蛋白质合成过程中可把正确的氨基酸引入合成位点;(4)额外环,也叫可变环,通常由3~21 个核苷酸组成;(5)TψC 环,由7 个核苷酸组成环,和tRNA 与核糖体的结合有关。 5.简述真核生物mRNA 3′端polyA 尾巴的作用。 答案:真核生物mRNA 的3′端有一段多聚腺苷酸(即polyA)尾巴,长约20~300 个腺苷酸。该尾巴与mRNA 由细胞核向细胞质的移动有关,也与mRNA 的半衰期有关;研究发现,polyA 的长短与mRNA 寿命呈正相关,刚合成的mRNA 寿命较长,“老”的mRNA 寿命较短。 6.简述分子杂交的概念及应用。 答案:把不同来源的DNA(RNA)链放在同一溶液中进行热变性处理,退火时,它们之间某些序列互补的区域可以通过氢键重新形成局部的DNA-DNA 或DNA-RNA 双链,这一过程称为分子杂交,生成的双链称杂合双链。DNA 与DNA 的杂交叫做Southern 杂交,DNA 与RNA 杂交叫做Northern 杂交。 核酸杂交已被广泛应用于遗传病的产前诊断、致癌病原体的检测、癌基因的检测和诊断、亲子鉴定和动

生化大题最终版

第三章蛋白质化学 3,蛋白质的结构层次及其维持力。 蛋白质的一级结构:通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列。蛋白质的一级结构反映蛋白质分子的共价键结构;其维持力主要为肽键,还可能存在二硫键等其他共价键。 蛋白质的二级结构:是指蛋白质多肽链局部片段的构象,该片段的氨基酸序列是连续的,主链构象通常是规则的;其维持力为氢键。[蛋白质的二级结构是指蛋白质分子中某一段肽链的局部空间结构,尤其是那些稳定的、有规律的周期性结构。这些结构涉及的是该段肽链主链骨架原子的相对位置,不涉及AA残基侧链的构象。](课件概念) 蛋白质的超二级结构:又称模体、基序,是指几个二级结构单元进一步聚集和结合形成的特定构象单元,如αα、βαβ、ββ、螺旋-转角-螺旋、亮氨酸拉链等。 蛋白质的三级结构:是指蛋白质分子整条肽链的空间结构,描述其所有原子的空间排布。蛋白质三级结构的形成是肽链在二级结构基础上进一步折叠的结果;其维持力为疏水作用、氢键、离子键和范德华力等非共价键及二硫键等少量共价键。 蛋白质的四级结构:多亚基蛋白质的亚基与亚基通过非共价键结合,形成特定的空间结构,这一结构层次称为该蛋白质的四级结构;其维持力为疏水作用、氢键、离子键和范德华力等非共价键。 4.比较蛋白质变性和蛋白质变构。 2.B-DNA右手双螺旋结构的基本内容。

①两股DNA链反向互补形成双链结构:在该结构中,脱氧核糖与磷酸交替连接构成主链,位于外面,碱基侧链位于内部。双链碱基形成Watson-Crick碱基对,即腺嘌呤(A)以两个氢键与胸腺嘧啶(T)结合,鸟嘌呤(G)以三个氢键与胞嘧啶(C)结合,这种配对称为碱基配对原则。由此,一股DNA链的碱基序列决定着另一股DNA链的碱基序列,两股DNA链称为互补链。 ②DNA双链进一步形成右手双螺旋结构:在双螺旋结构中,碱基平面与螺旋轴垂直,糖基平面与碱基平面接近垂直,与螺旋轴平行;双螺旋直径为2nm,每一螺旋含10bp(bp:双链核酸长度单位,1bp 为1个碱基对),螺距为3.4nm,相邻碱基对之间的轴向距离为0.34nm;双螺旋表面有两条沟槽:相对较深、较宽的为大沟(轴向沟宽2.2nm),相对较浅、较窄的为小沟(轴向沟宽1.2nm)。[课件沟宽计算方式不同,如下:大沟(也称主槽 major groove)宽1.2nm,小沟(也称次槽minor groove)宽0.6nm。] ③氢键和碱基堆积力维系DNA双螺旋结构的稳定性:碱基对氢键维系双链结构的横向稳定性,碱基对平面之间的碱基堆积力(属于疏水作用和范德华力)维系双螺旋结构的纵向稳定性。 3.从分子组成、结构、功能方面对蛋白质及DNA进行比较。

生物化学必考大题——简答题38道

1酮体生成和利用的生理意义。 (1) 酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。酮体分子小,易溶于水,容易透过血脑屏障。体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。 2试述乙酰CoA在脂质代谢中的作用. 在机体脂质代谢中,乙酰CoA主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。 3试述人体胆固醇的来源与去路? 来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。 4酶的催化作用有何特点? ①具有极高的催化效率,如酶的催化效率可比一般的催化剂高108~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。 5距离说明酶的三种特异性(定义、分类、举例)。 一种酶仅作用于一种或一种化合物,或一定化学键,催化一定的化学反应,产生一定的产物,这种现象称为酶作用的特异性或专一性。根据其选择底物严格程度不同,分为三类:①绝对特异性:一种酶只能作用于一种专一的化学反应,生成一种特定结构的产物,称为绝对特异性.如:脲酶仅能催化尿素水解产生CO2 和NH3,对其它底物不起作用;②相对特异性:一种酶作用于一类化合物或一种化学键,催化一类化学反应,对底物不太严格的选择性,称为相对特异性。如各种水解酶类属于相对特异性;举例:磷酸酶对一般的磷酸酯键都有水解作用,既可水解甘油与磷酸形成的酯键,也可水解酚与磷酸形成的酯键;③立体异构特异性:对底物的立体构型有要求,是一种严格的特异性。作用于不对称碳原子产生的立体异构体;或只作用于某种旋光异构体(D-型或L-型其中一种),如乳酸脱氢酶仅催化L-型乳酸脱氢,不作用于D-乳酸等。 6简述Km与Vm的意义。 ⑴Km等于当V=Vm/2时的[S]。⑵Km的意义:①Km值是酶的特征性常数——代表酶对底物的催化效率。当[S]相同时,Km 小——V大;②Km值可近似表示酶与底物的亲和力:1/Km大,亲和力大;1/Km小,亲和力小;③可用以判断酶的天然底物:Km最小者为该酶的天然底物。⑶Vm的意义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。 7温度对酶促反应有何影响。 (1) 温度升高对V的双重影响:①与一般化学反应一样,温度升高可增加反应分子的碰撞机会,使V增大;②温度升高可加速酶变性失活,使酶促反应V变小(2)温度对V影响的表现:①温度较低时,V随温度升高而增大(低温时由于活化分子数目减少,反应速度降低,但温度升高时,酶活性又可恢复)②达到某一温度时,V最大。使酶促反应V达到最大时的反应温度称为酶的最适反应温度(酶的最适温度不是酶的特征性常数)③反应温度达到或超过最适温度后,随着反应温度的升高,酶蛋白变性,V下降。 8竞争性抑制作用的特点是什么? (1) 竞争性抑制剂与酶的底物结构相似(2)抑制剂与底物相互竞争与酶的活性中心结合(3)抑制剂浓度越大,则抑制作用越大,但增加底物浓度可使抑制程度减小甚至消除(4)动力学参数:Km值增大,Vm值不变。 9说明酶原与酶原激活的意义。 (1)有些酶(绝大多数蛋白酶)在细胞内合成或初分泌时没有活性,这些无活性的酶的前身物称为酶原。酶原激活是指酶原在一定条件下转化为有活性的酶的过程。酶原激活的机制:酶原分子内肽链一处或多处断裂,弃去多余的肽段,构象变化,活性中心形成,从而使酶原激活。(2)酶原激活的意义:①消化道内蛋白酶以酶原形式分泌,保护消化器官自身不受酶的水解(如胰蛋白酶),保证酶在特定部位或环境发挥催化作用;

