搜档网
当前位置:搜档网 › 一元函数微积分学内容提要

一元函数微积分学内容提要

一元函数微积分学内容提要
一元函数微积分学内容提要

第四部分 一元函数微积分

第11章 函数极限与连续[内容提要]

一、函数:(138-141页)

1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。

2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反三

角函数的统称);复合函数([()]y f x ?=);初等函数(由常数与基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。

3、函数的特性:奇偶性;单调性;周期性;有界性、

二、极限:

1、极限的概念:(141-142页)

定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向于某一

个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞→lim ,若{}n x 没有极限,则称数列{}n x 发散。

定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,)

U x δo 内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0

。 左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向于

0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作0

0(0)lim ()x x f x f x A -→-==。 右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向于

0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作0

0(0)lim ()x x f x f x A +→+==。 定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义,若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,)(x f 以A 为极限,记作lim ()x f x A →∞

= 。

左极限:设函数)(x f 在(,]a -∞上有定义 ,若x →-∞时,)(x f 的值无限趋近于常数

A ,则称当x →-∞时,)(x f 以A 为极限,记作A x f x =-∞

→)(lim 。 右极限:设函数)(x f 在[,)a +∞上有定义 ,若x →+∞时,)(x f 的值无限趋近于常数A ,则则称当x →+∞时,)(x f 以A 为极限,记作lim ()x f x A →+∞

= 。 注意:①极限与左右极限的关系

A x f x x =→)(lim 0? 00(0)(0)f x f x A -=+=

lim ()x f x A →∞

=? lim ()lim ()x x f x f x A →-∞→+∞==. ②讨论极限0

lim ()x x f x →时,与()f x 在0x 处就是否有定义无关,与函数值0()f x 也无关。

2、极限的性质:(143页)

(1)唯一性:若lim ()f x 存在,则极限值唯一。

(2)有界性:若0lim ()x x f x A →=(lim ()x f x A →∞=),则()f x 在0(,)U x δo

内(x 充分大时)就是有界的;

(3)保号性: 设A x f x x =→)(lim 0,如果0>A (或0

内,有0)(>x f (或0)(

内有0)(≥x f (或0)(≤x f ),则必有0≥A (或0≤A ). 推广:设A x f x x =→)(lim 0,0lim ()x x g x B →=,如果A B <,则在0(,)U x δo

内,有()()f x g x <;反之,如果在0(,)U x δo

内有()()f x g x ≤,则必有A B ≤。 注意: 当x →∞时,保号性结论类似。

3、无穷小量与无穷大量:(146-149页)

(1)无穷小量与无穷大量的概念及关系:

无穷小量:若0()

lim ()0x x x f x →→∞=,则称函数()f x 为0 ()x x x →→∞或时的无穷小量。(无穷小量就是函数有极限的特殊情形,即0()lim ()0x x x f x →→∞=) 无穷大量:若0 ()x x x →→∞或时,()f x 无限变大,则称()f x 为 0x x →()x →∞或时的无穷大量。(无穷大量就是函数没有极限的特殊情形;即

0()lim ()x x x f x →→∞=∞)

(2)值得注意的几个关系:

① 极限与无穷小量关系:

lim ()f x A =?()f x A α=+,(其中α为无穷小,即lim 0α=); ②在自变量的同一变化过程中,若()f x 为无穷大量,则

1()f x 为无穷小量;若()f x (()0f x ≠)为无穷小量,则

1()f x 为无穷大量。 ③若0()

lim ()x x x f x →→∞=∞,则称()f x 在00(,)U x δ(或x M >)内为无界函数。 即无穷大量必为无界函数,但无界函数不一定为无穷大量。 例如:()sin f x x x =在(,)-∞+∞为无界函数,但当x →∞时,()f x 不就是无穷大量。

(3)无穷小量的比较:设x →?时, ()0 , ()0x x αβ→→ 且 ()lim ()

x x c x αβ→?=, 1)若0c ≠为常数,则称x →?时()x α与 ()x β为同阶无穷小; 特别的:当1c =时,则称x →?时()x α与 ()x β就是等价无穷小,记

作:

x →?时()()x x αβ:。

2)若0c =,则称x →?时()x α就是比 ()x β高阶的无穷小,记作

()(())x o x αβ= ;

3)若c =∞,则称x →?时()x α就是比 ()x β低阶的无穷小。

(4)无穷小量的替换定理:

设x →?时,(), (),x x αβ11(), ()x x αβ都就是无穷小量, 且1()()x x αα: 1()()x x ββ:,极限11()lim ()x x x αβ→?存在,则()lim ()x x x αβ→?=11()lim ()x x x αβ→?。

