搜档网
当前位置:搜档网 › 组织芯片的应用

组织芯片的应用

组织芯片的应用

组织芯片应用

细胞表型分析 用组织芯片技术可以对细胞进行高通量免疫表型分析。用标准的免疫组化法对组织芯片上的数百甚至上千例各种不同的肿瘤组织标本进行各种指标的检测,不但可用于发现这些指标与肿瘤的诊断、鉴别诊断和预后密切相关,而且与完整的大组织切片相比,不同部位点样构建的组织芯片便可以提供一个可靠的高通量免疫组化表型分析系

统。

与基因芯片联合应用 用组织芯片技术也可以同时进行数种或数十种基因扩增、表达的检测,可用于发现各种组织样本中各种基因的调控,再根据这些不同的调控情况得出有价值的实验结果。

用于新基因靶点筛选 组织芯片技术亦可用于寻找治疗肿瘤的新靶点。用组织芯片对每个候选基因进行分析可以发现最有潜力成为新药或抑制剂的靶基因,或发现原癌基因或编码信号转导分子的新基因。如果某种特殊基因过度表达或在许多肿瘤中表达增强,则此基因即可作为一种重要的靶基因,那么干扰这种基因的表达或其表达产物功能的物质可能就是极有潜力的新药。所以,肿瘤组织芯片特别适合于研制抗肿瘤药物时先对靶基因进行选择。

缩微组织学和病理学图谱 根据需要可制备各种缩微组织学和病理学图谱。如制备各种正常组织芯片、各种病理类型的肿瘤组织芯片、同一系统中的各种肿瘤组织芯片、少见肿瘤组织芯片、疑难病例组织芯片、各种炎症组织芯片、各种寄生虫组织芯片以及胚胎发育组织芯片。可用于进修、学习、存储和进行对比研究等。

基因扩增分析 用组织芯片技术也可以同时进行数种或数十种基因扩增、表达的检测,可用于发现各种组织样本中各种基因的调控,再根据这些不同的调控情况得出有价值的实验结果。

抗体筛选 在各种疾病研究中,疾病相关抗体和探针是必不可少的研究工具,其特异性敏感性对研究结果影响巨大。对抗体和探针测试的基本方法就是用大量不同来源的阳性和阴性组织进行检查。对此,传统病理学方法需做大量单一切片。如果采用组织芯片技术,一次实验即可完成。现在组织芯片技术已经成为生物制品公司、病理医生和研究者筛选抗体和探针的必备工具。

用于个体化肿瘤治疗 组织芯片可用于筛选大量的肿瘤组织标本来确定哪些肿瘤应采取何种治疗方式。如对乳腺癌进行HER-2基因的筛选,高表达或者扩增的患者Herceptin 治疗将有良好的效果。

图表 1食道癌免疫组化胞核染色图 图表 2免疫组化胞浆染色图

图表 3免疫组化胞核染色图

图表 4肿瘤HE 染色图 图表 5乳腺癌FISH 图

图表 6前列腺免疫组化胞膜染色图

图表 7肺癌免疫组化胞

膜染色图

组织芯片与临床病理

组织芯片与临床病理 首都医科大学附属北京天坛医院张丽敏 1998 年, Konoen 等在美国 NatureMedicine 上发表了制作组织芯片用于乳腺癌 p53 基因扩增及其表达蛋白水平的研究,并首次提出了组织芯片的概念。随后 Moch 等对肾癌,Scharan 等对不同类型肿瘤, Richter 等对尿道膀胱癌的组织芯片进行了免疫组织化学和原位分子杂交等研究,使得世人对组织芯片有了进一步的认识。 一、组织芯片的概念和特点 (一)组织芯片的概念:组织芯片 (tissuechip) ,又叫组织微阵列(tissuemicroarrays , TMA), 是将许多不同个体组织标本以规则阵列方式排布于同一载玻片上,进行同一指标的原位组织学研究。组织芯片是生物芯片技术的一个重要分支。 组织芯片与基因芯片和蛋白质芯片一起构成了生物芯片系列,使人类第一次能够有效利用成百上千份组织标本,在基因组、转录组和蛋白质组三个水平上进行研究,被誉为医学、生物学领域的一次革命。组织芯片技术作为一项新兴的生物学研究技术,正以它绝对的优越性展示着自己的潜力。( ppt5 )图表显示的是组织芯片与基因芯片、蛋白芯片的区别。 (二)组织芯片的特点:体积小,信息含量大,获得大量结果,减少试验误差。省时、省力、经济,有利于原始蜡块的保存。 二、组织芯片的分类 (一)根据芯片上样本含量的多少:可分为低密度芯片 (<200 点 ) 、中密度芯片(200 ~ 600 点 ) 和高密度芯片 (>600 点 ) 。 目前国际上常用的 TMA 的标本量多为 60-100 个,组织片的直径在 2mm 左右。一般情况下,在直径 2mm 的组织片上有约 100000 个细胞,而直径 0.6mm 的组织片上仅有约30000 个细胞。 (二)按组织来源:可分为人类组织芯片、动物组织芯片和肿瘤组织芯片。