生化考试试题汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 生物化学习题 一、最佳选择题:下列各题有A、B、C、D、E五个备选答案,请选择一个最佳答案。 1、蛋白质一级结构的主要化学键是( ) A、氢键 B、疏水键 C、盐键 D、二硫键 E、肽键 D*2、蛋白质变性后可出现下列哪种变化( ) A、一级结构发生改变 B、构型发生改变 C、分子量变小 D、构象发生改变 E、溶解度变大 3、下列没有高能键的化合物是( ) A、磷酸肌酸 B、谷氨酰胺 C、ADP D、1,3一二磷酸甘油酸 E、磷酸烯醇式丙酮酸 4、嘌呤核苷酸从头合成中,首先合成的是( ) A、IMP B、AMP C、GMP D、XMP E、ATP 5、脂肪酸氧化过程中,将脂酰~SCOA载入线粒体的是( ) 、柠檬酸B、肉碱C A、ACP A E、乙酰辅酶、乙酰肉碱D) 、体内氨基酸脱氨基最主要的方式是( b6 A、氧化脱氨基作用、联合脱氨基作用 B 、转氨基作用 C D、非氧化脱氨基作用 、脱水脱氨基作用E ) 、关于三羧酸循环,下列的叙述哪条不正确d7( FADH2 和NADH、产生A B、有GTP生成 C、氧化乙酰COA D、提供草酰乙酸净合成 E、在无氧条件下不能运转 c8、胆固醇生物合成的限速酶是( ) A、HMG COA合成酶 B、HMG COA裂解酶 C、HMG COA还原酶 D、乙酰乙酰COA脱氢酶 E、硫激酶 9、下列何种酶是酵解过程中的限速酶( ) A、醛缩酶 B、烯醇化酶 C、乳酸脱氢酶 D、磷酸果糖激酶 E、3一磷酸甘油脱氢酶

大一生化习题

磷氧比: 当底物磷酸化时,每消耗一个氧原子所消耗的用于ADP生成ATP的无机磷酸中的磷原子数。 蛋白质的等电点: 当蛋白质溶液在某一定pH值时,使某特定蛋白质分子上所带正负电荷相等,成为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH值即为该蛋白质的等电点。 变构效应: 有些酶分子表面除了具有活性中心外,还存在被称为调节位点(或变构位点)的调节物特异结合位点,调节物结合到调节位点上引起酶的构象发生变化,导致酶的活性提高或下降,这种现象称为变构效应。酶的专一性: 一种酶只能作用于一种或一类结构相似的物质,促使其发生一定的化学反应,这种特性称为酶的专一。 磷酸戊糖途径: 是指糖从6-磷酸葡萄糖开始,不经过糖酵解和柠檬酸循环,直接将其分解为核糖,同时将能量以一种还原力的形式贮存,供机体生物合成时使用。这个途径称为磷酸戊糖途径。 冈崎片段 DNA双链中,合成方向与复制叉移动方向不同的单链,其在合成时,先形成小的DNA片段,称为冈崎片段. 减色效应 DNA复性后紫外吸收减少的现象称为减色效应。 酶原激活 没有活性的酶原转变为有活性的酶的过程。 底物水平磷酸化: 在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键,由此高能键提供能量使ADP磷酸化生成ATP的过程称为底物水平磷酸化。 氨基酸的等电点 当氨基酸溶液在某一定pH值时,使某特定氨基酸分子上所带正负电荷相等,成为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH值即为该氨基酸的等电点。 呼吸链

有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链。 肽键 一个氨基酸的α--羧基与另一个氨基酸的α--氨基之间脱去一分子水相互连接而成的化学键叫肽键。 尿素循环 尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨转变成尿素的过程,有解除氨毒害的作用。 同工酶 存在于同一种属或不同种属,同一个体的不同组织或同一组织、同一细胞,具有不同分子形式但却能催化相同的化学反应的一组酶,称之为同工酶。 氧化脱氨基 氨基酸在酶的作用下,先脱氢形成亚氨基酸,进而与水作用生成酮酸和氨的过程。 糖酵解途径 糖酵解是将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反应,是生物体内普遍存在的葡萄糖降解的途径。 分子病 由于基因突变导致蛋白质一级结构突变,使蛋白质生物功能下降或丧失,而产生的疾病被称为分子病。 增色效应: 当核酸分子加热变性时,其在260nm处的紫外吸收会急剧增加,这种现象称为增色效应。 盐析 在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出,称为盐析。 核酸的变性 当呈双螺旋结构的DNA溶液缓慢加热时,其中的氢键便断开,双链DNA便脱解为单链,这叫做核酸的“溶解”或变性。