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

一元函数微分学教案

第二章 一元函数微分学 一、 导数 (一)、导数概念 1、导数的定义: 设函数)(x f y =在点0x 的某个邻域内有定义,当自变量在点0x 处取得改变量x ?时,函数)(x f 取得相应的改变量,)()(00x f x x f y -?+=?,如果当0→?x 时,x y ??的极限存在,即x y x ??→?0lim x x f x x f x ?-?+=→?)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0 )(x x dx x df = 2、根据定义求导数的步骤(即三步曲) ①求改变量)()(x f x x f y -?+=? ②算比值 x y ??x x f x x f ?-?+=)()( ③取极限x y x f y x ??='='→?0lim )(x x f x x f x ?-?+=→?)()(lim 0 例1:根据定义求2 x y =在点3=x 处的导数。 解:223)3(-?+=?x y 2)(6x x ?+?= x x y ?+=??6 6)6(lim lim 0 0=?+=??→?→?x x y x x 3、导数定义的几种不同表达形式 ①x x x x x f x x f x f x ?+=??-?+='→?00000) ()(lim )(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时 =当0)()(lim )(0000x x x f x f x f x ??-='→? ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的定义: 如果当)0(0-+→?→?x x 时,x y ??的极限存在,则称此极限为)(x f 在点0x 为右导数(左

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

一元函数积分学的应用

一元函数积分学的应用 一元函数积分学研究的是研究函数的整体性态,一元函数积分的本质是计算函数中分划的参数趋于零时的极限。 一元积分主要分为不定积分 ?dx x f )(和定积分? b a dx x f )(。化为函数 图像具体来说,不定积分是已知导数求原函数,也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C 的导数也是f(x)(C 是任意常数)。所以f(x)积分的结果有无数个,是不确定的。而定积分就是求函数f(X)在区间[a,b]中图线下包围的面积,可以说是不定积分在给定区间的具体数值化。因为积分在其它方面应用时一般都有明确的区间,所以本文主要研究定积分的各种应用。 积分的应用十分巧妙便捷,能解决许多不直观、不规则的或是变化类型的问题。故其主要应用在数学上的几何问题和物理上的各种变量问题和公式的证明以及解决一些实际生活问题。 微元法建立积分表达式 在应用微积分于实际问题时,首先要建立积分表达式,一般情况下,只要具备都是给定区间上的非均匀连续分布的量和都具有对区间的可加性这两个条件就都可以用定积分来描述(以下的讨论都是建立在这两个条件下,因此不再提示此条件)。 而建立积分表达式的方法我们一般用微元法。其分为两个步骤:(1)任意分割区间[]b a ,为若干子区间,任取一个子区间[]dx x x +,,求Q

在该区间上局部量的Q ?的近似值dx x f dQ )(=;(2)以dx x f )(为被积式,在],[b a 上作积分即得总量Q 的精确值 ??==b a b a dx x f dQ Q )(。(分割,近似,求和,取极限) 在实际应用中,通过在子区间],[dx x x +上以“匀”代“非匀”或者把子区间],[dx x x +近似看成一点,用乘法所求得的近似值就可以作为Q ?所需要的近似值,即为所寻求的积分微元dx x f dQ )(= 。 定积分在几何中的应用 在几何中,定积分主要应用于平面图形的面积、平面曲线的弧长、已知平行截面面积函数的立体体积、旋转体的侧面积。下面我们来分类讨论: 一、 平面图形的面积 求图形面积是定积分最基本的应用,因为定积分的几何意义就是在给定区间内函数曲线与x 轴所围成图形的面积。而求面积时会出现两种情况:直角坐标情形和极坐标情形。 1、直角坐标情形 在求简单曲边图形(能让函数图像与之重合)的面时只要建立合适的直角坐标系,再使用微元法建立积分表达式,运用微积分基本公式计算定积分,便可求出平面图形的面积。如设曲 y O

