搜档网
当前位置:搜档网 › 函数的图像及其变换

函数的图像及其变换

函数的图像及其变换
函数的图像及其变换

函数的图像及变换

一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折

左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ??

?=???=??

???

??

??

???????

(1)对称变换(几种常用对应点的对称变换)

关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →

关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)

例1:已知2

()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)

例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1

()f x x

=

,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).

A. 1x -

B. 12x +

C.12x -+

D. 12x

- 例3:下列函数中,同时满足两个条件“①x R ?∈,

()()01212f x f x ππ++-=;②当6π-

π

<时,'

()0f x >”的一个函数是( ) A.()sin(2)6

f x x π

=+

B. ()cos(2)3

f x x π

=+

C. ()sin(2)6

f x x π

=-

D. ()cos(2)6

f x x π

=-

(2)翻折变换

①关于形如()y f x =的图像画法:

当0x ≥时,()y f x =;当0x ≤时,()y f x =-

()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.

②关于形如()y f x =的图像画法

当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-

先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.

例3:画出下列函数的图像.

(1)12

log y x = (2)228y x x =--

例4:设函数2()45f x x x =--.

(1)在区间[2,6]-上,画出函数()f x 的图像;

(2)设集合{}

()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;

(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.

(3)平移

①左右平移

把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数

()y f x a =+的图像

②上下平移

把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数

()y f x a =+的图像

例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8

a π

=-

平移后得到的图象的解析式为sin(2)24

y x π

=+

-,

则原来函数的解析式 .

(4)伸缩变换

Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的

a 倍得到函数()(0)y af x a =>的图像.

Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的

1

a

倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21

()2

lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,

最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.

例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域; (2)求函数()(1)()F x f x g x =--的最大值.

【练习】

1.为了得到函数3

2

1x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).

A.向右平移3个单位长度,再向下平移1个单位长度

B.向左平移3个单位长度,再向下平移1个单位长度

C.向右平移3个单位长度,再向上平移1个单位长度

D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)y

x x =+≥的图像关于y x =对称的是( ).

3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,1]x ∈-时,()f x x =,则函数()

y f x =的图像与函数4

log y x =的图像的交点的个数为( ).

4.将函数b

y a x a

=

++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).

A. 1,0a b =-≠

B. 1,a b R =-∈

C.1,0a b =≠

D. 0,a b R =∈ 5.已知2

1

()f x x x =+

,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.

6.画出下列函数的图像.

(1)ln y x = (2)2

6y x x =--

7. 函数()2x

f x =和3

()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,

22(,)B x y ,且12x x <.

(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;

(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;

(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.

8.已知函数()f x 和()g x 的图像关于原点对称,且2

()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;

(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.

6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.

补充:

请把相应的幂函数图象代号填入表格.

3

2

x

y

=

;②2

-

=x

y;③2

1

x

y=;④1-

=x

y;⑤3

1

x

y=;⑥2

3

x

y=;⑦3

4

x

y=;

⑧2

1

-

=x

y;⑨3

5

x

y=.

常规函数图像有:

函数代号①②③④⑤⑥⑦⑧⑨⑩图象代号

H I

指数函数:逆时针旋转,底数越来越大 .

对数函数:逆时针旋转,底数越来越小

幂函数:逆时针旋转,指数越来越大。对称性结论

记住口诀

指数函数:逆时针旋转,底数越来越大

对数函数:逆时针旋转,底数越来越小

幂函数:逆时针旋转,指数越来越大。

其它象限图象看函数奇偶性确定。

1.函数)(x f y =图象关于a x =对称??-=+)()(x a f x a f )2()(x a f x f -=? )2()(x a f x f +=-;

2.若函数=y )(x f 定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线

2

b

a x +=

对称. 3.函数)(x f y =图象关于),(b a 成中心称?b x a f x a f 2)()(=++- b x f x a f 2)()2(=+-?

4.若函数)(x f y =定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数),则函数)(x f y =的图象关于点)2

,2(

c

b a +对称.

