搜档网
当前位置:搜档网 › AI芯片技术的选型说明

AI芯片技术的选型说明

AI芯片技术的选型说明
AI芯片技术的选型说明

AI芯片技术的选型说明

一、背景与意义

当前随着人工智能理论和技术的日益成熟,应用范围不断扩大,目前已广泛应用于计算机科学、金融贸易、医药、诊断、重工业、运输、远程通讯、在线和电话服务、法律、科学发现、玩具和游戏、音乐等诸多方面。

算力作为承载人工智能应用的平台和基础,其发展推动了整个人工智能系统的进步和快速演进,是人工智能最核心的要素之一。以人工智能应用为主要任务的,面向智能计算的处理器的相关设计方法与技术已成为国内外工业界和学术界共同角逐的热点,国内外企业纷纷布局AI芯片。

AI芯片的应用场景不再局限于云端,部署于智能手机、安防摄像头、及自动驾驶汽车等终端的各项产品日趋丰富。除了追求性能提升外,AI芯片也逐渐专注于特殊场景的优化。

为了进一步促进供需对接,为AI芯片供应商和需求商提供交流的平台,中国人工智能产业发展联盟(以下简称“AIIA”或联盟)计算架构与芯片推进组启动“AI芯片技术选型目录”(以下简称“选型目录”)的工作,希望为AI 芯片的可持续发展,服务和促进相关产业发展壮大贡献一份力量。

人工智能芯片按照目前的应用场景来看,主要分为训练和推断两类场景,按部署位置又可分为云端、边缘和终端。AIIA“AI芯片技术选型目录”具体根据应用场景与部署位置,包含云端训练、基于云端、边缘和终端推断的四大产品形态。又依据行业应用,AI芯片技术选型目录根据垂直应用场景如图3所示给出。

AI芯片根据行业应用分类图

二、云端训练

技术概述

百度昆仑1芯片面向AI通用计算,基于百度XPU架构,既可以用于训练,也可以用于推理,能全面支持语音,图像,自然语言处理等应用。

技术指标百度昆仑1芯片基于百度XPU架构,采用三星14nm工艺,HBM2和PCIE4.0等技术,给用户提供高性能、高带宽、低功耗、高灵活性、高度可编程等优势。

产品信息

应用案例

百度ERNIE模型,应用于翻译、搜索排序等场景。百度网盘里的图像模型;百度云主机;百度云的工业质检客户。

产品特征/技术特点

1.高性能,峰值256Tops;

2.高带宽,片外内存带宽512GB/s;

3.高度可编程性,能提供C++/C++的编程,用户可以自由开发自己的算子。

上海燧原科技有限公司-邃思通用人工智能训练芯片

技术概述

邃思芯片集成神经元处理器架构和数据处理引擎,通过可编程的通用张量/向量运算核心,支持各类数据精度的主流深度学习训练负载。

技术指标

邃思芯片采用12nmFinFET工艺,2.5D封装,总计141亿个晶体管。其宣称单芯片提供20TFLOPS@FP32及80TFLOPS@BF16/FP16的算力,最大功耗

190W。

邃思芯片主要技术特点包括:自主指令集的神经元处理器(SIP),可编程的通用张量/向量运算核心,支持张量/向量/标量计算;神经元处理集群(SIC),由8个神经元处理器构成,4MB共享集群缓存;自主研发2.5D封装,集成16GBHBM存储,提供512GB/s带宽;自主ESL(燧原智能互联,Enflame SmartLink)片间互联引擎,每通道双向50GB/s,4通道总共200GB/s 接口带宽,通道延时小于1μs;系统稳定性控制,支持服务器级别RAS需求。支持CNN、RNN、LSTM、BERT等网络模型

产品信息

产品特征/技术特点

云燧T10是基于邃思芯片打造的人工智能训练加速卡,20TFLOPS@FP32,最大功耗225W,支持FP32/FP16/BF16/INT8/INT16/INT32等多种数据类型;支持PCIe4.0接口,提供64GB带宽以及200GB/s片间互联带宽;

