搜档网
当前位置:搜档网 › 排列组合+概率统计

排列组合+概率统计

排列组合+概率统计
排列组合+概率统计

1.分类计数原理(加法原理)

12n N m m m =+++ . 2.分步计数原理(乘法原理)

12n N m m m =??? . 3.排列数公式

m

n

A =)1()1(+--m n n n =!

!)(m n n -.(n ,m ∈N *

,且m n ≤).

注:规定1!0=. 4.排列恒等式

(1)1

(1)m m n n

A n m A -=-+; (2)1m

m

n n n A A n m -=

-; (3)1

1m m n n A nA --=;

(4)11n n n n n n nA A A ++=-; (5)11m m m n n n

A A mA -+=+. (6)1!22!33!!(1)!1n n n +?+?++?=+- . 5.组合数公式

m n C

=

m n m

m

A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N *

,m N ∈,且m n ≤). 6.组合数的两个性质

(1)m n C =m

n n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .

6.组合恒等式

(1)1

1m

m n n n m C C m --+=

; (2)1m m

n n n C C n m -=-; (3)11m

m n n n C C m

--=;

(4)

∑=n

r r n

C

0=n

2;

(5)1

121++++=++++r n r n r r r r r r

C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C . (8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 . (10)n n n n n n n C C C C C 22222120)()()()(=++++ .

7.排列数与组合数的关系

m m

n n

A m C =?! . 8.单条件排列

以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”

①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)

1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.

(2)紧贴与插空(即相邻与不相邻)

①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k

m k n k k A A --种.

②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题

常用捆绑法;

③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一

组互不能挨近的所有排列数有k h h h A A 1+种.

(3)两组元素各相同的插空

m 个大球n 个小球排成一列,小球必分开,问有多少种排法?

当1+>m n 时,无解;当1+≤m n 时,有n m n n

n m C A A 11

++=种排法.

(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n

n m C +.

9.分配问题

(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配

方法数共有m

n

n n n n n mn n n mn n mn n mn C C C C C N )

!()!

(22=

?????=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有

m

n n

n n n n mn n n mn n mn n m mn m C C C C C N )

!(!)!(!...22=????=--. (3)(非平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则

其分配方法数共有!

!...!!

!! (212)

11m n n n n p n p n n n m p m C C C N m m

=??=-.

(4)(非完全平均分组有归属问题)将相异的) 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,...,m n 件,且1n ,2n ,...,m n 这m 个数中分别有a 、b 、c 、...个相等,则其分配方法数有!...!!! (2)

11c b a m C C C N m m

n n n n p n p ??=

-12!!

!!...!(!!!...)

m p m n n n a b c =

.

(5)(非平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,

2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法

数有!!...!!

21m n n n p N =.

(6)(非完全平均分组无归属问题)将相异的) 12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,

则其分配方法数有!...)

!!(!!...!!

21c b a n n n p N m =.

(7)(限定分组有归属问题)将相异的p (2m p n n n = 1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,

2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有

!

!...!!

...21211m n n n n p n p n n n p C C C N m m

=?=-.

10.“错位问题”及其推广

贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为

1111()![

(1)]2!3!4!!

n f n n n =-+-+- . 推广:n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234

(,)!(1)!(2)!(3)!(4)!

(1)()!(1)()!

m m m m p

p

m

m m

m

f n m n C n C n C n C n C n p C n m =--+---+--+--++--

12341224![1(1)(1)]p m p m m m m m m m

p m n n n n n n

C C C C C C n A A A A A A =-+-+-+-++- .

11.不定方程2n x x x m = 1+++的解的个数

(1)方程2n x x x m = 1+++(,n m N *∈)的正整数解有11

m n C --个. (2) 方程2n x x x m = 1+++(,n m N *∈)的非负整数解有11

n m n C +--个.

(3) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≥(k N *

∈,21i n ≤≤-)

的非负整数解有11

(2)(1)m n n k C +----个.