函数的图象教学设计教案设计

函数()0,0)sin(>>+=ω?ωA x A y 的图象教学设计 教学目标 1.知识与技能 (1)结合物理中的简谐振动,了解()0,0)sin(>>+=ω?ωA x A y 的实际意义; (2)用“五点法”作出()0,0)sin(>>+=ω?ωA x A y 的图象, 并借助图形计算器 动态演示三角函数图象,研究参数?ω,,A 对函数图象变化的影响,让学 生进一步了解三角函数图象各种变换的实质和内在规律. (3)考察参数A 、?、ω对()0,0)sin(>>+=ω?ωA x A y 图象影响的过程中认识 到函数x y sin =与()0,0)sin(>>+=ω?ωA x A y 的联系. 2.过程与方法 (1)经历x y sin =到()0,0)sin(>>+=ω?ωA x A y 图象变换探究的过程,培养学生 的数学发现能力和概括总结能力. (2)让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联系, 提高学生的推理能力、分析问题和解决问题的能力. (3)在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归 思想,渗透数形结合的思想. 3.情感、态度、价值观 (1)通过三角函数图象各种变换的探求,培养学生的探索能力、钻研精神和科学 态度. (2)通过合作学习,探求三角函数图象各种变换,培养学生团结协作的精神. 教学重点与难点 教学重点:函数()0,0)sin(>>+=ω?ωA x A y 的图象以及参数?ω,,A 对图象变换的影响.函数x y sin =的图象与函数()0,0)sin(>>+=ω?ωA x A y 的图象之间的变换关系. 教学难点:函数()0,0)sin(>>+=ω?ωA x A y 的图象与函数x y sin =的图象与之间的变

高中数学第10讲 函数图像及其变换(教案)新人教版必修1

函数图像与变换 教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ). 教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。 教学过程: 一.知识要点: 1.常见函数图像及其性质: (1)平移变换: ①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—) ③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换: ①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称. ②y =f (x ) →y =-f (x )图象关于x 轴 对称. ③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称. ④y =f (x ) →y =f -1(x )图象关于直线y =x 对称. ⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称. 若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称. 若函数()y f x =的图象关于直线2 a b x +=对称()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-= (3)翻折变换主要有 ①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称. ②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习: 1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A ) A.y =f (x -1)-1 B.y =f (x +1)-1 C.y =f (x -1)+1 D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x ) 解: y =f (|x |)是偶函数,图象关于y 轴对称. 图2—3

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; ¥ a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 , (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 \ ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(0

或缩短(a>1)到原来的1/a 倍,纵坐标不变。 ^ 4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

三角函数的图象

电教优质课教案 《三角函数图象》 舞钢市第二高级中学 李培林

《三角函数图象》教案 舞钢市第二高级中学 李培林 一、教材分析: 1、地位与作用 本节内容是《普通高中课程标准实验教科书〃数学必修4》(人教A 版)第一章第5节内容,是高一年级课程,三角函数的图象既是函数图象知识的延伸,也是物理简谐波和交流电的图象,还是自然界的生命线,广泛应用于医学领域的心电图,脑电图,多普勒,核磁共振等。同时三角函数的图象对于研究三角函数的性质起到了非常重要的作用,是历年来高考的热点和重点。 2、知识与技能 掌握由函数sin y x =的图象到函数sin()y A x ω?= +的图象的变换原理, 理解振幅变换、周期变换和平移变换,区分先周期后平移,先平移后周期两种变换的联系与区别,灵活应用三种变换解答三角函数的图象问题。 二、学情分析 对高一的学生来说,已经学习了函数图象的平移、伸缩、对称和翻折四种变换,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。根据以上特点,教师恰当引导,提高学生学习自主性和主动性,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 三、设计思想:

本节课采用自主学习的课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以问题为导向设计教学情境,以“三角函数的图象”为基本探究内容,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 四、教学目标: A.课堂目标 1、理解三角函数“几何”作图法 2、掌握三角函数“五点”作图法 3、掌握三角函数图像变换原理与方法 4、能用三种变换解答三角函数的图象问题 B.过程与方法 让学生从已有的知识出发,通过学生自主探索、合作交流,亲身体验数学规律的发现,由特殊到一般归纳出数学规律,并用规律解决数学问题,让学生掌握数形结合的思想方法。 C.情感态度与价值观 培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣,培养学生合情合理探索数学规律的数学思想方法,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到)0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数的图象,只需把函数的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数 x y 2=的图象向右平移3个单位,然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是( ). (A ) (B ) (C ) (D ) 分析 把已知函数图象向右平移1个单位, 即把其中自变量换成,得.

函数图象的几何变换教案

函数图象的几何变换教案 【教学目标】1.让学生熟练掌握各种图象变换,能迅速作出给定的函数图象; 2.让学生了解用数形结合法解决方程、不等式、含参问题的讨论; 3.培养学生主动运用数形结合方法解题的意识. 【教学重点】函数图象的几何变换 【教学难点】1.各种图象变换之间的区别及灵活应用; 2.运用数形结合方法解题. 【例题设置】例1(平移易错点剖析),例2、4(函数作图),例3(找中心),例5(图 象法解不等式) 【教学过程】 第一课时 一、复习九种基本函数及圆锥曲线的图象. ⑴ 正比例函数 kx y =,)0,(≠∈k R k ⑵ 反比例函数 k y = , )0,(≠∈k R k ☆ 其图象是以原点为中心,以直线y x =和y x =-为对称轴的双曲线. ⑶ 一次函数 b kx y +=,)0,(≠∈k R k ⑷ 一元二次函数 )0(2 ≠++=a c bx ax y ⑸ 指数函数 ,0x y a a =>且1≠a (特征线:1=x ) ⑹ 对数函数 0, log >=a x y a 且1≠a (特征线:1=y ) ⑺ 正弦函数 R x x y ∈=,sin ,周期π2=T ⑻ 余弦函数 x y cos =,R x ∈,周期π2=T ⑼ 正切函数 ),2 (,tan Z k k x x y ∈+ ≠=π π 周期π=T ☆一个小结论:在区间)2 , 0(π 上恒有x x x sin tan >>(证明文科留至《三角函数》一节

再给出,理科用导数证明如下) 证明:① 记()tan f x x x =-,则2 1 ()10cos f x x '= ->在)2 ,0(π上恒成立,故()f x 在)2 ,0(π上为增函数,所以()(0)0f x f >=,即当(0,)2x π ∈时,恒有tan x x > ② 记()sin g x x x =-,则()1cos 0g x x '=->在)2, 0(π 上恒成立,故()g x 在)2 ,0(π 上为增函数,所以()(0)0g x g >=,即当(0,)2 x π ∈时,恒有sin x x > 综上所述,在区间)2 ,0(π 上恒有x x x sin tan >> ⑽ 椭圆 X 型:12222=+b y a x ; Y 型: 122 22=+b x a y ⑾ 双曲线 X 型:12222=-b y a x ; Y 型: 122 22=-b x a y ⑿ 抛物线 px y 22=)0(>p ;px y 22-= )0(>p ; py x 22=)0(>p ;py x 22-= )0(>p . ★注意:1.牢记九种基本函数及圆锥曲线图象是进行函数图象变换的基础,也是提高用数形结合方法解题速度的关键. 2.理解各种曲线图象的较为精确的画法,这在用数形结合法解题,涉及两个图象之间关系时,才不至于造成误解. 二、图象的初等变换 A 、平移变换 1.要作出函数)(a x f y +=的图象,只需将函数)(x f y =的图象向左)0(>a 或向右 )0(h 或向下 )0(