计算和编程平台主要包含分布式调度、软件开发包(SDK)和设备驱动层,用户可以将已有训练系统,无缝迁移至邃思平台上运行,无需二次开发或者模型转换工作。

云燧T10人工智能训练加速卡面向云端数据中心,可广泛应用于互联网、金融、教育、医疗、工业及政务等人工智能训练场景。

NVIDIA-NVIDIAA100/V100/T4Te nsor Core GPU s

技术概述

为数据中心GPU,可加快AI、高性能计算(HPC)和图形技术的发展。

技术指标

NVIDIA Ampere GPU架构配备540亿个晶体管,为7纳米芯片架构,集训练和推理于一身,具有多实例GPU、TF32、结构化稀疏等特性。

NVIDIAVolta GPU架构配备640个Tensor内核,可提供每秒超过100万亿次(TFLOPS)的深度学习性能,是上一代NVIDIA Pascal架构的5倍以上。NVIDIA Turing GPU架构支持实时光线追踪、AI、模拟和光栅化技术。

应用案例

利用NVIDIAA100/V100/T4GPU可以更快速地处理要求最严格的高性能计算(HPC)和超大规模数据中心工作负载。现在,数据科学家和研究人员可以在能源勘探和深度学习等应用场合中解析PB级的数据,速度比使用传统CPU快几个数量级。NVIDIA A100/V100/T4加速器可以超快速度运行更大型的模拟。此外,NVIDIA GPU还能为虚拟桌面、应用程序和工作站提供超高性能和用户密度。

产品特征/技术特点

NVIDIA A100采用了NVIDIA Ampere架构的突破性设计,集AI训练和推理于一身,宣称其性能相比于前代产品提升了20倍。作为一款通用型工作负载加速器,A100还被设计用于数据分析、科学计算和云图形。NVIDIAT4GPU推理加

速器搭载NVIDIATuringTensorCore,提供多精度推理性能,以加速人工智能的各种应用。

产品信息

赛灵思–Alveo

技术概述

赛灵思AlveoTM数据中心加速器卡专为现代数据中心多样的应用需求而设计。Alveo加速器卡可通过对加速资源的重新配置,适应持续算法优化,在降低总成本的同时,灵活支持各类工作负载。

赛灵思推出的Vi ti s统一软件平台为各类软件和AI推理应用开发提供统一编程模型,帮助用户加速实现从C/C++、Python、Caffe、Tensor flow到差异化应用落地的开发过程。

技术指标

赛灵思Alveo数据中心加速器卡基于Xilinx 16nm Ultra Scale架构,使用赛灵思堆叠硅片互联(SSI)技术来实现FPGA容量、带宽和功耗效率,通过结合多个超逻辑区域(SLR)来增大密度。

Alveo加速卡旨在加速服务器或工作站中的机器学习、数据分析和视频处理等计算密集型应用。Alveo U50卡采用XCU50 FPGA包括2个SLR,配备PCIe Gen4和8G HBM2,每秒100G网络连接,以高效能75瓦、小尺寸形式为金融计算、机器学习、计算存储以及数据搜索与分析工作负载提供优化加速。

AlveoU200卡采用XCU200FPGA包括3个SLR,AlveoU250卡使用

XCU250FPGA包括4个SLR。二者均可连接到PCIExpress的16个通道,最高运

行速度8GT/s(Gen3),也可以连接到4根DDR4 16GB 2400MT/s64位含纠错码(ECC)的DIMM,总计64GB的DDR4。

应用案例

Alveo加速卡已经开发和认证的关键应用涵盖AI/ML、视频转码、数据分析、金融风险建模、安全和基因组学等。Algo-Logic SystemsInc、Bigstream、Black LynxInc.、CTAccel、Falcon Computing、Maxeler Technologies、Mi psology、NGCodec、Skreens、Sum Up Analytics、Titan IC、Vitesse Data、VYUsync和Xelera Technologies等合作伙伴开发完成的

应用已经投入部署。此外,DellEMC、Fujitsu Limited和IBM等顶级OEM厂商也在同赛灵思合作,认证采用Alveo加速器卡的多个服务器SKU。

Alveo-Mipsology,Zebra搭载Alveo

U50数据中心加速卡用于神经网络推理,板卡功耗75W,关键功能:快速卷积神经网络(CNN)推理——Zebra设立了新的性能标准;支持所有神经网络——Zebra可加速任何CNN的所有层级;易于使用——Zebra是“即插即用”的解决方案,无需对神经网络进行修改或再训练;不改变软件环境——无新语言、框架或工具。Zebra在TensorFlow、PyTorch、ONNX、Caffe和MXNet模型内运行;可扩展性、灵活性和适应性——Zebra可替代GPU或在任何位置补充CPU。