芯片设计和生产流程

芯片设计和生产流程 大家都是电子行业的人,对芯片,对各种封装都了解不少,但是你 知道一个芯片是怎样设计出来的么?你又知道设计出来的芯片是 怎么生产出来的么?看完这篇文章你就有大概的了解。 复杂繁琐的芯片设计流程 芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的IC芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是IC设计中的建筑师究竟是谁呢?本文接下来要针对IC设计做介绍。 在IC生产流程中,IC多由专业IC设计公司进行规划、设计,像是联发科、高通、Intel等知名大厂,都自行设计各自的IC芯片,提供不同规格、效能的芯片给下游厂商选择。因为IC是由各厂自行设计,所以IC设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗IC芯片时,究竟有那些步骤?设计流程可以简单分成如下。

设计第一步,订定目标 在IC设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才不用再花额外的时间进行后续修改。IC设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。 规格制定的第一步便是确定IC的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合IEEE802.11等规範, 不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是

确立这颗IC的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。 设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在IC芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的HDL有Verilog、VHDL等,藉由程式码便可轻易地将一颗IC地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。 ▲32bits加法器的Verilog范例。 有了电脑,事情都变得容易 有了完整规画后,接下来便是画出平面的设计蓝图。在IC设计中,逻辑合成这个步骤便是将确定无误的HDL code,放入电子设计自动化工具(EDA tool),让电脑将HDL code转换成逻辑电路,产生如下的电路图。之后,反

组织芯片

组织芯片初步学习 13临七卓医 韦卢鑫 1330705103 组织芯片是将数十至上千个小组织整齐地排放在一张载玻片上而制成的组织切片。它分为多组织片,组织阵列和组织微阵列。组织芯片的特点是:体积小, 信息含量大, 一次性实验即可获大量结果。组织芯片可用于组织中的DNA 、RNA 和蛋白质的定位分析和检测。像普通组织切片一样, 可做HE 染色、特殊染色、免疫组织化学染色、DNA 和RNA 原位杂交、荧光原位杂交。组织芯片蜡块可做100 ~ 200 张连续切片。这样用同一套组织芯片即可迅速的对上百种生物分子标记(如抗原, DNA 和RNA)进行分析、检测。因此组织芯片技术是建立疾病, 特别是肿瘤的生物分子文库的强有力的工具。 图1 组织阵列由41 例淋巴瘤组织组成, 组织的直径是2.0 mm 图2 组织微阵列由200 多不同发展时期的膀胱癌组织组成,组织的直径是0.6 mm 组织芯片的基本制作方法:通过组织芯片制作机细针打孔的方法, 从众多的组织蜡块中采集到数十至上千的圆柱形小组织, 并将其整齐排放到另一个空白蜡块中而制成组织芯片蜡块。然后, 对组织芯片蜡块进行切片, 再将切片转移到载玻片上而制成组织芯片。 组织芯片的应用有: (1)寻找疾病基因::组织芯片与基因芯片配合使用在寻找疾病基因中有很好的互补作用。具有强大的检测基因的功能利用这些新技术,但是, 这些技术不能将原发改变的基因和继发改变的基因区分开来。换句话说, 在这些改变的基因H &E 染色部分从乙醇固定多肿瘤阵列(A ) 四个数组元素:肾癌(B ),鳞状细胞癌 肺(C )中,小叶浸润性乳腺癌(D )和结 肠癌(E )。 B-E ,x400。

组织芯片及其应用

组织芯片及其应用 【综述】组织芯片(tissue chip),也称组织微阵列(tissue microarrays),是生物芯片技术的一个重要分支,是将许多不同个体组织标本以规则阵列方式排布于同一载玻片上,进行同 一指标的原位组织学研究。该技术自1998年问世以来,以其大规模、高通量、标准化等 优点得到大范围的推广应用。 【优势】它克服了传统病理学方法中存在的某些缺陷,使人类第一次有可能利用成百上千份自然或处于疾病状态下的组织标本来研究特定基因及其所表达的蛋白质与疾病之间的相关 关系,同时克服了传统方法操作复杂、自动化程度低、检测效率低等缺点,既可以进行基础 研究,也可以进行临床研究。 【特点】准确、平行、快速、高通 【应用领域】疾病诊断、药物研究筛选、基因表达分析、基因突变的确认、基因分型、新 基因的发现 具体来看,可从以下几点详述: 1 对形态学的贡献:形态比较、特殊形态的提取,将病理切片的不同部位、不同结构同时 平行地呈现于一张芯片中,可进行较为精细的比较。 2 对分子生物学的贡献:e.g. PCR技术复杂昂贵,利用组织芯片可一次完成数百例的检测,方便快捷,也可使PCR结果更为可靠。 3 对遗传信息学的贡献:方便准确地进行DNA和RNA的定位提取:可以相对准确地提取 纯度较高的细胞群,提高DNA和RNA的丰度。 【简述操作步骤】 1 每个组织标本制作一个HE染色切片,显微镜定位标记病变部位,比较切片和石蜡切块。 2 制作空白蜡块接受供体取得的样本。 3 芯片微阵列的设计:计划好研究样本的数量。 4 构建微阵列。 5 使组织芯片表面平整,均匀压平。 【展望】组织芯片技术是一项新兴技术,涉及临床医学、分子生物学、机械制造、计算机 软件的诸多学科。需要各学科人才的通力合作,也对全科人才,全能人才提出了要求。