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

函数图象的变换教学设计

“函数B x A y ++=)sin(?ω的图像”教学设计 教材分析 本节选自《普通高中课程标准实验教科书》(人教A 版)必修4 “函数B x A y ++=)sin(?ω的图像”这一节作为示范课课题。它是在前面学习了正弦函数和余弦函数的图象和性质的基础上对正弦函数图象的深化和拓展。根据学生实际情况,为了更好地化解难点,本节分三个课时进行教学,这里是针对第一个课时的教学设计,主要是通过实践探究、归纳总结等方式让学生掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律,明确常数A 、ω、?、B 对图像变化的影响,进而是学生对函数sin()y A x B ω?=++的图像变化有个感性认识,为继续学习函数sin()y A x B ω?=++与sin y x =的图象间的变换关系打下坚实的基础,同时有助于学生进一步理解正弦函数的图象和性质,加深学生对其他函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识,使学生领会由简单到复杂,特殊到一般的化归思想,同时也为相关学科的学习打下扎实的基础。 由于本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要,因此这节课的内容是本章的重点、难点之一。 教学分析 一.设计理念 根据“诱思探究教学”中提出的教学模式,设计的教学过程,遵循“探索—研究—运用”亦即“观察—思维—迁移”的三个层次要素,侧重学生的“思”“探”“究”的自主学习,由旧知识类比得新知识,自主探究图象与图象之间的变换关系,让学生动脑思,动手探,教师的“诱”要在点上,在精不用多。整个教学过程始终贯穿“体验为主线,思维为主攻”,学生的学习目的要达到“探索找核心,研究获本质”。 二.教学目标 1.知识与技能: (1)熟练掌握五点法作图; (2)掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律, 明确常数A 、ω、?、B 对图像变化的影响; (3)对函数sin()y A x B ω?=++的图象变化有个感性认识。 2.过程与方法: 通过学生自己动手画图,使学生知道列表、描点、连线是作图的基本要求;通过在同一个坐标平面内对比相关的几个函数图象,发现规律、总结提炼、加以应用;通过用《几何画板》软件进行验证,加深学生对自己探究的成果的理解和认可,进而鼓励学生积极思考、勤于动手进行实践探索的良好学习品质。 3.情感态度与价值观 通过本节的学习,渗透数形结合思想;培养学生发现问题、研究问题、解决问题的能力和总结、归纳的能力;让学生在实践中领会由简单到复杂、由特殊到一般的化归思想;让学生体会实践与探索带来的成功与喜悦。 三.教学重点和难点 1.教学重点:考察参数A 、ω、?、B 对函数图象变化的影响,理解函数sin y x =图象到 sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图象的变化过程。 2.教学难点:ω对sin()y A x ω?=+的图象的影响规律的概括。

高中数学高一上册函数图像的变换教案

高中数学高一上册函数图像的变换教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 函数图象的变换及图象的应用 学习目标: 1. 使学生通过一些特殊函数的图象归纳出图象平移、对称变换的方法和规律。 2. 会利用一些基本函数的图象通过平移、对称变换做出一些常见函数的图象。 3. 会利用函数的图象解决有关函数的问题。 教学重点: 图象的平移和对称关系 探究过程: 问题1:如何由2()f x x =的图象得到下列各函 数的图象 并在同一坐标系内画出它们的草图。 2(1)(1)(1)f x x -=- 2(2)(1)(1)f x x +=+ 2(3)()11f x x -=- 2(4)()11f x x +=+ 规律:平移变换 ()()y f x y f x a =?=+左右平移{ 0,0a a ><向___平移a 个单位。,向___平移|a|个单位,即:“左加,右减” ()()y f x y f x k =?=+上下平移{0,0k k ><向___平移a 个单位。,向___平移|a|个单位 “上加,下减” 问题2:说出下列函数的图象与指数函数2x y =的图象的关系,并画出它们的示意图