(4) 方程2n x x x m = 1+++(,n m N *∈)满足条件i x k ≤(k N *

∈,21i n ≤≤-)

的正整数解有12222321(2)11121221

(1)n m n m n k n m n k n m n k n n n n n n C C C C C C C +--+---+---+---------+-+- 个.

12.二项式定理n

n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;

二项展开式的通项公式

r

r n r n r b a C T -+=1)210(n r ,,,

=. 13.等可能性事件的概率

()m

P A n

=

. 14.互斥事件A ,B 分别发生的概率的和

P(A +B)=P(A)+P(B).

15.n 个互斥事件分别发生的概率的和

P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 16.独立事件A ,B 同时发生的概率

P(A ·B)= P(A)·P(B).

17.n 个独立事件同时发生的概率

P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 18.n 次独立重复试验中某事件恰好发生k 次的概率

()(1).k k

n k n n P k C P P -=-

第三章概率

3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:

(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;

(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;

(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数nA 为事件A 出现的频数;称事件A 出现的比例

fn(A)=n

n A

为事件A

出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n

的比值n

n A

,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,

这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率 3.1.3 概率的基本性质 1、基本概念:

(1)事件的包含、并事件、交事件、相等事件

(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;

(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件; (4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) 2、概率的基本性质:

1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);

3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);

4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。 3.2.1 —3.2.2古典概型及随机数的产生 1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。 (2)古典概型的解题步骤; ①求出总的基本事件数;

②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数

A

3.3.1—3.3.2几何概型及均匀随机数的产生 1、基本概念:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)

成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:

P (A )=积)的区域长度(面积或体试验的全部结果所构成积)

的区域长度(面积或体构成事件A ;

(1) 几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每

个基本事件出现的可能性相等.

第二章统计

2.1.1简单随机抽样 1.总体和样本

在统计学中 , 把研究对象的全体叫做总体. 把每个研究对象叫做个体.

把总体中个体的总数叫做总体容量.

为了研究总体的有关性质,一般从总体中随机抽取一部分:

研究,我们称它为样本.其中个体的个数称为样本容量.

2.简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。 3.简单随机抽样常用的方法:

(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。 4.抽签法:

(1)给调查对象群体中的每一个对象编号; (2)准备抽签的工具,实施抽签

(3)对样本中的每一个个体进行测量或调查

例:请调查你所在的学校的学生做喜欢的体育活动情况。 5.随机数表法:

例:利用随机数表在所在的班级中抽取10位同学参加某项活动。 2.1.2系统抽样

1.系统抽样(等距抽样或机械抽样):

把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。

K (抽样距离)=N (总体规模)/n (样本规模)

前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。 2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。因为它对抽样框的要求较低,实施也比较简单。更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。 2.1.3分层抽样

1.分层抽样(类型抽样):

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。 两种方法:

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。 分层标准:

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。 3.分层的比例问题:

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

2.2.2用样本的数字特征估计总体的数字特征

1、本均值:

n x x x x n

+++=

21

2、.样本标准差:n x x x x x x s s n 2

22212

)()()(-++-+-=

=

3.用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样

本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。

虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正的分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。 4.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变 (2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍 (3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用; “去掉一个最高分,去掉一个最低分”中的科学道理 2.3.2两个变量的线性相关 1、概念:

(1)回归直线方程(2)回归系数 2.最小二乘法

3.直线回归方程的应用

(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系

(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。

(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。

4.应用直线回归的注意事项

(1)做回归分析要有实际意义;

(2)回归分析前,最好先作出散点图;

(3)回归直线不要外延。

《概率论与数理统计》讲义#(精选.)