组织芯片技术简述

组织芯片技术简述 摘要:组织芯片技术是近年来基因芯片(DNA芯片)技术的发展和延伸,属于一种特殊生物芯片技术。组织芯片技术可以将数十个甚至上千个不同个体的临床组织标本按预先设计的顺序排列在一张玻片进行分析研究,是一种高通量、多样本的分析工具。本文就组织芯片技术的原理、发展、特点及应用进行一个简单介绍 关键词:组织芯片原理发展特点应用 正文 一.原理 组织芯片(tissue microarray,TMA)是一种新型生物芯片技术,又叫组织微阵列。由Konanen等人于1998年建立,它建立的初衷是为了在一次实验中对大量组织样品进行平行研究。它将大量组织样本集成在一张固相载体(如石蜡块)上,可以按照预定的数量来“扩增”组织,可以结合其他技术,例如组织芯片技术可以与DNA、RNA、蛋白质、抗体等技术相结合,在基因组、转录组和蛋白质组等三个水平上进行研究。 TMA构建原理可以概括为以下四个步骤: 1.选取待研究的组织。现在人们利用组织芯片技术对人体各组织均有研究,包括肝脏,前列腺,心脏,乳房等等,据相关数据显示,在大脑组织中的应用最多。医学上常选取一些病变器官进行研究。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。 2. 经检测后标记出待研究的区域。组织微阵列的检测仪主要是高性能显微镜、荧光显微镜或共聚焦荧光显微镜。适用的检测技术有苏木精—HE染色,免疫组织化学(IHC)染色,原位杂交(ISH),荧光原位杂交(FISH),原位PCR,寡核苷酸启动的原位DNA合成(PRINS)等。 3. 使用组织芯片点样仪将标记好的组织按设计排列在空白蜡块上。首先要利用打孔机在已经标记好的靶位点上进行打孔,将组织芯转入蜡块孔中,重复操作可转入上千个样品组织芯。 4. 使用切片机对阵列蜡块进行连续切片即获得组织芯片。根据制作方法来分,微阵列主要有石蜡包埋的组织微阵列和冰冻微阵列两种。后者可以克服上述前者的多种缺陷(含醛基的化合物(可能损伤RNA或使目标抗原结构断裂或破坏抗原——抗体结合位点,另外,石蜡包埋乙醇固定过的组织也无法避免RNA降解)。 二.发展

组织芯片的概念及原理

组织芯片的概念及原理 关键词:细胞株肿瘤细胞菌种保藏中心 ATCC 中国微生物菌种网北京标准物质网 组织芯片(tissue chip),也称组织微阵列(tissuemmroarray),该技术是将数十个甚至上千个不同个体组织标本以规则阵列方式排 布于同一载体上,进行同一指标的原位组织学研究,是一种高通量、大样本以及快速的分子水平分析工具。组织芯片的制作原理与单个切片相同,只是样本数量增加。 组织芯片的种类包括人的常规石蜡包埋样本的组织芯片、各种实验动物的组织芯片、细胞株及一些病原微生物的芯片等。在已有的石蜡包埋组织芯片的基础上,Feizo等创建了冷冻组织微阵列技术。近年来出现了一种新技术,称为下一代组织芯片技术(next-generation tissue。microarray,ngTMA),该技术将组织学专业知识与数字化病理技术及自动化组织芯片技术相结合,能精准定位所需要的组织区域或细胞类型,避免无效组织的出现,有助于肿瘤微环境中的病理学研究。 组织芯片主要用于各种原位组织技术实验中,包括常规形态学观察、各种特殊染色、免疫组织化学染色、核酸原位杂交、原位PCR、荧光原位杂交、原位RT-PCR和寡核苷酸启动的DNA合成(PRINS)等;

其次用于临床和基础的研究,如分子诊断、预后指标筛选、治疗靶点定位、抗体和药物筛选、基因和表达分析等。 组织芯片的设计应考虑组织的种类及芯片上每一样本组织片的大小。此外,组织片的大小对某一器官或组织所存在病变的代表程度如何也是考量因素。一般而言,芯片上组织样本数量越大,组织的面积越小,细胞数量也越少。在直径约为2mm的组织芯片上有约100000个细胞,而在直径为0.6mm的组织片上只有约30 000个细胞,故在组织芯片的设计中并不是组织片的数量越多越好,最常用的组织芯片的样本含量仍以60~100个为主,组织片的直径可为2mm,这样既可提供较大面积的组织进行形态学观察,又可定位和半定量观察免疫组化或原位杂交等的检测信号(图9-7-1)。

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.sodocs.net/doc/cd17190097.html,/geo/)和ArryExpress (http:// ;https://www.sodocs.net/doc/cd17190097.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