3 . 规律总结: 对称变换:(1)函数()()y f x y f x ==-与的图象关于____________________对称; (2)函数()()y f x y f x ==-与的图象关于____________________ 对称 (3)函数()()y f x y f x ==--与的图象关于 ____________________对称; (4)函数1()()y f x y f x -==与的图象关于____________________ 对称; 问题3:分别在同一坐标系中作出下列各组函数的图象,并说明它们之间有什么关系? 规律总结:对称变换

三角函数图像变换教学设计

§5 创新课堂教学设计模式 在情境教学设计中,创立了课堂教学八步骤: (1)创设情境(2)提出问题(3)学生探究(4)构建知识 (5)变式练习(6)归纳概括(7)能力训练(8)评估学习 数学情境设计实验案例 《函数y=Asin的图象》教学设计 模块名称:数学新课程必修4 (苏教版) 一课时 一、设计思想: 按照新课程理念,通过计算机辅助教学创设情境,实施信息技术与学科课程整合教学设计。引发学生学习兴趣,从而较好地完成教学任务。动画效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点的知识理解掌握。 本课教学设计重点是学习环境的设计,通过几何画板创设动态直观情境,引导学生主动参与、乐于探究、培养学生处理信息的能力。

二、教学内容分析 本课教学内容是能通过变换和五点法作出函数y=Asin的图像,理解函数y=Asin(A>0, ω>0)的性质及它与y=sinx的图象的关系。本节内容是在三种基本变换的基础上进行的,进一步深入研究正弦函数的性质,y=Asin的图像变换是函数图像变换的综合,充分体现利用数形结合研究函数解决问题的思想,对前面的基础和知识有很好的小结作用,这种函数在物理学和工程学中应用比较广泛,有实际生活背景,它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材。 教学重点:掌握函数y=Asin的图像和变换 教学难点:学生能通过自主探究掌握对函数图象的影响。 三、教学目标分析 1认知目标: (1)结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确 对函数图象的影响。 (2)能由正弦曲线通过平移、伸缩变换得到y=Asin的图象。 (3)教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。 2 能力目标: (1)为学生创设学习数学的情境氛围,培养学生的数学应用意识和创新意识。 (2)在问题解决过程中,培养学生的自主学习能力。 (3)让学生经历列表、描点、连线成图的作图过程,体会数形结合、整体与局部的数学思想,培养学生的科学探索精神,归纳、发现的能力。 3 情感目标:

函数图像的几种变换

函数图像的几种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉,函数的性质是解决函数问题的基础,而函数的图像则是函数性质的具体的直观的反应.在高中阶段函数图像的变化方式主要有以下三种变化方式: 1.对称变换 函数图像的对称性是函数在对称区间上值域具有不同特点的直观反应.函数图像的对称性反映在两个方面,一是两个函数图像间的对称情况,二是一个函数图像本身的对称情况.两个函数图像间的对称情况有两种形式:一是两图像关于某直线呈轴对称,二是两图像关于某点呈中心对称. 一般地,函数)()(y x b f y a x f -=+=与的图像关于直线2 a b x -= 对称. 两个函数图像间的常见的轴对称情况有以下几种情况:对于函数)(f x , ())(y )(y 1x f x f y -=????→←=轴对称 关于 ())()(2x f y x f y x -=????→←=轴对称关于 )(y )(y 3x f x f --=?????→←=关于坐标原点对称)( )()(y 4x f y x f =???→?=右留左对称)( (把y=f(x)的图像y 轴左侧的部分去掉,只留下y 轴右侧部分,最后根据y 轴右侧和y 轴左侧关于y 轴对称做出y 轴左侧的图像) )()(y 5x f y x f =???→?=上留下翻上)( (把y=f(x)的图像只留下x 轴上方部分,把x 轴下方的部分根据x 轴对称翻折上去,做出x 轴上方的图像) 例1、函数1)(+=x x f 的图像为()