第一章 随机事件和概率 第一节 基本概念 1、排列组合初步 (1)排列组合公式 )! (! n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。 )! (!! n m n m C n m -= 从m 个人中挑出n 个人进行组合的可能数。 例1.1:方程 x x x C C C 765107 11=-的解是 A . 4 B . 3 C . 2 D . 1 例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少? (2)加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。 (3)乘法原理(两个步骤分别不能完成这件事):m ×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。 例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法? 例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少? 例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜

色,且相邻区域的颜色必须不同,则共有不同的涂法 A.120种B.140种 C.160种D.180种 (4)一些常见排列 ①特殊排列 ②相邻 ③彼此隔开 ④顺序一定和不可分辨 例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单? ①3个舞蹈节目排在一起; ②3个舞蹈节目彼此隔开; ③3个舞蹈节目先后顺序一定。 例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法? 例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法? ①重复排列和非重复排列(有序) 例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法? ②对立事件 例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法? 例1.11:15人中取5人,有3个不能都取,有多少种取法? 例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?

概率统计 排列组合

概率统计 排列统计 班级: 姓名: 学号: 成绩: 一 、选择题:本大题共15小题,每小题4分,共60分。在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。 1.以下条件可以确定一个平面的是( )。 .A 空间三点 .B 一直线和一个点 .C 两条直线 .D 两平行直线 2.两条直线不平行是这两直线异面的( )。 .A 充分条件 .B 必要条件 .C 充要条件 .D 既不充分又不必要条件 3.由数字1,2,3,4,5组成没有重复数字,且数字1和2不相邻的五位数,那么这种五位数的个数是( )。 .A 72 .B 60 .C 48 .D 50 4.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( )。 .A 24个 .B 30个 .C 40个 .D 60个 5.将12人分成两组,一组8人,一组4人的分法数为( )。 .A 812A .B 812C .C 841212+C C .D 841212 C C 6.抛掷两枚硬币的试验中,设事件M 表示“两个都是反面”,则事件M 表示( )。 .A 两个都是正面 .B 至少出现一个正面 .C 一个是正面一个是反面 .D 以上答案都不对 7.同时抛掷两颗骰子,总数出现9点的概率是( )。 . A 14 . B 15 . C 16 . D 1 9 8.样本:6,7,8,8,9,10的标准差是( )。 .A 2 . B . C 3 . D 9.下列变量中,不是随机变量的是( )。 .A 一射击手射击一次的环数 .B 水在一个标准大气压下100C 时会沸腾

.C 某城市夏季出现的暴雨次数 .D 某操作系统在某时间发生故障的次数 10.某射击手击中目标的概率是0.84,则目标没有被击中的概率是( )。 .A 0.16 .B 0.36 .C 0.06 .D 0.42 11.在12件产品中,有8件正品,4件次品,从中任取2件,2件都是次品的概率是( )。 . A 19 . B 1 10 .C 111 .D 112 12. 在10(x 的展开式中,6x 的系数为( )。 .A 61027C - .B 41027C .C 6109C .D 6 109C - 13.二项式8(1)x -的展开式中的第5项是( )。 .A 3 56x .B 3 2 56x - .C 470x .D 270x 14.设()6 26012631+…x a a x a x a x -=+++,则0126+=…a a a a +++( )。 .A 32 .B 64 .C 729 .D 56 15.已知某种奖券的中奖概率是50%,现买5张奖券,恰有2张中奖的概率是( )。 . A 25 . B 58 . C 516 . D 5 32 二、填空题:本大题共5小题,每小题4分,共20分。把答案填在题中横线上。 16.56101054 99 4P P P P -=- 。 17.甲、乙两射手彼此独立地射击同一目标,甲击中目标的概率为0.8,乙击中目标的概率为0.9,则恰好有一人击中目标的概率为 。 18.已知互斥事件,A B 的概率3()4P A = ,1()6 P B =,则()P A B ?= 。 19.若把英语单词“bookkeeper ”的字母顺序写错了,则可能出现的错误共有 种。 20.若23 1818 x x C C -=,则x = 。 三、解答题:本大题共6小题,共70分。解答应写出推理、演算步骤。 21.5人排成一排,如果甲必须站在排头或排尾,而乙不能站排头或排尾,那么不同的排法总数是多少?(10分)