生化大题汇总

生化大题汇总 ※参与DNA复制的主要酶和蛋白因子有哪些?各有什么功能? 拓扑异构酶:松解DNA的超螺旋。 解链酶:打开DNA的双链。 引物酶:在DNA复制起始处以DNA为模板,催化合成互补的RNA短片断。 DNA聚合酶:以DNA为模板、dNTP为原料,合成互补的DNA新链。 连接酶:连接DNA片断。 DNA结合蛋白:结合在打开的DNA单链上,稳定单链。 ※DNA复制有何主要特点? 半保留复制,半不连续合成、需RNA引物,以dNTP(A,T,C,G)为原料,新链合成方向总是5’->3’,依赖DNA的DNA聚合酶(DDDP) ※DNA复制的高保真性主要取决于哪些因素? DNA复制的高保真性取决于三个方面:1、DNA双链碱基的严格配对与DNA聚合酶对配对碱基的严格选择性;2、5’->3’外切核酸酶的即时校读作用;3、对DNA分子中的错误或损伤的修复机制。 ※真核生物DNA复制在何处进行?如何进行? 在细胞核内。 复制分为以下几个阶段:1、起始阶段(DNA解旋解链及引物合成):DNa拓扑异构酶、解链酶分别使DNA 解旋、解链,形成复制叉,在起始点由引物酶催化合成RNA引物;2、DNA合成阶段:以DNA的两条链分别作为模板,dNTP为原料按碱基互补原则(A-T,C-G)在RNa引物引导下,由DNA聚合酶催化合成DNA新链(分前导链和随从链);3、终止阶段:水解RNa引物(polI),填补空缺(polI),连接DNA片断(连接酶)。 ※何谓反转录?在哪些情况下发生反转录?写出主要酶促反应过程。 以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。 反转录可发生于:1、在RNA病毒感染宿主细胞甚至致癌过程中;2、在基因工程中,以mRNA为模板合成cDNA。 病毒RNA(反转录酶dNTP)->RNA-DNA杂化链(RNA酶活性)->cDNA单链(DNA聚合酶活性)->cDNA 双链 ※概述DNA的生物合成。 DNA的生物合成包括DNA半保留复制,DNA损伤后的修复合成和反转录 DNA复制是以DNa的两条链分别作为模板,以dNTP为原料,在DNA聚合酶作用下按照碱基配对原则合成互补新链,这样形成的两个子代DNA分子与原来DNa分子完全相同,一条链来自亲代,另一条链是新合成的,故称为半保留复制。 在某些梨花、生物学因素作用下DNa链发生碱基突变、缺失、交联或链的断裂等损伤后,可进行修复。修复方式有光修复、切除修复、重组修复与SOS修复等。切除修复:1、核酸内切酶从损伤处的5’端切开,出现正常的3’端;2、核酸外切酶水解已打开的损伤DNA段;3DNA聚合酶以互补的DNA链为模板,dNTP为原料,5’->3’方向合成新的DNa片段;4、连接酶连接形成完整的DNA链。 以RNA为模板在反转录酶的作用下合成DNA的过程叫做反转录。反转录在病毒致癌过程中起重要作用;在基因工程中可用于以mRNA为模板合成cDNA的实验。 ※催化磷酸二酯键形成的酶有哪些?比较各自不同特点。 有DNA聚合酶、RNA聚合酶、引物酶、反转录酶、连接酶和拓扑异构酶。

生物化学实验重点试题

一、解词 1、总氮量水中各种形态无机和有机氮的总量 2、酶的抑制作用是指在某个酶促反应系统中,某种低相对分子质量的物质加入后,导致酶活力降低的过程。 3、酶的最适温度酶催化活性最高时的温度 4、蛋白质的等电点每个蛋白都存在一个pH使它的表面净电荷为零即等电点 5、盐析增加中性盐浓度使蛋白质、气体、未带电分子溶解度降低的现象 6、蛋白质变性蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失6、酶的专一性酶对底物及其催化反应的严格选择性通常酶只能催化一种化学反应或一类相似的反应 7、激活剂能提高酶活性的物质大部分是离子或简单的有机化合物 8、抑制剂凡能使酶催化活性下降而不引起酶蛋白变性的物质 9、酶催化特定化学反应的蛋白质、RNA或其复合体 二、填空 1、球蛋白可在半饱和中性硫酸铵溶液中析出,清蛋白可在高盐浓度溶液中析出。 2、在PH3.0、和9.5时的电场中,卵清蛋白(PI4.6)移动方向分别为负移 动,正移动。 3、唾液淀粉酶的最适温度是37 4、还原糖与本乃狄试剂共热现象生成生成砖红色沉淀。 5、维生素C也称抗坏血酸,它具有很强还原性 6、用苔黑酚浓盐酸溶液可以鉴定核糖核酸 7、当溶液的PH低于蛋白质等电点时,蛋白质分子带正电荷;当溶液的 PH大于蛋白质等电点时,蛋白质分子带负电荷; 10.凯氏定氮法测定蛋白质含量消化终点颜色为清澈的蓝紫色色。 11.蛋白质变性的实质是空间结构被破坏。 12.常用的RNA提取方法有苯酚法、、高盐法等。 13、维持蛋白质亲水胶体稳定的因素是蛋白质颗粒表面的电荷层 和水化膜、 14、蛋白质在等电点时,主要以两性离子离子形式存在;当溶液的P H>PI 时,蛋白质分子以负离子形式存在;当溶液的P H<PI时,蛋白质分子带正离子形式存在。 15、蛋白质分子中氮的平均含量为 5.16% ,样品中的蛋白质含量常以测 氮量乘以 6.25 、即 6 。 三、选择 1、盐析法沉淀蛋白质的原理( ) A 与蛋白质结合成不溶性蛋白盐 B 次级键断裂蛋白质的构象改变 C 中和电荷,破坏水化膜 D 调节蛋白质溶液的等电点 2、以下哪项不是酶的特性() A 酶是生物催化剂,催化效率极高 B 易受Ph,温度等外界因素的影响 C 能加速化学反应但不改变反应平衡点 D 有高度特异性 3、RNA和DNA的最大紫外吸收值是在() A 280nm B 260nm C 510nm D 620nm 4、.凯氏定氮法使用的混合催化剂硫酸钾-硫酸铜配比为() A 1:3 B 5:1 C 3:1 D 1:1