例2已知定义在区间[]2,0上的函数)(x f y =的图像如图所示,则)2(x f y --=的图像为 例3.函数x x x 32)(f 2 -=的单调递减区间是 例4函数x x x f -=2 )(的单调递增区间是 例5.函数x y lg =是( ) A.是偶函数,在区间()0-, ∞上单调递增 B.是偶函数,在区间()0-, ∞上单调递减 x y 2 1 1 x y 2 1 1 A x y 2 1 1 B x y 2 1 1 C x y 2 1 1 D y x -1 1 A x y 1 1 B x y 1 1 C 0 y x -1 1 D

高中数学_正弦型函数图象变换第二课时教学设计学情分析教材分析课后反思

教学设计

【学情分析】

从知识方面看: ①学生已经具备的:(1)正弦函数图象的三种变换规律(2)上学期已经学习了函数 图象 的平移,有“左加右减”这样一些粗略的关于图象平移的认识,对函数图像的对称性已具备了初步认识,具备将“数”与“形”相结合及转化的意识。但对于本节内容,学生需要理解并掌握三个参数变化对正弦型函数图像的影响,还要研究正弦型函数图像变换规律以及变形应用,知识密度较大,理解掌握起来难度较大。 ②学生所缺乏的:(1)应用数学知识解决问题的能力还不强;(2)数形结合的思想还有 待提 高。 从学习情感方面看: 高一的学生具有一定的知识基础,有强烈的求知欲,喜欢探求真理,自主学习与合作学习意识较强,具有积极的情感态度,。 从学习能力上看: 这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。尤其是我所任教班级的学生,尽管思维活跃、敏捷,却缺乏冷静、深刻,因而片面,不够严谨,系统地分析问题和解决问题的能力有待提高。 由于三角函数图象变换是高中数学的难点,学生的数学思维能力与思想方法有待继续培养、提高、完善,要结合学生的实际情况,分解难点,逐一突破。针对上述情况,在教学中,我注意面向全体,发挥学生的主动性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。利用几 何画板进行动画演示,让学生体会 sin() y A x ω? =+中的,ω?均是针对x而言的,其他因 素暂时不考虑,帮助学生从形的角度更好的理解变换规律。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。 【效果分析】 这是一节新授课,从课前准备、课堂气氛、课后调查反馈的情况看,学生基本上能掌握

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

函数图象变换及练习题

高中函数图象变换 一、基本函数作图(草图画法): 1、一次函数: 2、二次函数: 3、反比例函数: 4、指数函数: 5、对数函数: 6、幂函数: 7、正弦函数:

二、图像变换: ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐

三角函数图像变换.docx

龙文教育一对一个性化辅导教案

三角函数图象变换 考点分析:三角函数图象及性质是高考必考内容,主要是函数图像变换及函数性质。重点:①熟练地对y=simr进行振幅和周期变换;②会用相位变换画函数图彖; ③“五点法”画尸力sin(Gx+?)的图象、图象变换过程的理解; 难点:①理解振幅变换和周期变换的规律;②理解并利用相位变换画图象;③多种变换的顺序 一、教学衔接: 1、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 2、检查学生的作业,及时指点; 3、59错题讲解 1)错题重现及讲解: 2)讲透考点: 3)相似题练习: 4、课前热身练习: 二、本次课主要内容 知识点一振幅变换 例1画出函数y=2sinx XG R; y=gsinx xwR的图象(简图). 解:画简图,我们用“五点法” ???这两个函数都是周期函数,且周期为2〃 ???我们先画它们在[0, 2刀]上的简图?列表: 作图: 知识点二周期变换 例2 iUlj出函数y=sin2x XG R; y=sin*x xwR的图象(简图)? TT 解:函数y=sin2%, xGR的周期T=——=JI 2 我们先画在[0,兀]上的简图,在[0,兀]上作图,列表: 作图:

知识点三图像平移 例画出函数 yr yr * * y=sin(x+—), xWRy=sin(x ——), xGR 的简图. 3 4 解:列表 描点画图: 【同步训练】 1、(l)y=sin(x+—y=sinx 向平移个单位得到的. (2) y=sin(x ——)是由y=siwc 向平移个单位得到的? ? 4 (3) y=sin(x —兰)是由y=sin(x+— )|nj 平移个单位得到的. 4 4 2?若将某函数的图彖向右平移兰以后所得到的图彖的函数式是y=sm(x+-)f 则原来的 2 41 函数表达式为( ) SIT 7T TT . 77 A ?y=sin(x+ —) B ?y=sin(x+ — )Cj=sin(x — —) D ?y=sin(x+ —— 「 4 ° 2 4 4 4 3、 将函数y=/(x)的图彖沿兀轴向右平移彳,再保持图象上的纵坐标不变,而横坐标变为原 来的2倍, 得到的曲线与y=siwc 的图象相同,贝ijy=/(x)是() 7T TT . 2TT 2TT A.j=sin(2x+y) B.j=sin(2x — y ) C.>j =sin(2x+ —) D ?y=sin(2x ——) 4、 把函数y=cos(3尢+ ◎的图象适当变动就可以得到y=sin(-3x)的图彖,这种变动可以是 4 ( ) A ?向右平移仝 B ?向左平移仝 C ?向右平移三 4 4 12 5、 若函数y=f{x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将 整个图象 沿%轴向左平移兰个单位,沿y 轴向下平移1个单位,得到函数y=-sin^的图彖, 2 2 3 -1 6 4 2 3 D ?向左平移醫

函数y=Asin(wx+φ)的图象 精品教案

1.5函数y=Asin(ωx+?)的图象教学设计 福州金山中学 数学组 林继枫 一.教学构想 《高中数学新课程标准》提出,数学学习要积极倡导自主、合作、探究的学习方式,全面提高学生的数学素养.高中数学传统教学模式往往呈现教师教的辛苦、学生学得费劲、收效又小的困境,本节课拟在(DIS )网络实验室进行,利用数字化教学平台,引导学生主动参与学习,充分发挥学生的主体作用和教师的主导作用,切实提高数学教学的实效性. 二.教材分析 本节课内容是人教A 版数学必修4第一章第五节《函数()?ω+=x A y sin 的图象》,是在学生已经学习了正、余弦函数的图象和性质的基础上,进一步研究生活生产实际中常见的函数类型: ()?ω+=x A y sin 函数的图象.本节内容从一个物理问题引入,根据从具体到抽象的原则,通过参数赋 值,从具体函数的讨论开始,把从函数x y sin =的图象到函数()?ω+=x A y sin 的图象的变换过程,分解为先分别考察参数A 、、ω?对函数图象的影响,然后整合为对()?ω+=x A y sin 的整体考察. 并充分利用多媒体的演示,揭示由正弦曲线x y sin =如何得到函数 sin()y A x ω?=+的图象.这样借助具 体函数图象的变化,领会由简单到复杂、特殊到一般的化归数学思想.同时还力图向学生展示观察、归纳、类比、联想等数学思想方法,通过本节内容的学习可以使学生将已有的知识形成体系,对于进一步探索、研究其他数学问题有很强的启发与示范作用. 三.学情分析 函数 sin()y A x ω?=+的图象是三角函数中的一个重要问题,本节内容将三角函数的知识作了 进一步的整合,对由简单到复杂、特殊到一般的化归数学思想作了进一步的提升,同时也对后续知识的学习起到引领的作用. 从学生的知能状况来看,在本课之前,学生已经学习了正、余弦函数的图象和性质,在知识储备上已具备学习本节课程的条件.虽然我们学生的基础知识不扎实、理解能力较差,但对数学的学习还是比较重视,也肯学. 从本课的学习内容来看,属于探究部分.在网络环境下,学生充分借助计算机,在几何画板软件的支持下,探究参数A 、、ω?对函数sin()y A x ω?=+图象变化,并充分利用多媒体的演示,揭示由 正弦曲线x y sin =如何得到函数 sin()y A x ω?=+的图象,通过课堂上学生的自主探究,教师适时

相关主题