Alveo-SK电讯基于人工智能的实时物理入侵和盗窃检测服务,基于赛灵思Alveo U250加速器卡,可提供充足的吞吐量与精准度

产品特征/技术特点

AlveoU50数据中心加速器卡采用赛灵思UltraScale+架构,使用半高半长的外形尺寸和低于75瓦的低包络功耗。该卡支持第四代PCIe及高带宽存储器(HBM2),每秒100G网络连接,面向各种类型的服务器部署。

AlveoU50加速器卡产品详细介绍:

通过PCIe3.3V电源供电线提供的HBM2功耗仅限为10W。使用HBM2可实现的性能受限于此功耗限制,并且因设计而异。HBM2的额定带宽为201GB/s。在不兼容PCIe的规格中,针对A-U50DD-P00G-ES3-G和A-U50-P00G-PQ-G卡测得的HBM2带宽峰值为316GB/s。

AlveoU200和U250数据中心加速器卡采用PCIeGen3x16,设计用于加速高计算强度应用,如机器学习、数据分析和视频处理。

AlveoU280数据中心加速器卡专为计算和存储工作负载而设计,拥有

8GBHBM2+32GB DDR4内存、1.1MLUT、8.5k DSP片、每秒100G双网络连接,并支持第四代PCIe和CCIX互联标准。

AlveoU280加速器卡产品详细介绍:

产品信息

科寒武纪科技股份有限公司-寒武纪思元100 技术概述

为云端推理提供运算能力支撑

技术指标

INT8算力32TOPS,内置硬件编解码引擎

应用案例

计算机视觉、语音识别、自然语言处理。

产品信息

产品特征/技术特点

1.通用智能,支持计算机视觉、语音识别、自然语言处理等多模态智能处理;

2.针对深度学习定制的指令集和处理器架构,具有更优的能效比;

3.完善软件开发环境NeuWare,包括应用开发、功能调试、性能调优等。

中科寒武纪科技股份有限公司-寒武纪思元270

为高能效比AI推理设计的数据中心级PCIe智能加速卡。

技术指标

支持多种精度,比上一代加速芯片计算能力提高4倍,INT8算力

128TOPS。

应用案例

广泛支持视觉、语音、自然语言处理以及传统机器学习等高度多样化的人工智能应用,帮助AI推理平台实现高能效比。

产品特征/技术特点

1.支持INT16、INT8、INT4、FP32、FP16多种精度;2.内置视频和图片编解码器,有效降低CPU前处理负载和PCIe带宽占用;3.计算弹性,支持多类神经网络,寒武纪Neuware软件栈部署推理环境;4.可编程,基于Bang语言编程环境可对计算资源定制,满足多样化需求。

产品信息

北京比特大陆科技有限公司-比特大陆算丰TPU芯片BM1684

技术概述

BM1684是比特大陆面向深度学习领域自主研发的第三代张量处理器(TPU),是聚焦视频图像分析的云端及边缘的人工智能推理芯片。

技术指标

芯片:BM1684聚焦视频图像分析,是云端及边缘的人工智能推理芯片;AI 算力:17.6TOPSINT8,Winograd卷积加速下最高可达35.2TOPS,实测推理性能较上一代提升约5倍以上;AI架构:本芯片基于自主研发的TPU架构;典型功耗:16W;视频解码:支持H264/H265解码,最大分辨率8192x8192,支持

4K/8K。H264和H265解码都支持32路高清30FPS@1080P,可处理数十路视频智能分析全流程;

应用案例

北京海淀城市大脑中的AI计算推理,百度大脑Pad dle TPU计算集群,处理千路级别的高清视频结构化。福州长乐区的AI算力中心TPU计算集群,处理上千路的高清视频结构化、人脸识别等。福州城市大脑的AI计算推理TPU计算集群,处理千路级别的高清视频结构化。

优必达(Ubitus)的互联网云端游戏AI加速TPU加速游戏中的图像特征提取,画面增强,超分辨率等。

产品特征/技术特点

BM1684芯片技术特点是:

1)TPU芯片架构自主研发,相关专利申请达到270项以上;

2)性能功耗比高,在16W情况下,最高可达到35.2T性能(Winograd加速);

3)视频解码路数多,支持32路H264和H265高清30FPS@1080P硬解码;

4)视频全流程处理能力强,可达到16~32路典型视频结构化/人脸分析路数;