一元函数微积分学内容提要

第四部分 一元函数微积分 第11章 函数极限与连续[内容提要] 一、函数:(138-141页) 1、函数的定义:对应法则、定义域的确定、函数值计算、简单函数图形描绘。 2、函数分类:基本初等函数(幂函数、指数函数、对数函数、三角函数、反 三角函数的统称);复合函数([()]y f x ?=);初等函数(由常数和基本初等函数构成的,且只能用一个式子表达的函数);分段函数;隐函数;幂指函数(()()g x y f x =);反函数。 3、函数的特性:奇偶性;单调性;周期性;有界性. 二、极限: 1、极限的概念:(141-142页) 定义1:(数列极限)给定数列{}n x ,如果当n 无限增大时,其通项n x 无限趋向 于某一个常数a ,即a x n -无限趋近于零,则称数列{}n x 以a 的极限,或称数列{}n x 收敛于a ,记为a x n n =∞ →lim ,若{}n x 没有极限,则称数列{} n x 发散。 定义2:(0x x →时函数)(x f 的极限)设函数)(x f 在点0x 的某一去心邻域0(,) U x δo 内有定义,当x 无限趋向于0x (0x x ≠)时,函数)(x f 的值无限趋向于 A ,则称0x x →时, )(x f 以A 为极限,记作A x f x x =→)(lim 0 。 左极限:设函数)(x f 在点0x 的左邻域00(,)x x δ-内有定义,当0x x <且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的左极限为A ,记作0 0(0)lim ()x x f x f x A -→-==。 右极限:设函数)(x f 在点0x 的右邻域00(,)x x δ+内有定义,当0x x >且无限趋向 于0x 时,函数)(x f 的值无限趋向于常数A ,则称0x x →时,)(x f 的右极限为A ,记作0 0(0)lim ()x x f x f x A +→+==。 定义3:(x 趋于无穷大时函数)(x f 的极限)设)(x f 在区间)0(>>a a x 时有定义, 若x 无限增大时,函数)(x f 的值无限趋向于常数A ,则称当∞→x 时,

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

电子科技大学 一元函数积分学检测题(三)

1 2006级 微积分《一元函数积分学》检测题(三) 班级__________________ 学号______ 姓名_____________ 成绩________ (3,15) 1.()()arcsin _________________________________. 一、填空题每小题分共分设则f x f x xdx '==? 2._____________________________.= 4 1 3.____________________.-=? 740 4.sin 2__________________.xdx π =? ()2 05. sin ____________________.x d x t dt dx -=? ()()()()()()()()()()( )()()()()15sin 000 (3,15) sin 1.,1,0,. ;; ; 2.(),(),. ; ;; 二、选择题每小题分共分设则当时是的高阶无穷小低阶无穷小同阶但不等价的无穷小等价无穷小. 设连续则下列结论中正确的是是和的函数是的函数是的函数是常数. x x t s t t x dt x t dt x x x t A B C D f x I t f tx dx A I s t B I s C I t D I αβαβ==+→=??? ( )( )()()()5 226 0023.. cos ;0;11111 (2)();()22下列运算正确的是. x A xdx B dx x C f x dx f x C D d C x x x π π +∞ -∞ ==+'=+=+????? 884 4444 444 tan 4.(),sin ln(,1(tan cos cos ),,,( ).() () () ()设则的大小关系是x x x M x dx N x x dx x P x e x e x dx M N P A M N P B N M P C P M N D M P N π π πππ π----??=+=++??+=+->>>>>>>>??? 2sin 5.()sin ,() ( ). () () () ()设则为正常数;为负常数;恒为零;不为常数. x t x F x e tdt F x A B C D π +=?

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 (2011年试题,一)设则I,J,K的大小关系是( ). (A)I0,f'(x)''>0.令 ,则( ). (A)S123 (B)S213 (C)S312 (D)S231 3 (2012年试题,一)设,则有( )? (A)I123 (B)I321 (C)I231

(D)I213 4 (2008年试题,1)设函数则f'(x)的零点个数是( ).(A)0 (B)1 (C)2 (D)3 5 (1998年试题,二)设f(x)连续,则tf(x2一t2)dt=( ). (A)xf(x2) (B)一xf(x2) (C)2xf(x2) (D)一2xf(x2) 6 (1997年试题,二)设则F(x)( ). (A)为正常数 (B)为负常数 (C)恒为零 (D)不为常数

7 (2010年试题,一)设m,n为正整数,则反常积分的收敛性( ). (A)仅与m有关 (B)仅于n有关 (C)与m,n都有关 (D)与m,n都无关 8 (2009年试题,3)设函数y=f(x)在区间[一1,3]上的图形如图1一3—3所示,则函数435的图形为( ).436 (A)

(B) (C) (D) 9 (2007年试题,一)如图1一3—4,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直 径为2的上、下半圆周,设则下列结沦正确的是( )。 (A)

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 0x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小, 这时底直径与高的比是多少?