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

高中数学排列组合与概率统计习题

高中数学必修排列组合和概率练习题 一、选择题(每小题5分,共60分) (1)已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作 为点的坐标,在同一直角坐标系中所确定的不同点的个数是C (A)32(B)33(C)34(D)36 解分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标,不同点的个数为1163P P g 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标,不同点的个数为1163P P g 不同点的个数总数是1111636336P P P P +=g g ,其中重复的数据有(1,7),(7,1),所以只有34个 (2)从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真 数,则可以得到不同的对数值的个数为 (A)64(B)56(C)53(D)51 解①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ; ②1不能为底数,以1为底数的“对数式”个数有8个,而应减去; ③1为真数时,对数为0,以1为真数的“对数式”个数有8个,应减去7个; ④2324log 4log 92log 3log 9 ===,49241log 2log 32log 3log 9 == =,应减去4个 所示求不同的对数值的个数为29287453()C ---=个 (3)四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生 不能全排在一起,则不同的排法数有 (A )3600(B )3200(C )3080(D )2880 解①三名女生中有两名站在一起的站法种数是23P ; ②将站在一起的二名女生看作1人与其他5人排列的排列种数是66P ,其中的 三名女生排在一起的站法应减去。站在一起的二名女生和另一女生看作1人与4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。 符合题设的排列数为: 26153625665432254322454322880P P P P -=?????-????=????=种()()() 我的做法用插空法,先将4个男生全排再用插空743342274534522880A A C A A C A --= (4 )由100+展开所得x 多项式中,系数为有理项的共有 (A )50项(B )17项(C )16项(D )15项 解1000100110011r 100r r 100100100100100100=C )+C )++C )++C --L L

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

高中数学-排列组合概率综合复习

高中数学 排列组合二项式定理与概率统计

其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。 例4、设88 018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( ) A .2 B .3 C .4 D .5 例5、组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1) C r -1n -1 C .nr C r -1 n -1 D .n r C r -1n -1 . 例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274 例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 1 84 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 )5)(4)(3)(2)(1(-----x x x x x 4 x

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

高中数学竞赛_排列组合与概率【讲义】

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用 m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地 0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为 n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10 ==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有1 1--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+ 推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1m m n C -+ 8.二项式定理:若n ∈N +,则(a+b)n =n n n r r n r n n n n n n n b C b a C b a C b a C a C +++++---222110.其

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

组合数学中的概率论方法 (1)

组合数学中的概率论方法 概率方法的背景和出发点— 当今科学的发展表明:概率方法是组合数学中最强大和应用广泛的数学工具。导致它迅速发展的一个主要原因在于理论计算机科学与统计物理学中重要研究对象的随机性。 概率方法的基本出发点可以描述如下: 为了证明具有某一个组合结构性质的存在性,人们需要构造一个概率空间并且用它证明:在这个空间中随机选取的一个具有此组合性质的元素的概率值为正。 历史上最早运用这个方法的是伟大的数学家P.Erdos !在过去的五十多年里面他对于这门学问的贡献是如此之大,以至于人们称之为“P.Erdos 方法”。他在这个邻域里面的众多深邃的研究结果不但多如天上的繁星,更因为许多著名的公开问题和猜想而成为这门学科蓬勃发展的发动机。 这个讲义不可能完全介绍这门学科的全貌,它主要是介绍概率方法在组合数学邻域中的运用,尤其强调通过典型例子的形式来介绍这一方法。 知识背景: 概率是描述事件发生可能性大小的数量指标,它是逐步形成可发展完善起来的。最初人们讨论的是古典概型(随机)试验中事件发生的概率。所谓古典概型试验是指样本空间中的点的样本点的个数是有限的且每一个样本点(组成事件)发生的可能性是相同的,简称为有限性与等可加性。例如:掷一枚均匀骰子的试验与从一个装有n 个相同(编了号)的求中随机模一个球的试验都是古典概型试验。对于古典概型试验,人们给出概率的如下定义: 定义1.设试验E 是古典概型的,其样本空间Ω由n 个样本点组成,其中一事件A 由r 个样本点组成,则定义事件A 的概率为 n r ,记为 n r A A P =Ω= 中样本点数目中样本点数目)( 古典概率有下面几个基本性质: (1) 对于任意一个事件A ,有;1)(0≤≤A P (2) .1)(=ΩP (3) 设m A A A ,...,,21为互斥的m 个事件,则有 ∑===m i i m i i A P A P 1 1 )()( 注意:在实际应用当中,古典概型受到限制!因为他只用于有限概率空间。而对于无限的情形,则要用到一点定义:

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计

例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 184 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 (A ) 511 (B )681 (C )3061 (D )408 1 例11、某一批花生种子,如果每1粒发牙的概率为4 5,那么播下4粒种子恰有2粒发芽的概率是( ) A.16 625 B. 96625 C. 192625 D. 256625

排列组合二项式定理与概率统计

排列组合二项式定理与概率统计 重点知识回顾 1. 排列与组合 ⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关, 分类计数原理与分类有关 ⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合, ⑶排列与组合的主要公式 _ r — r+1 项是 T r+1 =C n a n r b r . ⑵二项展开式的通项公式 二项展开式的第r+1项T r+1=c n a n —r b r (r=0,1,…叫)做二项展开式的通项公式。 ⑶二项式系数的性质 ① 在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, 即 c n = c n r (r=0,1,2,…,n ). 项和第n 3项)的二项式系数相等,并且最大,其值为 2 A n = n! =n(n — 1)(n — 2) ....... 2 ? 1. ②组合数公式: c m n! n(n 1) (n m 1) (m < n) m!( n m)! m (m 1) 2 1 ③组合数性质: ①c m ㈡ m (m < n) ② c 0 c ; c n 2 c ; 2n ③ Cn Cn c 4 C n c 1 c 3 C n C n 2n 1 2.二项式定理 ⑴二项式定理 (a +b)n =C 0a n +c n a n — 1 r b+ …+C n a n r b r +… + c n b n ,其中各项系数就是组合数c n ,展开式共有n+1项,第 问题?区别排列问题与组合问题要看是否与顺序有关, 与顺序有关的属于排列问题, 与顺序无关的属于组合问题 求共有多少种方法的 ①排列数公式: A m n! (n m)! n(n 1) (n m 1) (m

排列组合常见题型及解答

排列组合常见题型 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、 3 8 A D、 3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排

法种数有 【解析】:把A,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432,其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法数是52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(数字作答) 【解析】: 1 11789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600 【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 【解析】:依题,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有25A =20种不同排法。

在概率的计算中的排列组合

预备知识 在概率的计算中经常要用到一些排列组合知识,也常常用到牛顿二项式定理。 这里罗列一些同学们在中学里已学过的有关公式,并适当作一点推广。 一. 两个原理 1. 乘法原理: 完成一项工作有m 个步骤,第一步有1n 种方法,第二步有2n 种方法,…, 第m 步有m n 种方法,且完成该项工作必须依次通过这m 个步骤, 则完成该项工作一共有 1n 2n …m n 种方法,这一原理称为乘法原理。 2. 加法原理: 完成一项工作有m 种方式,第一种方式有1n 种方法,第二种 方式有2n 种方法,…,第m 种方式有m n 种方法,且完成该项工作只需 选择这m 种方式中的一种,则完成这项工作一共有 1n +2n +…+m n 种方法,这一原理称为加法原理。 二. 排列: 从n 个元素里每次取出r 个元素,按一定顺序排成一列,称为 从n 个元素里每次取r 个元素的排列,这里n 和Z 。均为正整数(以 下同)。 当这n 个元素全不相同时,上述的排列称为无重复排列,我 们关心的是可以做成多少个排列,即排列数。 对于无重复排列,要求当 时 r n 称为选排列,而当 r =n 时称为全排列。我们记排列数分别为 即将全排列看成选排列的特例。 利用乘法原理不难得到 由阶乘的定义