5)AI工具链完备,Caffe,Tensorflow,PyTorch,MXNet,PaddlePaddle都支持;

6)部署场景灵活,云端和边缘均可部署;

7)使用灵活,可工作于PCIE从设备模式或者SOC主设备模式;

板卡产品特色:

1)75W半高半长PCIE小卡,峰值算力105.6T,无需外接供电;

2)宣称其性能赶上并部分超越英伟达推理GPUT4;

3)视频解码路数多,96路高清视频30FPS解码;

模组产品特色:

1)AI边缘计算模组,17.6T/35.2T;

2)视频解码支持32路H264和H265高清30FPS@1080P硬解码;

3)视频全流程处理可达到16~32路典型视频结构化/人脸分析;

盒子产品特色:

1)AI边缘计算盒子,17.6T/35.2T;

2)视频全流程处理能力可达到16~32路典型视频结构化/人脸分析;

3)可室外部署,无风扇散热,-20℃至

+60℃宽温;

4)接口支持USB/HDMI/RS-485/RS-

232等;

产品信息

深圳鲲云信息科技有限公司-星空x3加速卡

技术概述

星空X3加速卡为鲲云推出的面向边缘端和数据中心进行深度学习推断的AI计算加速卡,搭载鲲云自研的定制数据流CAISA芯片,采用无指令集的架构方式,为支持深度学习的边缘和数据中心服务器提供计算加速方案。

技术指标

支持ResNet、VGG、YOLO等多个主流

CNN算法模型提供Rain Builder编译工具链,支持端到端算法开发和部署支持Tensor Flow、Caffe、PyTorch及ONNX(MXNet)等主流深度学习框架开发的算法模型其宣称芯片利用率可达95.4%

应用案例

工业领域:鲲云与合作方针对某电容上激光刻蚀字符推出基于深度学习的OCR识别方案,识别算法采用了深度学习方法,可识别字母、数字以及数十种特殊字符,字符识别精度可达到99.99%。采用搭载鲲云CAISA芯片的星空加速卡,识别延迟可以降低到50ms,识别速度可达到20pcs/s。

电力领域

鲲云与合作方通过研究适用于电力无人机巡检的目标检测深度学习算法,实现基于人工智能技术的电力无人机智能巡检、数据采集,并在服务器端进行高质量的图片数据分析,提高巡检效率,降低巡检工作量。

产品特征/技术特点

其宣称芯片利用率可达95.4%;时延:3ms分类延时支持分类、目标检测以及语义分割类深度学习算法;Batchsize不敏感;温度范围:-20℃~70℃

实测Benchmark

产品信息

华为技术有限公司-昇腾310AI处理器

技术概述

昇腾AI处理器的主要架构组成:芯片系统控制CPU(Control CPU)

AI计算引擎(包括AICore和AI CPU)多层级的片上系统缓存(Cache)或缓冲区(Buffer)数字视觉预处理模块(Digital VisionPre-Processing,DVPP)等。

技术指标

应用案例

华为针对其昇腾AI芯片的计算架构专门构建了完整的软件栈,兼容各个深度学习框架并能够高效运行在昇腾AI芯片上,让开发者能够快速开发推理应用,为开发者提供便利的解决方案。当前主流的深度学习应用,包括图像分类、人脸识别、目标检测、光学字符识别、视频处理和自然语言处理领域的各个模型,均可以在昇腾310处理器上得到很好的技术支持。

产品特征/技术特点

达芬奇架构主要由计算单元、存储系统和控制单元三部分构成。其中计算单元又分为:矩阵计算单元、向量计算单元、标量计算单元,分别对应矩阵、向量和标量三种常见的计算模式。

矩阵计算单元(CubeUnit):矩阵计算单元和累加器主要完成矩阵相关运算。一拍完成一个FP16的16x16与16x16矩阵乘(4096);如果是INT8输入,则一拍完成16*32与32*16矩阵乘(8192);

向量计算单元(VectorUnit):实现向量和标量,或双向量之间的计算,功能覆盖各种基本的计算类型和许多定制的计算类型,主要包括

FP16/FP32/INT32/INT8等数据类型的计算;

标量计算单元(ScalarUnit):相当于一个微型CPU,控制整个AICore的运行,完成整个程序的循环控制、分支判断,可以为Cube/Vector提供数据地址和相关参数的计算,以及基本的算术运算。