多芯片封装技术及其应用-10页文档资料

多芯片封装技术及其应用 1 引言 数十年来,集成电路封装技术一直追随芯片的发展而进展,封装密度不断提高,从单芯片封装向多芯片封装拓展,市场化对接芯片与应用需求,兼容芯片的数量集成和功能集成,为封装领域提供出又一种不同的创新方法。 手机器件的典型划分方式包括数字基带处理器、模拟基带、存储器、射频和电源芯片。掉电数据不丢失的非易失性闪存以其电擦除、微功耗、大容量、小体积的优势,在手机存储器中获得广泛应用。每种手机都强调拥有不同于其他型号的功能,这就使它需要某种特定的存储器。日趋流行的多功能高端手机需要更大容量、更多类型高速存储器子系统的支撑。封装集成有静态随机存取存储器(SRAM)和闪存的MCP,就是为适应2.5G、3G高端手机存储器的低功耗、高密度容量应用要求而率先发展起来的,也是闪存实现各种创新的积木块。国际市场上,手机存储器MCP 的出货量增加一倍多,厂商的收益几乎增长三倍,一些大供应商在无线存储市场出货的90%是MCP,封装技术与芯片工艺整合并进。 2 MCP内涵概念 在今年的电子类专业科技文献中,MCP被经常提及,关于MCP技术的内涵概念不断丰富,表述出其主要特征,当前给定的MCP的概念为:MCP 是在一个塑料封装外壳内,垂直堆叠大小不同的各类存储器或非存储器芯片,是一种一级单封装的混合技术,用此方法节约小巧印刷电路板PCB

空间。MCP所用芯片的复杂性相对较低,无需高气密性和经受严格的机械冲击试验要求,当在有限的PCB面积内采用高密度封装时,MCP成为首选,经过近年来的技术变迁,达到更高的封装密度。目前,MCP一般内置3~9层垂直堆叠的存储器,一块MCP器件可以包括用于手机存储器的与非NOR,或非NAND结构的闪存以及其他结构的SRAM芯片层,如果没有高效率空间比的MCP,在高端手机中实现多功能化几乎是不可能的。MCP不断使新的封装设计能够成功运用于使实际生产中。各芯片通过堆叠封装集成在一起,可实现较高的性能密度、更好的集成度、更低的功耗、更大的灵活性、更小的成本,目前以手机存储器芯片封装的批量生产为主,开发在数码相机和PDA以及某些笔记本电脑产品中的应用。 在封装了多种不同的、用于不同目的芯片的MCP基础上,一种更高封装密度的系统封装SiP成为MCP的下一个目标。反过来讲,SiP实际上就是一系统级的MCP,封装效率极大提高。SiP将微处理器或数字信号处理器与各种存储器堆叠封装,可作为微系统独立运行。将整个系统做在一个封装中的能力为行业确立了一个新标准:"2M/2m"。设计者需要把最好性能和最大容量存储器以最低功耗与最小封装一体化,用于手机中。换句话说:将两大写的M(MIPS和MB)最大化,把两个小写的m(mW和mm)最小化。无线存储器向单一封装发展,任何可以提高器件性能、降低封装成本的新技术都是双赢,现在市场潮流MCP产品是将来自不同厂家的多种存储芯片封装在一起,技术上优势互补,封装产品具有很高的空间利用率,且有利于提高整机的微型化和可靠性,改善电气性能。

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

乳腺癌组织芯片的应用与HER-2neu的表达

收稿日期:2004-03-04 作者简介:官 静(1975-),女,湖北武汉人,硕士研究生,主要从事肿瘤病理的研究。 乳腺癌组织芯片的应用与HER 22/neu 的表达 官 静,刘丽江 (江汉大学医学与生命科学学院病理学与病理生理学教研室,湖北武汉430056) 摘 要 目的:构建乳腺癌及乳腺癌-良性病变组织微阵列,研究HER 22/neu 在原发性乳腺癌和乳腺良性病变中的表达并探讨HER 22/neu 的判断标准。方法:制作乳腺癌-乳腺良性病变组织微阵列(tissue microarray )。用免疫组织化学方法检测HER 22/neu 在180例乳腺癌,32例乳腺良性病变组织中的表达。结果:构建乳腺癌及乳腺癌-乳腺良性病变组织微阵列4个,180例乳腺癌中HER 22/neu 阳性率为37.78%(68/180),32例乳腺良性病变不表达。乳腺癌组织中HER 22/neu 的过表达率显著高于乳腺良性病变组织(P <0.05)。结论:乳腺癌-乳腺良性病变组织微阵列的建立使乳腺癌相关基因及其蛋白产物的筛选工作简便、快捷。HER 22/neu 的过表达与乳腺癌的发生密切相关。 关键词:乳腺癌;组织微阵列;HER 22/neu 中图分类号:R730.2 文献标识码:A 文章编号:100921777(2004)022******* 组织微阵列/组织芯片技术(tissue microarray or tissuechip )是最近伴随基因芯片技术发展起来的一 种新方法,可在一张玻片上一次性完成几百例以上的临床组织标本的基因及其表达的分析,是快速、经济地大规模筛查组织中基因结构改变、表达异常的强有力工具[1]。目前国内用这种技术进行基因表达研究的报道尚不多见。 乳腺癌HER 22/neu 基因的过表达是临床治疗的重要客观依据。石蜡切片HER 22/neu 基因表达的免疫组织化学检测是否能作为治疗的依据,尚有不同的意见。为进一步明确HER 22/neu 基因表达与乳腺癌治疗的相关性,构建了乳腺癌-乳腺良性病变组织微阵列,并结合免疫组织化学法检测了180例乳腺癌及32例乳腺良性病变组织标本中HER 22/neu 基因的表达,在高通量、高标准化分析 的前提下,探讨HER 22/neu 基因表达与乳腺癌的关系及评价的方法。 1 对象与方法 1.1 对象 收集经病理学确诊的乳腺手术标本共265例。其中105例乳腺癌,48例乳腺良性病变标本来自江 汉大学附属医院及其它医院1998~2003年乳腺手术标本,112例乳腺癌标本由北京友谊医院病理科提供。乳腺癌患者年龄31~72岁,平均年龄47.6岁。乳腺良性病变患者年龄16~65岁,平均年龄36.5岁。全部组织标本获取前均未经放疗和/或化 疗。所有组织均经10%缓冲福尔马林固定,石蜡包埋。 1.2 乳腺癌-乳腺良性病变组织微阵列的制作 将蜡块制成5μm 厚HE 染色切片,在低倍镜下用油性笔标出目标区域。并在相应蜡块上做出标记,这些蜡块称为供体蜡块(donor bloke )。制作硬度适中的受体蜡块(35mm ×27mm )。用组织微阵列仪(Microarrayer ,美国B EECHER INSTRU 2M EN TS 公司产品)从265例乳腺手术标本的供体 蜡块中分别提取直径为0.6mm 或2.0mm 的组织芯,插入到受体蜡块中制作成组织微阵列4个。其一为乳腺癌-乳腺良性病变组织微阵列(直径0.6mm ,包括乳腺癌组织样本41例,乳腺良性病变样本48例),其余为乳腺癌组织微阵列,分别包括乳腺癌 组织样本64例(直径0.6mm ,),65例(直径2.0mm )及47例(直径2.0mm )。然后将制成的阵列放 入37℃温箱中20min 使组织与受体蜡块结合紧密。 第32卷 第2期江汉大学学报(自然科学版) Vol.32 No.2 2004年6月Journal of Jianghan University (Natural Sciences )J un.,2004