由阶乘的定义 将上面的n个不同的元素改为n类不同的元素,每一类元素 都有无数多个。今从这n类元素中取出r个元素,这r个元素可 以有从同一类元素中的两个或两个以上,将取出的这r个元素dl 成一列,称为从n类元素中取出r个元素的可重复排列,排列数记 作,由乘法原理得 显然,此处r可以大于n 例3 将三封信投入4个信箱,问在下列两种情形下各有几 种投法? 1)每个信箱至多只许投入一封信; 2)每个信箱允许投入的信的数量不受限制。 解1)显然是无重复排列问题,投法的种数为 2)是可重复排列问题,投法的种数为 三、组合 从“个元素中每次取出r个元素,构成的一组,称为从n个元 素里每次取出r个元素的组合。 设这n个元素全不相同,即得所谓无重复组合,我们来求组合数,记作 将一个组合中的r个元素作全排列,全排列数为 , 所有组合中的元素作全排列,共有 个排列,这相当于从n个元素里每次取r个元素的选排列,排列总数为 故有

基本公式排列组合二项式定理及概率统计

基本公式·排列组合二项式定理及概率统计 151排列数公式 : m n A =)1()1(+--m n n n ! ! )(m n -(n ,m ∈N * ,且m n ≤).规定1!0= 154组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1-m n C =m n C +规定0 =n C 155组合恒等式 (3)11m m n n n C C m --=; (4)∑=n r r n C 0=n 2; (5)121++++=++++r n r n r r r r r r C C C C C (6)n n r n n n n C C C C C 2210 =++++++ (7)420531 2-=+++=+++n n n n n n n C C C C C C (8)321 232-=++++n n n n n n n nC C C C (9)r m r n r m n r m n r m C C C C C C C +-=+++0110 (10)n n n n n n n C C C C C 2222212 0)()()() (=++++ 156排列数与组合数的关系:m m n n A m C =?! 157.单条件排列(以下各条的大前提是从n 个元素中取m 个元素的排列) (1)“在位”与“不在位” ①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1 111---=m n n A A (着眼位 置)1 1111----+= m n m m n A A A (着眼元素)种 (2)紧贴与插空(即相邻与不相邻) ①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k m k n k k A A --种 ②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 1 1+-+-种 注:此类问题常用捆绑法; ③插空:两组元素分别有k 、h 个(1+≤h k ) ,把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有 k h h h A A 1+种 (3)两组元素各相同的插空 m 个大球n 个小球排成一列,小球必分开,问有多少种排法? 当1+>m n 时,无解;当1+≤m n 时,有 n m n n n m C A A 11 ++=种排法 (4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n n m C + 158.分配问题 (1)(平均分组有归属问题)将相异的 mn 个物件等分给m 个人,各得n 件,其分配方法数共有m n n n n n n mn n n mn n mn n C C C C C N ) !(22=?????=-- (2)(平均分组无归属问题)将相异的mn 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 m n n n n n n mn n n mn n mn n m m C C C C C N ) !(!!...22=????=-- (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同 元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元 素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10 ==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有1 1--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+ 推论2 从n 个不同元素中任取m 个允许元素重复出现的组合叫做n 个不同元素的m 可重组合,其组合数为.1m m n C -+ 8.二项式定理:若n ∈N +,则(a+b)n =n n n r r n r n n n n n n n b C b a C b a C b a C a C +++++---2221 10.其中第r+1

相关主题