湖南农业大学2017年《618动物生物化学》考研专业课真题试卷

2017年湖南农业大学硕士招生自命题科目试题 科目名称及代码:动物生物化学 618 适用专业(领域):动物遗传育种与繁殖、动物营养与饲料科学、动物生产与畜牧工程、基础兽医学、预防兽医学、临床兽医学、中兽药学 考生需带的工具: 考生注意事项:①所有答案必须做在答题纸上,做在试题纸上一律无效; ②按试题顺序答题,在答题纸上标明题目序号。 一.单项选择题(共计30 分,每小题1分) 1.蛋白质的空间构象主要取决于()。 A.氨基酸残基的序列B.α-螺旋的数量 C.肽链中的肽键D.肽链中的二硫键位置 2.体内参与核苷酸合成代谢的甲基直接供体是()。 A.甲硫氨酸B.S-酰苷甲硫氨酸C.甘氨酸D.苏氨酸 3.酶的竞争性抑制作用动力学特征是()。 A.Km不变,Vmax减小B.Km增加,Vmax 减小 C.Km增加,Vmax 不变D.Km和Vmax 都减小 4.奇数碳原子脂肪酸经β-氧化后除生成乙酰CoA外还有()。 A.丙二酸单酰CoA B.丙酰CoA C.琥珀酰CoA D.乙酰乙酰CoA 5.在糖原的生物合成中,葡萄糖的活性形式是()。 A.G-1-P B.CDP-G C.G-6-P D.UDP-G 6.一氧化碳和氰化物对呼吸链的抑制作用部位是()。 A.NADH→CoQ B.FADH2→CoQ C.CoQ→Cytc D.Cytaa3→O2 7.解偶联剂引起的效应是()。 A.氧不断消耗,ATP正常合成B.氧消耗停止,ATP合成停止 C.氧不断消耗,ATP合成停止D.氧消耗停止,ATP正常合成 8.合成酮体的关键酶是()。 A.HMG-CoA合成酶B.乙酰CoA羧化酶 C.HMG-CoA裂解酶D.乙酰乙酸-琥珀酰CoA转移酶 9.嘧啶核苷酸的合成中4位、5位及6位的碳原子和1位氮原子来源于()。 A.天冬氨酸B.谷氨酸C.谷氨酰胺D.甘氨酸 10.软脂酰COA经过一次β氧化,其产物通过三羧循环和氧化磷酸化生成ATP的分子数 共4页第1页

5生物化学习题(答案)

4脂类化学和生物膜 一、名词解释 1、外周蛋白:在细胞膜的细胞外侧或细胞质侧与细胞膜表面松散连接的膜蛋白,易于用不使膜破坏的温和方法提取。 2、内在蛋白:整合进入到细胞膜结构中的一类蛋白,它们可部分地或完全地穿过膜的磷脂双层,通常只有用剧烈的条件将膜破坏 才能将这些蛋白质从膜上除去。 3、同向协同:物质运输方向与离子转移方向相同 4、反向协同:物质运输方向与离子转移方向相反 5、内吞作用:细胞从外界摄入的大分子或颗粒,逐渐被质膜的小部分包围,内陷,其后从质膜上脱落下来而形成含有摄入物质的 细胞内囊泡的过程。 6、外排作用:细胞内物质先被囊泡裹入形成分泌泡,然后与细胞质膜接触、融合并向外释放被裹入的物质的过程。 7、细胞识别:细胞通过其表面的受体与胞外信号物质分子选择性地相互作用,从而导致胞内一系列生理生化变化,最终表现为细 胞整体地生物学效应的过程。 二、填空 1、膜蛋白按其与脂双层相互作用的不同可分为内在蛋白与外周蛋白两类。 2、根据磷脂分子中所含的醇类,磷脂可分为甘油磷脂和鞘磷脂两种。 3、磷脂分子结构的特点是含一个极性的头部和两个非极性尾部。 4、神经酰胺是构成鞘磷脂的基本结构,它是由鞘氨醇以酰胺键与脂肪酸相连而成。 5、磷脂酰胆碱(卵磷脂)分子中磷酰胆碱为亲水端,脂肪酸的碳氢链为疏水端。 6、磷脂酰胆碱(卵磷脂)是由甘油、脂肪酸、磷酸和胆碱组成。 7、脑苷脂是由鞘氨醇、脂肪酸和单糖(葡萄糖/半乳糖)组成。 8、神经节苷脂是由鞘氨醇、脂肪酸、糖和唾液酸组成。 9、生物膜内的蛋白质疏水氨基酸朝向分子外侧,而亲水氨基酸朝向分子内侧。 10、生物膜主要由膜脂和膜蛋白组成。 11、膜脂一般包括磷脂、糖脂和固醇,其中以磷脂为主。 三、单项选择题鞘 1、神经节苷脂是()A、糖脂 B、糖蛋白 C、脂蛋白 D、脂多糖 2、下列关于生物膜的叙述正确的是() A、磷脂和蛋白质分子按夹心饼干的方式排列。 B、磷脂包裹着蛋白质,所以可限制水和极性分子跨膜转运。 C、磷脂双层结构中蛋白质镶嵌其中或与磷脂外层结合。 D、磷脂和蛋白质均匀混合形成膜结构。 3、跨膜蛋白与膜脂在膜内结合部分的氨基酸残基() A、大部分是酸性 B、大部分是碱性 C、大部分是疏水性 D、大部分是糖基化 4、下列关于哺乳动物生物膜的叙述除哪个外都是正确的() A、蛋白质和膜脂跨膜不对称排列 B、某些蛋白质可以沿膜脂平行移动 C、蛋白质含量大于糖含量 D、低温下生长的细胞,膜脂中饱和脂肪酸含量高 5、下列有关甘油三酯的叙述,哪一个不正确?() A、甘油三酯是由一分子甘油与三分子脂酸所组成的酯 B、任何一个甘油三酯分子总是包含三个相同的脂酰基 C、在室温下,甘油三酯可以是固体,也可以是液体 D、甘油三酯可以制造肥皂 E、甘油三酯在氯仿中是可溶的 6、脂肪的碱水解称为() A、酯化 B、还原C、皂化 D、氧化 E、水解 7、下列哪种叙述是正确的? () A、所有的磷脂分子中都含有甘油基 B、脂肪和胆固醇分子中都含有脂酰基 C、中性脂肪水解后变成脂酸和甘油 D、胆固醇酯水解后变成胆固醇和氨基糖 E、碳链越长,脂酸越易溶解于水 8、一些抗菌素可作为离子载体,这意味着它们() A、直接干扰细菌细胞壁的合成 B、对细胞膜有一个类似于去垢剂的作用 C、增加了细胞膜对特殊离子的通透性 D、抑制转录和翻译 E、仅仅抑制翻译 9、钠钾泵的作用是什么? () A、Na+输入细胞和将K+由细胞内输出 B、将Na+输出细胞 C、将K+输出细胞 D、将K+输入细胞和将Na+由细胞内输出 E、以上说法都不对 10、生物膜主要成分是脂与蛋白质,它们主要通过什么键相连?()A、共价键 B、二硫键 C、氢键 D、离子键E、疏水作用 11、细胞膜的主动转运() A、不消耗能量 B、需要ATP C、消耗能量(不单指ATP) D、需要GTP 四、是非题 1、自然界中常见的不饱和脂酸多具有反式结构。(顺式) 2、天然脂肪酸的碳链骨架碳原子数目几乎都是偶数。? 3、质膜上糖蛋白的糖基都位于膜的外侧。? 4、细胞膜的内在蛋白通常比外周蛋白疏水性强。? ①胆固醇:胆固醇的含量增加会降低膜的流动性。 ②脂肪酸链的饱和度:脂肪酸链所含双键越多越不饱和,使膜流动性增加。 ③脂肪酸链的链长:长链脂肪酸相变温度高,膜流动性降低。 ④卵磷脂/鞘磷脂:该比例高则膜流动性增加,是因为鞘磷脂粘度高于卵磷脂。 ⑤其他因素:膜蛋白和膜脂的结合方式、温度、酸碱度、离子强度等。 5、缩短磷脂分子中脂酸的碳氢链可增加细胞膜的流动性。? 6、某细菌生长的最适温度是25℃,若把此细菌从25℃移到37℃的环境中,细菌细胞膜的流动性将增加。? 7、细胞膜的两个表面(外表面、内表面)有不同的蛋白质和不同的酶。?