产品信息

设备租赁和购置方案经济比选报告样本

为满足项目施工需要,根据项目策划及项目施工组织设计,项目部设备需求计划如下表: 按照公司精细化管理要求,为了设备配置方式选择的合理性,根据设备租赁、采购市场调查结果,现将设备租赁和购置方案经济比选如下: 一、履带挖掘机经济比较(以为例) 1、市场情况及预计成本 (1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约31万元。 (2)购置。新机单台售价约为130万元,使用10个月项目部需计提折旧费约万元,操作人员工资6万元,维修保养费用约万元,项目完工后设备退场运费计万元(运至武汉),总计约万元。 2、经济比较 租赁一台履带挖掘机所需承担的成本比采购一台高出约万元。 二、汽车起重机经济比较(以20T为例) 1、市场情况及预计成本 (1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约22万元。 (2)购置。新机单台售价约为60万元,使用10个月项目部需计提折旧费约万元,操作人员工资6万元,维修保养费用约4万元,

检验取证费万元,项目完工后设备退场过路费、油费约万元(至武汉),总计约万元。 2、经济比较 租赁一台20T汽车起重机所需承担的成本比采购一台高出约万元。 三、装载机经济比较(以50型为例) 1、市场情况及预计成本 (1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约15万元。 (2)购置。新机单台售价约为35万元,使用10个月项目部需计提折旧费约万元,操作人员工资5万元,维修保养费用约万元,项目完工后设备退场运费约万元(至武汉),总计约万元。 2、经济比较 租赁一台50装载机机所需承担的成本比采购一台高出约万元。 四、震动压路机经济比较(以20T为例) 1、市场情况及预计成本 (1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约16万元。 (2)购置。新机单台售价约为35万元,使用10个月项目部需计提折旧费约万元,操作人员工资6万元,维修保养费用约万元,项目完工后设备退场运费约万元(至武汉),总计约万元。 2、经济比较 租赁一台20T压路机所需承担的成本比采购一台高出约万元。 五、综述 通过以上各类设备市场经济比较情况可以看出,因项目部设备使用周期不长,租赁费和购置设备摊销成本相差较小。从项目成本考虑,购置设备比租赁设备更经济。若购置,公司一次性投入较大,安全风

芯片选型

芯片选型 微控制器是移动机器人运动控制系统的核心,它的选择直接决定了整个机器人运动系统的性能和开发方式。目前,国内外移动机器人平台采用的微控制器有多种,主要有8/16位单片机和数字信号处理器DSP两大类型。采用8/16位单片机,控制系统设计制作简单,硬件开发周期短,但数据处理能力不强,需要借助外加器件如计数器、PID调节器和PWM产生器等,系统的稳定性不是很强,系统控制板的结构尺寸也比较大。DSP具有数据处理能力强、速度快等特点,且体积比较小,有利于电路板布局,但DSP在中断处理、位处理或逻辑操作方面不如单片机,资料相对较少,芯片价格和相应的开发套件比较昂贵,专用性比较强,通用性比较弱。 与DSP具有同等性能的ARM微处理器资源丰富,具有很强的通用性,以其高速度、高性能低价格、低功耗等优点而广泛应用于各个领域。ARM本身是32位处理器,但是集成了16位的Thumb指令集,这使得ARM可以代替16位的处理器使用,同时具有32位处理器的速度,用单片机和DSP实现的系统,ARM都可以实现。ARM还集成了丰富的片内外设资源,利用自身资源不必增加外围器件就可以实现控制所要求的功能,同时使得机器人控制板的结构尺寸可以做的很小。另外,利用ARM处理器设计的嵌入式系统还具有非常好的移植性,这是其他处理器所不具备的特点。考虑到这些因素,本课题决定选择以ARM为核心的微处理器作为机器人底层运动控制芯片。 然而,ARM微处理器有几十种架构,几十个芯片生产厂家以及各种各样的内部功能配置,因此开发时需要对芯片做一些对比分析,芯片选型时主要考虑以下几个因素: 1.ARM微处理器内核的选择 不同的内核,适用于不同的应用领域。如ARM7内核没有MMU,而ARM9内核有MMU。由于uCLinux等不需要MMU单位,因而可以在ARM7上运行,相反,嵌入式Linux具有MMU,因而可以在ARM9上运行。 2.系统的工作频率 系统的工作频率很大程度上决定了系统处理任务的能力。但是系统的工作频率越高,其功耗也较高。因此在实际应用中,需要根据需要来选择工作频率。 3.芯片内存储器的容量 多数的ARM微处理器片内存储器的容量不大,因而需要用户在设计系统时进行外部扩展,但是也有芯片内部有较大的片内存储空间。因而,用户可以根据需要选择合适的方案。 4.片内外围电路的支持 几乎所有的芯片都有各自不同的适用领域,扩展了相应的外围模块功能,并集成在芯片内部,称之为片内外围电路。开发人员根据系统设计的需要,选择合适的ARM外围电路,可以大大地降低开发成本,节约开发时间。