基因芯片技术及其应用(精)

基因芯片技术及其应用 李家兴1001080728 园艺107 基因芯片( gene chip, DNA chip, DNA microarray 又被称为DNA芯片、DNA微阵列和生物芯片, 是指以大量人工合成的或应用常规分子生物学技术获得的核酸片段作为探针, 按照特定的排列方式和特定的手段固定在硅片、载玻片或塑料片上, 一个指甲盖大小的芯片上排列的探针可以多达上万个[1- 3]。在使用时,先将所研究的样品标记, 然后与芯片上的寡聚核苷酸探针杂交,再用激光共聚焦显微镜等设备对芯片进行扫描, 配合计算机软件系统检测杂交信号的强弱, 从而高效且大规模地获得相关的生物信息。此项技术将大量的核酸分子同时固定在载体上, 一次可检测分析大量的DNA和RNA, 解决了传统核酸印迹杂交技术复杂、自动化程度低、检测目标分子数量少、成本高、效率低等的缺点[4]。此外, 通过设计不同的探针阵列( array , 利用杂交谱重建DNA序列, 还可实现杂交测序( sequencing by hybridization,SBH [5]。目前, 该技术在基因表达研究、基因组研究、序列分析及基因诊断等领域已显示出重要的理论和应用价值[6]。 1 基因芯片技术的产生和发展 21 世纪将是生命科学的世纪, 基因芯片技术是近年产生的一项生物高新技术, 它将像计算机一样成为21 世纪即将来临的又一次新兴革命的奠基石[7,8]。基因芯片技术的产生与发展与人类基因组计划(Human Genome Project, HGP 的研究密不可分[9]。人类基因组的大量信息需要有一种快速、敏感、平行检测的技术,随着越来越多的基因被解码, 基因的功能研究成为迫切需要解决的课题。在这一背景下, 以基因芯片技术为主体的生物芯片诞生了, 它被誉为是20 世纪90 年代中期以来影响最深远的重大科技进展之一。基因芯片技术充分结合灵活运用了寡核苷酸合成、固相合成、PCR 技术、探针标记、分子杂交、大规模集成电路制造技术、荧光显微检测、生物传感器及计算机控制和图像处理等多种技术, 体现了生物技术与其他学科相结合的巨大潜力。基因芯片技术的理论基础是核酸杂交理论, Southern 印迹可以看作是生物芯片的雏形; 其后, 人们又发明了一个以膜片为介质基础的克隆库扫描