生化重点大题

一、试述酮体的生成过程。 1. 两个乙酰辅酶A被硫解酶催化生成乙酰乙酰辅酶A。β-氧化的最后一轮也生成乙酰乙酰辅酶A。 2. 乙酰乙酰辅酶A与一分子乙酰辅酶A生成β-羟基-β-甲基戊二酰辅酶A,由HMG辅酶A合成酶催化。 3. HMG辅酶A裂解酶将其裂解为乙酰乙酸和乙酰辅酶A。 4. D-β-羟丁酸脱氢酶催化,用NADH还原生成β羟丁酸,反应可逆,不催化L-型底物。 5. 乙酰乙酸自发或由乙酰乙酸脱羧酶催化脱羧,生成丙酮。 二、酮体生成和利用的生理意义。 酮体是脂酸在肝内正常的中间代谢产物,肝内生成,肝外利用,酮体是肝为肝外组织提供的一种能源物质,脑组织的重要能源。 三、解释重症糖尿病病人为什么会产生酮血症和酸中毒。 糖尿病患者由于机体不能很好地利用葡萄糖,必须依赖脂肪酸氧化供能。脂肪动员加强,肝脏酮体生成增多,超过肝外组织利用酮体的能力,从而引起血中酮体增多,由于酮体中的乙酰乙酸、β-羟丁酸是一些有机酸,血中过多的酮体会导致酮血症和酸中毒。 四、简述Km与Vm的意义。 ⑴Km等于当V=Vm/2时的[S]。⑵Km的意义:①Km值是酶的特征性常数——代表酶对底物的催化效率。当[S]相同时,Km小——V大;②Km值可近似表示酶与底物的亲和力:1/Km大,亲和力大;1/Km小,亲和力小; ③可用以判断酶的天然底物:Km最小者为该酶的天然底物。⑶Vm的意义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。 五、说明酶原与酶原激活的意义。 (1)酶的无活性前体称为酶原。酶原向酶转化的过程为酶原激活。(2)酶原激活的意义:①消化道内蛋白酶以酶原形式分泌,保护消化器官自身不受酶的水解(如胰蛋白酶),保证酶在特定部位或环境发挥催化作用; ②酶原可以视为酶的贮存形式(如凝血酶和纤维蛋白溶解酶),一旦需要转化为有活性的酶,发挥其对机体的保护作用。 六、什么叫同工酶?有何临床意义? (1)同工酶是指催化的化学反应相同,而酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶下称为同工酶。 (2)其临床意义:①属同工酶的几种酶由于催化活性有差异及体内分布不同,有利于体内代谢的协调。②同工酶的检测有助于对某些疾病的诊断及鉴别诊断.当某组织病变时,可能有特殊的同工酶释放出来,使该同工酶活性升高。 七、简述糖酵解的生理意义 (1)机体在相对缺氧时快速补充能量的一种方式 (2)某些细胞在氧供正常下重要的能源途径,如红细胞 八、糖酵解过程需要那些维生素或维生素衍生物参与? 糖酵解过程需要的维生素或维生素衍生物有:维生素B1:TPP。维生素B2:FAD。维生素PP:NAD+、NADH。生物素:生物素。硫辛酸:硫辛酸。半酸:CoA 九、为什么糖酵解途径中产生的NADH必须被氧化成NAD+才能被循环利用? 唯一的脱氢反应要被NAD+接受,才能生成NADPH和氢离子。 十、简述糖异生的生理意义 (1)在饥饿情况下维持血糖浓度的相对恒定。 (2)补充和恢复肝糖原。 (3)促进肾排酸排氨 (4)回收乳酸分子中的能量(乳酸循环)。 十一、简述三羧酸循环的要点及生理意义 (1)TAC中有4次脱氢,2次脱羧,1次底物水平磷酸化(2)TAC中有3个不可逆反应,3个关键酶;(3)不消耗中间产物(4)三羧酸循环一周共产生12ATP。 生理意义:(1)TAC是三大营养素彻底氧化的最终代谢通路;(2)是三大营养素代谢联系的枢纽;(3)可为其