桥型方案比选报告

增城大桥改造工程桥型方案构思与比选 1 项目概况 某大桥位于所在城市市中心区东北侧,是该市中心城区东北侧进出城重要通道。目前该大桥宽度仅为双向两车道,而桥两岸的道路均已改建为双向六车道,使得该桥成为所在地区的交通瓶颈,因此其改建迫在眉睫。原大桥无论是桥面宽度、设计荷载等方面均无法满足区域经济和交通发展的要求,也无法满足附近城市居民日常生活起居的正常要求。同时原大桥存在较严重的病害,虽然经过多次维修加固,但由于原桥建造标准太低,难以提高到现行技术标准,对社会经济发展和人民生命财产安全均造成严重威胁。要把该市建设成为生态型、现代化的城市,加快城区交通网络的建设是十分必要而迫切的,本项目的建设符合该市总体发展规划。 桥梁设计主要技术标准: ( 1) 道路等级: 公路一级结合城市主干道标准设计; ( 2) 计算行车速度:50 km/h; ( 3) 车道及桥宽: 按六车道设计,两侧设非机动车道、人行道,机非车道之间设绿化带; ( 4) 桥梁设计荷载标准: 公路-Ⅰ级; ( 5) 桥梁设计洪水频率: 1 /100; ( 6) 抗震设防标准: 地震动峰值加速度0.1g( 地震基本烈度7 度) ,本桥提高1 度,按8 度设防。 桥位自然条件和工程地质情况 气象及水文 增城地处南亚热带,其气候属南亚热带典型的季风海洋气候,温暖、多雨、湿润,夏长冬短,夏季长达半年之久。增城年平均气温℃,历年极端最高气温℃,极端最低气温℃。年平均最高气温℃,年平均最低气温℃。雨量充沛,分布不均,年平均降雨量毫米,其中4-9

月降雨量毫米;占全年降雨量的%。年平均相对湿度%,最小相对湿度7%。无霜期长。年平均风速米/秒,年平均雷暴日数天。 按百年一遇洪水位作为设计水位,确定本桥设计水位为米。 工程地质 根据桥位处钻探揭露,场地内埋藏地层主要有填筑土层(Qme)①杂填土;第四系冲积层(Qal)②-1粗砂、②-2粉质粘土、②-3淤泥质中砂、②-5砾砂及②-6圆砾;第四系残积层(Qel)③粉质粘土;下伏基岩为下古生界(Pz1)混合片麻岩④-1全风化混合片麻岩、④-2强风化混合片麻岩岩、④-3中风化混合片麻岩及、④-4微风化混合片麻岩。 通航条件 本桥桥位处航道技术等级为Ⅵ级。其要求双向通航孔净宽不小于40米,净高不低于6米,最高通航水位为5年一遇洪水位,即为米。 2 桥型方案构思 桥梁跨径构思 根据桥梁所在城市航道局要求,该桥所跨通航等级为Ⅵ级。桥位处河宽260m,路线中心线与水流方向交角为90°。桥下通航净高按6m 考虑,单向通航孔净宽40m。考虑一定的防撞设施及安全距离,满足通航要求最小跨径为 60m。引桥跨径布置综合考虑以上因素,并考虑施工方便、快捷,引桥采用跨径30m 的预制预应力混凝土小箱梁,先简支后桥面连续。 主桥结构形式构思 该桥所在城市有着悠久的历史文化和丰富的旅游资源,新建大桥作为城市景观桥梁,应综合考虑美观、经济、后期维护、防撞安全、施工难易、协调难易及地标建筑等因素,经过对其所在桥位地形、地貌和周边既有建筑的考察,并结合该市的规划,同时考虑航道的规划发展,分别提出1个推荐方案和3个比较方案。推荐方案采用了中承式拱桥,本次设计的4个桥梁方案概况见表1。 3 桥型方案 中承式拱桥