基因芯片技术及其应用

基因芯片技术及其应用摘要: DNA芯片技术是指在固相支持物上原位合成寡核苷酸,或者直接将大量的DNA探针以显微打印的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可获得样品的遗传信息。由于常用计算机硅芯片作为固相支持物,所以称为DNA芯片。 关键词 DNA芯片制备检测应用 随着人类基因组计划的逐步实施以及分子生物学相关学科的迅猛发展,越来越多的动植物、微生物基因组测序得以测定,基因序列数据正在以前所未有的速度迅速增长。DNA芯片的出现是科学发展的必然产物。本文就DNA芯片的制备及其在医学领域的应用予以阐述。 1 基因芯片的制备及检测技术[1-4] 1.1 基因芯片的制备方法 1.1.1 原位合成法其中最具代表的是原位光刻合成法。该法是利用分子生物学、微电光刻技术及计算机技术等直接在基片上合成所需的DNA探针。除原位光刻合成法外,原位合成法还包括原位喷印合成和分子印章在片合成法。 1.1.2 直接点样法该法是将制备好的DNA(cDNA)片段直接点在芯片上。近来有人提出用电定位捕获法和选择性沉淀法制备芯片。 1.1.3 电定位捕获法是将生物素标记的探针在电场的作用下快速地固定在含有链霉素亲和素的琼脂糖凝胶膜上。由于生物素与链霉素亲和素的强亲合力,使得探针的固定更加容易和牢固。在电场的作用下,靶基因能快速地在杂交部位积聚,大大缩短了杂交时间,提高了杂交的效率,且改变电场电极的方向可以除去未杂交或低效率杂交的靶基因。 1.1.4 选择性沉淀法该技术是用金属纳米粒标记探针的方法来制备微阵列,靶基因在芯片上与探针杂交后发生选择性沉淀,通过检测沉淀物的电化学值等来获取相应的生物信息。

组织芯片的应用

组织芯片应用 细胞表型分析 用组织芯片技术可以对细胞进行高通量免疫表型分析。用标准的免疫组化法对组织芯片上的数百甚至上千例各种不同的肿瘤组织标本进行各种指标的检测,不但可用于发现这些指标与肿瘤的诊断、鉴别诊断和预后密切相关,而且与完整的大组织切片相比,不同部位点样构建的组织芯片便可以提供一个可靠的高通量免疫组化表型分析系 统。 与基因芯片联合应用 用组织芯片技术也可以同时进行数种或数十种基因扩增、表达的检测,可用于发现各种组织样本中各种基因的调控,再根据这些不同的调控情况得出有价值的实验结果。 用于新基因靶点筛选 组织芯片技术亦可用于寻找治疗肿瘤的新靶点。用组织芯片对每个候选基因进行分析可以发现最有潜力成为新药或抑制剂的靶基因,或发现原癌基因或编码信号转导分子的新基因。如果某种特殊基因过度表达或在许多肿瘤中表达增强,则此基因即可作为一种重要的靶基因,那么干扰这种基因的表达或其表达产物功能的物质可能就是极有潜力的新药。所以,肿瘤组织芯片特别适合于研制抗肿瘤药物时先对靶基因进行选择。 缩微组织学和病理学图谱 根据需要可制备各种缩微组织学和病理学图谱。如制备各种正常组织芯片、各种病理类型的肿瘤组织芯片、同一系统中的各种肿瘤组织芯片、少见肿瘤组织芯片、疑难病例组织芯片、各种炎症组织芯片、各种寄生虫组织芯片以及胚胎发育组织芯片。可用于进修、学习、存储和进行对比研究等。 基因扩增分析 用组织芯片技术也可以同时进行数种或数十种基因扩增、表达的检测,可用于发现各种组织样本中各种基因的调控,再根据这些不同的调控情况得出有价值的实验结果。 抗体筛选 在各种疾病研究中,疾病相关抗体和探针是必不可少的研究工具,其特异性敏感性对研究结果影响巨大。对抗体和探针测试的基本方法就是用大量不同来源的阳性和阴性组织进行检查。对此,传统病理学方法需做大量单一切片。如果采用组织芯片技术,一次实验即可完成。现在组织芯片技术已经成为生物制品公司、病理医生和研究者筛选抗体和探针的必备工具。 用于个体化肿瘤治疗 组织芯片可用于筛选大量的肿瘤组织标本来确定哪些肿瘤应采取何种治疗方式。如对乳腺癌进行HER-2基因的筛选,高表达或者扩增的患者Herceptin 治疗将有良好的效果。 图表 1食道癌免疫组化胞核染色图 图表 2免疫组化胞浆染色图 图表 3免疫组化胞核染色图 图表 4肿瘤HE 染色图 图表 5乳腺癌FISH 图 图表 6前列腺免疫组化胞膜染色图 图表 7肺癌免疫组化胞 膜染色图

简易组织芯片仪的制作

简易组织芯片仪的制作 (作者:___________单位: ___________邮编: ___________) 【关键词】芯片分析技术;分子探针技术;显微镜检查 与传统的病理研究方法相比,组织芯片具有省时、经济、信息量大,并能节约标本及大大提高实验效率等优点,应用非常广泛[1],但由于组织芯片机价格昂贵,难以普及推广。笔者利用本科室退役的显微镜研制组织芯片仪,并用其制作组织芯片,取得很好的效果,现报告如下。 1 材料与方法 1.1 材料骨髓穿刺针2支(16G和18G),16 W发热元件,温度控制器1个,强力胶水1瓶,退役的带有三坐标的显微镜支架1台,45号圆钢2段(分别为长104 mm,直径56 mm;长40 mm,直径88 mm),电源线2条。 1.2 方法 1.2.1 打孔针和取样针的制作 16G带有M4螺纹的骨髓穿刺针(最小内径为1.1 mm)用于取样;18G带有M4螺纹的骨髓穿刺针(最大外径为1.3 mm)用于打孔。用砂轮将针尖末端截断(包括芯和鞘),