生化大题

一、什么是酶?酶与一般催化剂有何区别? 酶是由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质。 它与一般催化剂的区别表现在: (1)酶对底物具有极高的催化效率。较一般催化剂高107~1013倍。(2)酶对底物具有高度的特异性。一般可分为绝对特异性(即一种酶只能催化一种底物,进行一种反应)、相对特异性(即一种酶可作用于一类化合物或一种化学键)和立体异构特异性。 (3)酶的活性与酶量具有可调节性。包括对酶的生成与降解量的调节,酶催化效力的调节。体内许多酶的活性和酶量受体内代谢物或激素的调节。 (4)酶具有不稳定性。酶的化学本质主要是蛋白质,在某些理化因素(如高温、强酸、强碱等)的作用下,酶会发生变性而失去催化活性。因此,酶促反应往往都是在常温、常压和接近中性的条件下进行的。 二、什么是酶原?某些酶以酶原形式存在具有什么生物学意义? 有些酶在细胞内合成或初分泌、或在其发挥催化功能前处于无活性状态,这种无活性的酶前体称作酶原。 1、避免细胞产生的酶对自身消化,并使酶在特定的部位和环境中发挥作用,保证体内代谢正常进行。 2、有的酶原可以视为储存形式。在需要时激活,发挥其催化作用。

例1消化道蛋白酶以酶原形式分泌可避免胰腺的自身消化和细胞外基质蛋白遭受蛋白酶的水解破坏,同时还能保证酶在特定环境和部位发挥其催化作用。 例2 生理情况下,血管内的凝血因子以酶原形式存在,不发生血液凝固,可保证血流畅通。一旦血管破损,一系列凝血因子被激活,凝血酶原被激活生成凝血酶,后者催化纤维蛋白原转变成纤维蛋白,产生血凝块以阻止大量失血,对机体起保护作用。 三、简述酮体代谢的特点和生理意义。 酮体代谢特点:肝内生成,肝外氧化利用。 酮体代谢的生理意义: (1)分子小,易溶于睡,便于在血中运输。脂肪酰辅酶A进入线粒体内膜,需要载体肉毒碱转运,脂肪酸在血中转运需要与血浆清蛋白结合,而酮体通过线粒体内膜以及在续重转运均不需要载体。(2)易通过血脑屏障及肌肉等的毛细血管壁,因而酮体易于利用可以把酮体看做脂肪酸在肝脏加工生成的半成品 (3)节省葡萄糖供脑和红细胞利用。肝外组织利用酮体氧化功能减少了对葡萄糖的需求,以保证脑组织和红细胞的葡萄糖供应。在饥饿状态下也利用酮体功能,饥饿5-6周,酮体功能可多达70%。(4)肌肉组织利用酮体时可抑制肌肉蛋白质的分解,减少蛋白质的消耗。

生物化学必考大题-简答题28道

根据老师所画的重点,我把生化大题全打成了电子档,希望能帮助大家的复习!! DNA双螺旋模型要点 (1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右 手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。 (2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的 碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。 (3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大 沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。 (4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。 生物学意义:揭示了DNA复制时两条链可以分别作为模板生成新的子代互补链,从而保持遗传信息的稳定传递。2、酶与一般催化剂相比具有哪些特点? (1)催化效率高:对于同一反应,酶催化反应的速率比非催化反应速率高10^2—10^20倍,比一般催化剂催化反应的反应高10^7—10^13倍 (2)高度专一性或特异性:与一般催化剂不同,酶对具有催化的底物具有较严格的选择性,即一种酶只能作用于一种或一类底物或一定的化学键,催化一定的化学反应并生成一定的产物,按照其严格程度可以区分为绝对专一性和相对专一性,另外还有立体异构专一性和光学异构专一性。 (3)酶活性的不稳定性:酶是蛋白质,对热不稳定,对反应的条件要求严格 (4)酶催化活性的可调节性:酶促反应或酶的活性受到多种体外因素的调节,酶的调节包括酶活性和酶含量的调节。 3、何谓酶的不可逆抑制作用?试举例说明 某些抑制剂通常以共价键与酶蛋白中的必需基团结合,而使酶失活,抑制剂不能用透析、超滤等物理方法除去,有这种作用的不可逆抑制剂引起的抑制作用称不可逆抑制作用 举例:①有机磷抑制胆碱酯酶:与酶活性中心的丝氨酸残基结合,可用解磷定解毒②重金属离子和路易士气抑制巯基酶:与酶分子的巯基结合,可用二巯丙醇解毒。 4、试述竞争性抑制作用的特点,并举例其临床应用 ①抑制剂与底物化学结构相似②抑制剂以非抑制剂可逆地结合酶的活性中心,但不被催化为产物③由于抑制剂与酶的结合是可逆的,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例④当抑制剂浓度不变时,逐渐增加底物浓度,抑制作用减弱,甚至解除,因而酶的V不变⑤抑制剂的存在使酶的km的值明显增加。说明底物和酶的亲和力明显下降。举例:①磺胺类药物与对氨基苯甲酸竞争抑制二氢叶酸合成酶②丙二酸与琥珀酸竞争抑制琥珀酸脱氢酶③核苷酸的抗代谢物与抗肿瘤药物 5、何谓酶原及酶原激活?简述其生理意义 有些酶在细胞内合成时,或初分泌时,没有催化活性,这种无活性状态的酶的前身物称为酶原,酶原向活性的酶转化的过程称为酶原的激活。酶原激活实际上是酶的活性中心形成或暴露的过程。 生理意义:可视为有机体对酶活性的一种特殊调节方式,保证酶在需要时在适当部位,适当的时间发挥作用,避免在不需要时发挥活性而对组织细胞造成损伤,酶原还可以视为酶的一种储存形式 6、什么叫同工酶?简述其存在的部位,来源及临床意义? 同工酶是指催化的化学反应相同,而酶蛋白的氨基酸组成分子结构,理化性质乃至免疫学性质等不同的组酶。同工酶存在于同一种属或同一个体的不同组织器官或同一细胞的不同亚细胞的结构中,它在调节代谢上起着重要作用。 同工酶是长期进化过程中基团分化的产物,同工酶是由不同基团或等位基因编码的多肽链,或同一基团转录生成的不同mRNA翻译的不同多肽链组成的蛋白质,所以同工酶具有不同的的一级结构,生物化学性质和酶动学性质,不同的同工酶在不同的组织器官中含量喝分布比例不同,这主要是不同组织器官中编码不同亚基的基因开放程度不同,编码各亚基的基因表达程度不同,合成的亚基种类和数量不同,形成不同的同工酶谱,不同的同工酶对底物的亲和力不同,使不同组织与细胞具有不同的代谢特点,当某组织器官发生病变时,可能在某些特殊的同工酶释放同工酶谱的改变有助于病的诊断,通过观察人血清中同工酶的电泳图谱辅助诊断哪些器官发生病变。