一元函数微分学知识点

第一章 函数与极限 1. 函数 会求函数的定义域,对应法则; 几种特殊的函数(复合函数、初等函数等); 函数的几种特性(有界性、单调性、周期性、奇偶性) 2. 极限 (1)概念 无穷小与无穷大的概念及性质; 无穷小的比较方法;(高阶、低阶、同阶、等价) 函数的连续与间断点的判断 (2)计算 函数的极限计算方法(对照极限计算例题,熟悉每个方法的应用条件) 极限的四则运算法则 利用无穷小与无穷大互为倒数的关系; 利用无穷小与有界函数的乘积仍为无穷小的性质; 消去零因子法; 无穷小因子分出法; 根式转移法; 利用左右极限求分段函数极限; 利用等价无穷小代换(熟记常用的等价无穷小); 利用连续函数的性质; 洛必达法则(掌握洛必达法则的应用条件及方法); ∞ ∞或00型,)()(lim )()(lim x g x f x g x f ''= 两个重要极限(理解两个重要极限的特点);1sin lim 0=→x x x ,1)()(sin lim 0)(=??→?x x x e x x x =+→10)1(lim ,e x x x =+∞→)11(lim , 一般地,0)(lim =?x ,∞=ψ)(lim x ,)()(lim )())(1lim(x x x e x ψ?ψ=?+ 3 函数的连续 连续性的判断、间断点及其分类 第二章 导数与微分 1 导数 (1)导数的概念:增量比的极限;导数定义式的多样性,会据此求一些函数的极限。 导数的几何意义:曲线上某点的切线的斜率 (2)导数的计算:

基本初等函数求导公式; 导数的四则运算法则;(注意函数积、商的求导法则) 复合函数求导法则(注意复合函数一层层的复合结构,不能漏层) 隐函数求导法则(a :两边对x 求导,注意y 是x 的函数;b :两边同时求微分;) 高阶导数 2 微分 函数微分的定义,dx x f dy x x )(00'== 第三章 导数的应用 洛必达法则(函数极限的计算) 函数的单调性与极值,最值、凹凸性与拐点的求法

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

《高等数学》(上)一元函数微分学复习题

《高等数学》(上)“一元函数微分学”复习题 1.设x x f +=1)(ln ,求)(x f '. 2.设函数)(x f 二阶可导,且0)0(=f ,1)0(='f ,2)0(=''f ,求20)(lim x x x f x -→. 3.设)(x f 在2=x 处连续,且22)(lim 2=-→x x f x ,求)2(f '. 4.若)(sin x f y =,求dy . 5.若函数)(x f 可导,)(sin 2x f y =则 dx dy 为多少? 6.设函数)1ln()(2x x f -=,求)(x f ''. 7.求等边曲线x y 1=在点2) ,2 1(的切线方程. 8.设函数???≥+<=0 ),1ln(0,sin )(x x x x x f ,求)0(-'f 、)0(+'f ,并判断)0(f '是否存在. 9.确定常数a ,b 使函数? ??>-≤+=0,0,13sin )(x b ae x x x f x 在0=x 处可导. 10.求曲线???==t y t x sin 2cos 在3π=t 处的切线方程和法线方程. 11.求由方程0=-+e xy e y 所确定的隐函数的微分dy . 12.设函数x x x y ?? ? ??+=1,求其导数y '. 13.设曲线的参数方程为?????==-t t e y e x 23,求22dx y d . 14.求由方程12 2=-y x 所确立的隐函数)(x y y =的二阶导数22dx y d . 15.设函数)(x f y =由方程4ln 2y x xy =+确定,求() 1,1dx dy . 16.求椭圆442 2=+y x 在点()2,0处的二阶导数22dx y d . 17.设()3,1是曲线2 3bx ax y +=的拐点,求b a ,.

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

多元函数微积分学

第六章 多元函数微积分学 §6.1空间解析几何 习题 6-1 1.在空间直角坐标系中,指出下列各点所在的卦限: (2,2,3);(6,2,4);(1,5,3);(3,2,4);A B C D ------ (4,3,2); (2,3,1); (3,3,5); (1,2,3).E F G H ------ 2.写出坐标面上和坐标轴上的点的坐标的特征,并指出下列各点的位置: (2,0,3);(0,2,4);(0,0,3);(0,2,0);A B C D --- 3.求点(,,)M a b c 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标. 4.求以点(1,3,2)O -为球心,且通过坐标原点的球面方程. 5.求与原点和0(2,3,4)M 的距离之比为1:2的点的全体所构成的曲面的方程,它表示怎样的曲面? 6. 指出下列方程组所表示的曲面 222(1)4x y z ++=; 7.指出下列方程组所表示的曲线: 22225(1)3 x y z x ?++=?=?; 22(2)20x y z +-=; 22(3)0x y -=; 22(4)0x y +=; 2 2(5)1916x y +=; 2 2 (6)125 y x -=; (7)0y -=;