DSP公司各主流芯片比较(精)

DSP芯片介绍及其选型 引言 DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器具,其主机应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法; (2)程序和数据空间分开,可以同时访问指令和数据; (3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问; (4)具有低开销或无开销循环及跳转的硬件支持; (5)快速的中断处理和硬件I/O支持; (6)具有在单周期内操作的多个硬件地址产生器; (7)可以并行执行多个操作; (8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。 在我们设计DSP应用系统时, DSP芯片选型是非常重要的一个环节。在DSP系统硬件设计中只有选定了DSP芯片,才能进一步设计其外围电路及系统的其他电路。因此说,DSP芯片的选择应根据应用系统的实际需要而确定,做到既能满足使用要求,又不浪费资源,从而也达到成本最小化的目的。

DSP实时系统设计和开发流程如图1所示。 主要DSP芯片厂商及其产品 德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的TMS320系列DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用、功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、 TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等。

比选方案说明

方案比选 比选概述 道路选线是一个涉及面广、影响因素多、政策性和技术性都很强的工作。它是由面到片,由片到线,由粗略到细致的过程,是逐步具体化、逐步补充修改和提高的过程。选线要先通过总体布局决绝基本走向,然后在解决局部路线方案直到具体定线。 初步设计的路线方案布设主要根据本项目《工可报告》的推荐方案走向及工程规模、《工可报告》审查会议精神,初步设计外业验收咨询及审查意见,对初步设计外业推荐方案进行局部调整、优化。路线布设时充分考虑路线与地形、地物等环境相协调,地质条件对路线的影响;同时尽可能寻找短捷路径,以减少运输成本,提高运输效率。 选线原则 (1)服务辽宁省公路网规划总体布局和大石桥市统筹城乡综合交通发展规划干线公路网布局,坚持“全面、协调、可持续”的科学发展观,做到安全选线、地形选线、地质选线、环保选线。 (2)合理运用技术指标并合理搭配,尽量不采用极限指标。公路原则上按一级公路技术标准设计,设计车速80Km/h,在特别困难地段适当降低平纵面技术标准,平均纵坡接近5%为宜,任意连续3 Km路段范围内的平均纵坡不宜大于5.5%。 (3)注意线形与周围环境的协调,尽量提高平面指标,同时注重指标的均衡。在满足技术指标的前提下尽可能节省投资,在技术标准运用上追求高指标、高标准,因地制宜合理地运用技术指标。 (4)由于公路所在地区地势平坦、山丘稀少,为典型平原微丘地貌。路线布设注意与环境协调,着重结合沿线地形、地质条件,平、纵、横综合考虑,尽可能避免大填大挖,避免对原有地形地貌的较大破坏,诱发新的地质病害和破坏

自然景观,尽量注意沿线自然生态环境的保护,在地形条件允许的前提下,采用较高的指标;对个别特殊困难地段,适当采用较低的技术指标,灵活设计。 比选内容 根据地形情况,我做了两个方案,方案1和方案2。 两方案起终点坐标均相同,方案1向东侧布线,而方案2西侧布线。接下来根据表格,分别介绍下两条道路的优缺点。 路线方案比较表 比选意见 方案1全长8556.617米,共有8个交点,起点桩号为k0+000,终点桩号为k8+556.617。从K1+150.254到k8+556.617,为新建道路,从桩号K1+150.254处开始抛弃原有道路,线性相对方案2要美观流畅,此外,较方案2联系了更多的村庄,耕地占用量更少。 方案2全长8724.22米,共有7个交点,起点桩号为k0+000,终点桩号为k8+724.22。在K1+150.254处沿原有道路方向进行新建,路线长度在此有所增加,但是通过的村庄数量较少,因此减小了拆迁量,但路线后半部分为新建,地形复杂,高差较大,开挖方较大,施工比较困难。 综合考虑方案1线形美观,路线较短,施工难易程度较小,填挖方量相对于方案2较少,两方案均有优缺点,但从本项目工程建设的目的、技术指标、经济指标