2020年考研专业课西医综合大纲解析:生物化学

2020年考研专业课西医综合大纲解析:生物化学 一、生物化学考查目标 西医综合生物化学的考试范围为人民卫生出版社第七版生物化学 教材。要求学生系统掌握本学科中的基本理论、基本知识和基本技能,能够使用所学的基本理论、基本知识和基本技能综合分析、判断和解 决相关理论问题和实际问题。 二、生物化学考点解析 这节我们来解析一下生物化学。今年生物化学未发生任何改变。 生物化学对于很多考生来说都是比较难的学科,需要掌握和记忆的东 西很多,在此我想提醒大家在复习生化时一定要抓重点,切忌把时间 都放在一些较难较偏的知识点上,以免耽误时间。 下面我们就按大纲分的四绝大部分实行详细的解析。 生物化学 第一部分生物大分子的结构和功能 重点内容:氨基酸的分类,几种特殊的氨基酸,蛋白质的分子结构 及理化性质,核酸的组成,DNA双螺旋结构,酶的基本概念,米式方程,辅酶成分。熟记20种氨基酸,尽可能记住英文缩写代号,因考试时常 以代号直接出现。蛋白质的分子结构常考各级结构的表现形式及其维 系键。蛋白质的理化性质及蛋白质的提纯,通常利用蛋白质的理化性 质采取不破坏蛋白质结构的物理方法来提纯蛋白质。注意氨基酸及蛋 白质理化性质的鉴别。核酸的基本单位是核苷酸,多个核苷酸组成核酸,核苷酸之间的连接键为3',5'-磷酸二酯键。DNA双螺旋结构,在DNA双链结构中两条碱基严格按A=T(2个氢键)、G三C(3个氢键)配对 存有,各种RNA的特点。另外还要注意到一些核酸解题上常用的概念。酶首先要注意的是一些基本概念,如:核酶、脱氧核酶、酶活性中心、同工酶、异构酶等。米式方程式考试重点,V=Vmax[S]/Km+[S],这个方

生化大题

1. 简述酶的“诱导契合假说”。 2. 受试大鼠注射DNP(二硝基苯酚)可能引起什么现象?其机理何在? 3. 复制中为什么会出现领头链和随从链? 4. 简述乳糖操纵子的结构及其调节机制。 5. 何谓限制性核酸内切酶?写出大多数限制性核酸内切酶识别DNA序列的结构特点。 1.酮体是如何产生和利用的? 2.为什么测定血清中转氨酶活性可以作为肝、心组织损伤的参考指标?3.讨论复制保真性的机制。 4.试述乳酸异生为葡萄糖的主要反应过程及其酶。 5.举例说明蛋白质一级结构、空间构象与功能之间的关系。 1.胞浆中的NADH如何参加氧化磷酸化过程?试述其具体机制。 2.举例说明蛋白质的变构效应。 3.糖、脂、蛋白质在体内是否可以相互转变?简要说明可转变的途径及不能转变的原因。 4.试述复制和转录的异同点。 5. 试述人体胆固醇的来源与去路。 1.人体生成ATP的方法有哪几种?请详述具体生成过程。 2. 何谓基因克隆?简述基因克隆的基本过程。 3. 细胞内有哪几类主要的RNA?其主要功能是什么? 4. 原核生物复制中的引发体是如何形成的? 5. 脂肪酸的β-氧化与生物合成的主要区别是什么? 1.什么是血浆脂蛋白,它们的来源及主要功能是什么? 2.简述谷氨酸在体内转变成尿素、CO2与水的主要代谢过程。 3.试述复制和转录的异同点。 4.已知人类细胞基因组的大小约30亿bp,试计算一个二倍体细胞中DNA 的总长度,这么长的DNA分子是如何装配到直径只有几微米的细胞核内的? 5. 原核生物和真核生物翻译起始复合物的生成有何异同? 1.试讨论各类核苷酸抗代谢物的作用原理。

2.为什么说真核生物基因是断裂基因?请讨论hnRNA的剪接过程。3.什么是蛋白质的二级结构?它主要有哪几种?各有何结构特征?4.简述肝糖原合成代谢的直接途径与间接途径。 5.何谓目的基因?写出其主要来源或途径 1.比较三种可逆性抑制作用的特点。 2.试述原核生物的转录终止。 3.概述肾上腺素对血糖水平调节的分子机制。 4.物质在体内氧化和体外氧化有哪些异同点?请加以说明。 5.1mol软脂酸彻底氧化分解净生成多少ATP? 1.为什么说逆转录现象的发现在生命科学研究中有重大的研究价值?2.简述糖异生的生理意义。 3.试述乙酰CoA在脂质代谢中的作用。 4.酶与一般催化剂相比有何异同? 5.简述DNA双螺旋结构模式的要点及其与DNA生物学功能的关系。 1、试述复制和转录的异同点。 2、1mol软脂酸彻底氧化分解净生成多少ATP? 3、蛋白质的基本组成单位是什么?其结构特征是什么? 4、举例说明竞争性抑制作用在临床上的应用。 5.简述天冬氨酸在体内转变成葡萄糖的主要代谢途径。 1. 原核生物和真核生物翻译起始复合物的生成有何异同? 2. 简述血糖的来源和去路。 3. 说明高氨血症导致昏迷的生化基础。 4. 有哪些方法可获得目的基因? 5. 何谓肽键和肽链及蛋白质的一级结构? 1. 何谓基因克隆?简述基因克隆的基本过程。 2. 为何蛋白质的含氮量能表示蛋白质相对量?实验中又是如何依此原理计算蛋白质含量的? 3. 试列表比较糖酵解与有氧氧化进行的部位、反应条件、关键酶、 产物、能量生成及生理意义。 4.简述各种RNA在肽链合成过程中的作用。 5. 说明酶原与酶原激活的意义。 1.讨论复制保真性的机制。

生物化学必考大题简答题道

生物化学必考大题-简答题道

————————————————————————————————作者:————————————————————————————————日期: ?