2 (8)430y y -+=; 2(9)4x y =; 222(10)0z x y --=. §6.2 多元函数的基本概念 习题 6-2 1.设22,y f x y x y x ? ?+=- ?? ?,求(,)f x y . 2.已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy -+. 3.求下列各函数的定义域: 2 (1)ln(21)z y x =-+ ; (2)z = 22(3)z = ; (4)z = ; (5)ln()z y x =- ; (6)u =4.求下列各极限 : 10 (1)y x y →→ (,)(0,0)(2) lim x y →; 22() (3)lim ()x y x y x y e -+→+∞→+∞ +; 222200 (4)lim x y x y x y →→+ ; 00(5)x y →→;22222200 1cos() (6)lim ()x y x y x y x y e →→-++. 5.证明下列极限不存在: 2222(,)(0,0)2(1)lim 32x y x y x y →-+; 1 00 (2)lim(1)x y x y xy +→→+ ; (,)(0,0)(3)lim x y →6.研究下列函数的连续性: 222(1)(,)2y x f x y y x +=-; 22(2)(,)ln()f x y xy x y =+.

多元函数微分学总结

`第八章多元函数微分学 8.1基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 8.2基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于 这一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24 (,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++,

成人高考一元函数积分学整理.

一元函数积分学 【知识要点】 1、理解原函数与不定积分的概念及其关系,掌握不定积分的性质。 2、熟练掌握不定积分的基本公式。 3、熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换。 4、熟练掌握不定积分的分部积分法。 5、掌握简单有理函数不定积分的计算。 6、理解定积分的概念及其几何意义,了解函数可积的条件 7、掌握定积分的基本性质 8、理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法。 9、熟练掌握牛顿—莱布尼茨公式。 10、掌握定积分的换元积分法与分部积分法。 11、 . 理解无穷区间的广义积分的概念,掌握其计算方法。 12、掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积。 1不定积分 定义函数 (x f 的全体原函数称为函数 (x f 的不定积分 , 记作?dx x f (, 并称?微积分号, 函数 (x f 为被积函数, dx x f (为被积表达式, x 为积分变量。因此 ? +=C x F dx x f ( (, 其中 (x F 是 (x f 的一个原函数, C 为任意常数(积分常数。基本积分公式(要求熟练记忆 (1 ?=C dx 0 (2 1(1

11 -≠++=+?a C x a dx x a a . (3 C x dx x +=? ln 1. (4 C a a dx a x x += ?ln 1 1, 0(≠>a a (5 C e dx e x x +=? (6 ?+-=C x xdx cos sin (7 ?+=C x xdx sin cos (8 C x x +=?tan cos 1 2 . (9 C x x +-=?cot sin 1

高等数学期末复习--多元函数微分学

高等数学期末复习 第九章 多元函数微分学 一、内容要求 1、会求简单二元函数定义域 2、会求多二元函数表达式和值 3、会求简单二元函数的极限 4、掌握二元函数偏导数定义,性质,能确识别二元函数偏导数定义形式,得出偏导数正确表达 5、会求二元函数偏导数值:求偏导函数,代入点求值 6、会求二元函数微分值:求偏导函数,代入点求微分表达式 7、会按一元函数求导法则求直接函数的偏导数 8、会由轮换对称性确定多元函数对称元导数 9、会用链式规则求抽象形式多元函数的偏导数 10、会求多元函数全微分 11、会求多元隐函数的偏导数 12、会求二元函数驻点,判定二元函数极值的存在性 13、能观察出简单多元函数极值情况 14、能应用多元函数求极值方法解决简单应用问题 15、会求空间曲面的切平面、法线方程 16、会求空间曲线的切线、法平面方程 17、会求多元函数的方向导数 18、会求多元函数的梯度 二、例题习题 1、二元函数x y z arcsin =的定义域是( ) A.|}||||),{(x y y x ≤ B. }0|||||),{(≠≤x x y y x C. }0|||||),{(≠>x x y y x D. }0|||||),{(≠≥x x y y x 解:使函数x y z arcsin =有意义,只要||1,0y x x ≤≠,即||||,0y x x ≤≠,所以,选B. (内容要求1) 2、函数22 1 (,)ln()=++ +f x y x y x y 的定义域为 ; 解:使函数22 1(,)ln()=++ +f x y x y x y 有意义,只要22 0,0x y x y +>+≠,所以填22{(,)|0,0}x y x y x y +>+≠(内容要求1)

相关主题