保留螺纹以下至针尖末端的长度约1~2 cm。取一段内径分别与16G 或18G骨髓穿刺针外径相当的单芯电线绝缘护套,将其相应地紧紧套在16G或18G骨髓穿刺针的鞘上,使其下缘与针末端的距离为5 mm。塑料外套与针末端的距离可根据供体蜡块的厚度调整,但打孔针和取样针的外套层和针末端的距离应保持一致(图1)。 上为打孔针,下为取样针. 图1 打孔针和取样针的制作 Fig 1 Top one is hole puncture needle and bottom one is sampling needle 1.2.2 恒温加热装置的制作根据热学原理设计出蓄热体(由45号圆钢加工制成)(图2A、B),内嵌入加热元件(图2C),采用双加热系统,通过温控装置调节温度,使其保持在(60±1)℃(较石蜡的熔点58 ℃稍高),保证打孔针和取样针处于恒温。 1.2.3 操作平台和矩阵定位系统的制作利用退役的显微镜,保留机械和支架系统,利用载物台放置供体蜡块和受体蜡块。用一块厚度为3 mm的有机工程塑料板,制成尺状结构,利用强力胶水粘在显微镜的推进器上,用于蜡块的准确定位(图3)。推进器用于受体蜡块打孔时前后(X轴)左右(Y轴)的位移,以保证所打的孔矩阵排列整齐。旋转镜柱上的调节器(粗细螺旋)使镜台作上下方向(Z轴)的移动,实现打孔和取样深度的准确控制。至此,一台功能基本齐全的组织芯片仪就改装成功,并可用于组织芯片的制作(图4)。 1.3 结果用制作完成的组织芯片仪制作组织芯片,芯片以规则的点

芯片制作工艺流程

芯片制作工艺流程 工艺流程 1) 表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反

基因芯片技术及其应用

基因芯片技术及其应用 摘要 进入21世纪以来,生命科学发展日益迅速,基因芯片作为生命科学研究的一种新的技术平台日益受到人们的关注,并已经广泛应用于生命科学研究、医学研究、食品卫生领域以及其它相关的各个学科领域。随着技术的不断完善,基因芯片必将在越来越多的领域里面发挥作用。本文阐述了基因芯片的基本概念及技术流程,简述了其在不同领域的应用,并对其发展前景作了展望。 关键词:基因芯片技术流程应用展望 Gene Chip Technology and its Application Shu Mian (College of Horticulture, South China Agricultural University Guangzhou 510642, China) Abstract: Life science has developed rapidly since the 21th century, gene chip, as a new technical platform in the reaseach of Life science, has got increasingly attention, and has been used widely in life science research、medical research、food hygiene field and other related disciplines. With the continuous improvement of the technology, gene chip will be helpful in more fields. This article expounds the basic concepts and technological process of gene chip, gives an introduction of its application in different fields, and a prospection of its development prospect. Key words: gene chip technological process application prospection 基因芯片(gene chip),又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray),是生物芯片的一种类型,它是将DNA分子固定于支持物上,并与标记的样品杂交,通过自动化仪器检测杂交信号的强度来判断样品中靶分子的数量,进而得知样品中mRNA的表达量,也可进行基因突变体的检测和基因序列的测定,为进一步了解基因间的相互关系及基因克隆提供有用的工具。作为一项基于基因