根据老师所画的重点,我把生化大题全打成了电子档,希望能帮助大家的复习!! DNA双螺旋模型要点 (1)主链(backbone):由脱氧核糖和磷酸基通过酯键交替连接而成。主链有二条,它们似"麻花状绕一共同轴心以右手方向盘旋,相互平行而走向相反形成双螺旋构型。主链处于螺旋的外则,这正好解释了由糖和磷酸构成的主链的亲水性。所谓双螺旋就是针对二条主链的形状而言的。 (2)碱基对(basepair):碱基位于螺旋的内则,它们以垂直于螺旋轴的取向通过糖苷键与主链糖基相连。同一平面的碱基在二条主链间形成碱基对。配对碱基总是A与T和G与C。碱基对以氢键维系,A与T间形成两个氢键。 (3)大沟和小沟:大沟和小沟分别指双螺旋表面凹下去的较大沟槽和较小沟槽。小沟位于双螺旋的互补链之间,而大沟位于相毗邻的双股之间。这是由于连接于两条主链糖基上的配对碱基并非直接相对,从而使得在主链间沿螺旋形成空隙不等的大沟和小沟。在大沟和小沟内的碱基对中的N 和O 原子朝向分子表面。?(4)结构参数:螺旋直径2nm;螺旋周期包含10对碱基;螺距3.4nm;相邻碱基对平面的间距0.34nm。 生物学意义:揭示了DNA复制时两条链可以分别作为模板生成新的子代互补链,从而保持遗传信息的稳定传递。 2、酶与一般催化剂相比具有哪些特点? (1)催化效率高:对于同一反应,酶催化反应的速率比非催化反应速率高10^2—10^20倍,比一般催化剂催化反应的反应高10^7—10^13倍 (2)高度专一性或特异性:与一般催化剂不同,酶对具有催化的底物具有较严格的选择性,即一种酶只能作用于一种或一类底物或一定的化学键,催化一定的化学反应并生成一定的产物,按照其严格程度可以区分为绝对专一性和相对专一性,另外还有立体异构专一性和光学异构专一性。 (3)酶活性的不稳定性:酶是蛋白质,对热不稳定,对反应的条件要求严格 (4)酶催化活性的可调节性:酶促反应或酶的活性受到多种体外因素的调节,酶的调节包括酶活性和酶含量的调节。3、何谓酶的不可逆抑制作用?试举例说明 某些抑制剂通常以共价键与酶蛋白中的必需基团结合,而使酶失活,抑制剂不能用透析、超滤等物理方法除去,有这种作用的不可逆抑制剂引起的抑制作用称不可逆抑制作用 举例:①有机磷抑制胆碱酯酶:与酶活性中心的丝氨酸残基结合,可用解磷定解毒②重金属离子和路易士气抑制巯基酶:与酶分子的巯基结合,可用二巯丙醇解毒。 4、试述竞争性抑制作用的特点,并举例其临床应用 ①抑制剂与底物化学结构相似②抑制剂以非抑制剂可逆地结合酶的活性中心,但不被催化为产物③由于抑制剂与 酶的结合是可逆的,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例④当抑制剂浓度不变时,逐渐增加底物浓度,抑制作用减弱,甚至解除,因而酶的V不变⑤抑制剂的存在使酶的km的值明显增加。说明底物和酶的亲和力明显下降。举例:①磺胺类药物与对氨基苯甲酸竞争抑制二氢叶酸合成酶②丙二酸与琥珀酸竞争抑制琥珀酸脱氢酶③核苷酸的抗代谢物与抗肿瘤药物 5、何谓酶原及酶原激活?简述其生理意义 有些酶在细胞内合成时,或初分泌时,没有催化活性,这种无活性状态的酶的前身物称为酶原,酶原向活性的酶转化的过程称为酶原的激活。酶原激活实际上是酶的活性中心形成或暴露的过程。 生理意义:可视为有机体对酶活性的一种特殊调节方式,保证酶在需要时在适当部位,适当的时间发挥作用,避免在不需要时发挥活性而对组织细胞造成损伤,酶原还可以视为酶的一种储存形式 6、什么叫同工酶?简述其存在的部位,来源及临床意义? 同工酶是指催化的化学反应相同,而酶蛋白的氨基酸组成分子结构,理化性质乃至免疫学性质等不同的组酶。同工酶存在于同一种属或同一个体的不同组织器官或同一细胞的不同亚细胞的结构中,它在调节代谢上起着重要作用。 同工酶是长期进化过程中基团分化的产物,同工酶是由不同基团或等位基因编码的多肽链,或同一基团转录生成的不 同mRNA翻译的不同多肽链组成的蛋白质,所以同工酶具有不同的的一级结构,生物化学性质和酶动学性质,不同的同工酶在不同的组织器官中含量喝分布比例不同,这主要是不同组织器官中编码不同亚基的基因开放程度不同,编码各亚基的基因表达程度不同,合成的亚基种类和数量不同,形成不同的同工酶谱,不同的同工酶对底物的亲和力不同,使不同组织与细胞具有不同的代谢特点,当某组织器官发生病变时,可能在某些特殊的同工酶释放同工酶谱的改变有助于病的诊断,通过观察人血清中同工酶的电泳图谱辅助诊断哪些器官发生病变。 7、以葡萄糖为例,比较无氧氧化和有氧氧化的异同

相关主题