组织芯片制作的体会

组织芯片制作的体会 发表时间:2015-07-31T09:19:16.923Z 来源:《医药前沿》2015年第12期供稿作者:黄燕 [导读] 组织芯植入以微高出受体蜡块平面为佳,等所有组织芯植入完毕后,用刀片或干净的载玻片平压,使所有组织芯都在同一平面上。黄燕 (浙江大学医学院附属第二医院浙江杭州 310009) 【摘要】基因芯片技术迅速发展,因其高通量、高效性、节省资源等特点已被广泛运用,本文将对实验操作中可能的注意点做一个重点的阐述,以提高未来工作中效率。 【关键词】基因芯片;石蜡;包埋 【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2015)12-0339-02 组织芯片技术又称组织微阵列(tissue microarray,TMA)是将数十个至上百个甚至更多更小的组织标本整齐有序地排列在同一张载玻片上的微缩组织切片。1998年由Kononen等[1]提出组织芯片的概念之后,组织芯片技术得到迅速发展,是继基因芯片、蛋白质芯片之后兴起的又一类新型生物芯片。因其具有高通量,高效性,节省试剂,实验误差小等特点,已得到广泛推广应用。实践发现,组织芯片制作过 程中常常由于多方面的原因影响组织芯片制作的质量,笔者根据实际工作中的经验和体会作简单介绍: 1.供体标本的准备 组织芯片的供体标本多为病理科的存档蜡块,我们找出相对应的切片,由经验丰富的病理医师进行切片的筛阅,找出明显病变区域并相应作出标记。因部分存档蜡块经反复使用,组织块出现厚薄不一,所钻取组织芯长短不一,易导致芯片不在同一平面上,我们尽量选取组织块较厚的蜡块。同时在阅片中发现结构不清、细胞核模糊的病例,我们应该弃之,这种现象多半是由于前期组织固定不佳等导致,使用这种问题蜡块将影响实验结果的准确性。如果条件允许,从生物样本库提取标本,经单独组织处理后行HE切片观察定位,效果最为理想。 2.石蜡的选取 石蜡质量的好坏、韧性和硬度的平衡是制作受体蜡块的关键。一般情况下,石蜡的硬度和柔韧性呈反比,当石蜡硬度高时易发生石蜡边缘撕裂现象,而石蜡硬度低、柔韧性好时则在制作组织芯片时呈现滞针现象,制作HE切片时易发生脱片,组织点阵发生移位[2]。目前,病理科使用的石蜡熔点一般在58℃~62℃,含杂质较多,硬度较强,许多国产石蜡我们在熔化后发现有絮状物沉浮,使用这种石蜡制作的组织芯片易导致受体蜡块的“龟裂”。有学者[2-3]认为在熔点为58℃~62℃每100g石蜡中加入0.5~1g硬脂酸(与环境温度有关,温度高时减量,当温度较低时适当增加硬脂酸的量,但硬脂酸含量不能太高,否则易脱片)将使石蜡的硬度和韧性达到一个较好的平衡。此外,还可以将石蜡熔化在烤箱中静置12h后,去除含杂质的石蜡,冷却后再重复上述步骤,如此反复多次后,得到较为纯净的石蜡,也增加了石蜡的致密度。通过以上方法得到的石蜡确实适用于受体蜡块的制作,但过程繁琐。目前,已有多个国外品牌的组织芯片专用石蜡面市,给我们日常工作带来了极大便利。 3.受体蜡块的制作 受体蜡块的制作是整个组织芯片制作过程中十分重要的步骤之一。在浇注受体蜡块之前,首先要把包埋底座入烤箱,去除底座上的残蜡和杂质,同时用热的底座浇注受体蜡块不易产生气泡,蜡块表面较为平整。常温冷却后,根据构建的阵列方案,在受体蜡块上进行钻孔(用细针钻取)。受体蜡块的边缘通常留3mm左右的空隙以防止出现裂隙,同时也减小了切片的难度。 4.组织芯的钻取与植入 组织芯的钻取我们用的是粗针,在粗针取样时,旋转粗针上方的横杆来分离组织芯与供体蜡块,每次钻取完后用针管中的通管杆上下提插,去除针管壁上的石蜡,保证钻取与植入的顺利进行。调整组织芯片仪上的深度调节螺丝,保证细针和粗针钻孔深度的一致性。但是有些病理科的存档蜡块经多次切片后已变得很薄,所钻取的组织芯深度小于受体蜡块的深度,导致组织芯的凹陷,针对这一问题,根据组织芯与受体蜡块的深度差,斜切一段事先钻取受体蜡块的石蜡芯,植入相应孔内,再将组织芯植入即可解决。植入过程用力要均匀,速度不宜过快,否则易导致组织芯植入过深或出现移位而制作失败。组织芯植入以微高出受体蜡块平面为佳,等所有组织芯植入完毕后,用刀片或干净的载玻片平压,使所有组织芯都在同一平面上。 5.组织芯片蜡块的二次包埋 组织芯片蜡块二次包埋的成败关系到整个芯片的质量。由于受体蜡块与供体蜡块的蜡存在差异性,加上组织芯植入后有不少空隙存在,如果不经二次包埋将难以切片。有学者[4]认为,将组织芯片蜡块放入包埋底座后入60℃烤箱1h;亦有学者[5-6]认为,将组织芯片蜡块连同蜡模成型框放入熔化的石蜡中,使熔化的石蜡进入到组织芯与受体蜡块的空隙中。两种方法各有优缺,石蜡熔点的高低,包埋底座的厚薄都将影响入烤箱的时间;而用熔化石蜡浸入芯片蜡块,在一定程度上确实能填补空隙,但填补的只是极表面的一层,多次切片后发现里层仍有不少空隙,易使组织芯掉落或移位。笔者在实践中发现,不管蜡的熔点多少,包埋底座的厚薄,将组织芯片蜡块放入包埋底座后入烤箱,只要包埋框四个角石蜡开始有熔化的迹象,即可在常温冷却,二次包埋完成。此方法操作简单,易于观察,效果良好。组织芯片的应用已越来越广泛,发展迅速。在日常工作中要有高度的责任心和娴熟的操作技能,不断摸索分析和改进,提高制作组织芯片的速度和质量。 【参考文献】 [1] Kononen J, Bubendof L, Kallioniemi A, et al. Tissuue microarrays for high-throughput molecular profiling of tumor specimens[J]. Nat Med, 1998, 4(7): 844-847. [2] 张诗武,李宏伟,张永亮.组织芯片制作过程中石蜡的使用[J].武警医学院学报,2002,11(3):182-183. [3] 孙保存,张诗武,赵秀兰等.组织芯片制备过程中的体会与注意事项[J].临床与实验病理学.2002,18(6):658-659. [4] 王翠芝,周小鸽,王鹏等.组织芯片制作技术[J].临床和实验医学杂志, 2004, 3(3): 183-185. [5] 王文勇,李玉松,黄高昇等.石蜡组织芯片制备技术方法的改良[J].第四学医大学学报, 2005, 26(1): 93-94. [6] 张可浩,周文君,张坚刚等.石蜡组织芯片制备技术的改良[J].温州医学院学报, 2008, 38(1): 86-88.

相关主题