人工智能芯片的分类

人工智能芯片的分类 近年来人工智能芯片领域的科学家们进行了富有成果的广泛研究,主要集中在AI芯片目前的两种发展方向。一个方向是继续延续经典的冯·诺依曼计算架构,以加速计算能力为发展目标,主要分为并行加速计算的GPU(图形处理单元)、半定制化的FPGA(现场可编程门阵列)、全定制化的ASIC(专用集成电路)。另一个方向就是颠覆传统的冯·诺依曼计算架构,采用基于类脑神经结构的神经拟态芯片来解决算力问题。 一、按架构分类 (1)图形处理单元(graphics processing unit,GPU)。GPU是相对较早的加速计算处理器,具有速度快、芯片编程灵活简单等特点。由于传统CPU的计算指令遵循串行执行方式,不能发挥出芯片的全部潜力,而GPU具有

高并行结构,在处理图形数据和复杂算法方面拥有比CPU更高的效率。在结构上,CPU主要由控制器和寄存器组成,而GPU则拥有更多的逻辑运算单元(arithmetic logic unit,ALU)用于数据处理,这样的结构更适合对密集型数据进行并行处理,程序在GPU系统上的运行速度相较于单核CPU往往提升几十倍乃至上千倍。同时,GPU 拥有了更加强大的浮点运算能力,可以缓解深度学习算法的训练难题,释放人工智能的潜能。但是GPU也有一定的局限性。深度学习算法分为训练和推断两部分,GPU平台在算法训练上非常高效。但在推断中对于单项输入进行处理的时候,并行计算的优势不能完全发挥出来。 (2)现场可编程门阵列(field programmable gate array,FPGA)。FPGA是在PAL、GAL、CPLD等可编程器件基础上进一步发展的产物。其基本原理是在FPGA芯片内集成大量的基本门电路以及存储器,用户可以通过更新FPGA配置文件(即烧入)来定义这些门电路以及存储器之间的连线。这种烧入不是一次性的,因此,它既解决了定制电路灵活性的不足,又克服了原有可编程器件门电路数有限的缺点。与GPU不同,FPGA同时拥有进行数据并行和任务并行计算的能力,适用于以硬件流水线方式处理一条数据,且整数运算性能更高,因此常用于深度学习算法中的推断阶段。不过FPGA通过硬件的配置实现软件算法,

员工工作岗位双向选择实施方案

员工工作岗位双向选择实施方案 公司各部室、 为进一步理顺公司内部管理体制,充分调动公司员工的积极性、主动性、创造性,经公司研究决定,现就公司全面推行员工工作岗位“双向选择”特制定如下实施方案: 一、指导思想 以建立并完善与现代企业制度相适应的劳动、人事、分配制度为目标,以建立一支“政治强、业务精、作风正、纪律严”、适应于“三网融合”的网络人才队伍为出发点,通过竞争择优的方式,为优秀人员的选拔任用创造条件,为实现公司的长远发展提供有力的人力资源保障。 二、基本原则

坚持公开、公正、平等自愿、双向选择、择优上岗的原则;坚持德才兼备、人尽其才的原则;坚持改革、发展、稳定与工作实际相结合的原则。通过择优上岗,形成一个人员能进能出、职务能上能下、待遇能升能降、充满生机活力的现代企业用人机制。 三、组织机构 为加强对“双向选择”工作的领导,公司成立********公司员工工作岗位双向选择工作领导小组: 组长: *** 副组长: *** 成员: 领导小组下设办公室,负责员工工作岗位双向选择具体工作,办公室主任由****兼任。 四、对象范围 (一)本次双向选择的对象:除公司领导、各部室负责人、中心营业部主任、经营部主任以外的所有在编员工。 (二)本次双向选择在全公司范围内进行。 五、岗位设置 本次双向选择岗位共22个,其中: (1)综合办公室2个; (2)**部1个 (3)***部1个 (4)**经营部4个;

(5)**经营部1个; (6)***经营部1个; (7)**经营部2个; (8)***经营部2个; (9)**经营部1个; (10)**经营部3个; (11)**经营部2个 (12)**经营部2个; 本次双向选择的岗位名称、岗位定员及其职责详见附件1《***分公司双向选择岗位设置表》。 六、工作程序 (1)公布岗位。公布各部门岗位设置和主要职能职责、上岗条件。 (2)公开报名。根据公布的岗位职数和报名条件,由员工根据岗位职责、上岗条件和本人能力,自愿报名选择两个(第一意向和第二意向)工作岗位并填写《*****分公司员工工作岗位双向选择申请表》(详见附件2《员工工作岗位双向选择申请表》),交工作领导小组办公室,申请表中“是否服从调配”一栏是为了员工虽然自身优越但选择原部门无果的情况下领导小组可将其调配至其他部门。 (3)资格审查。工作领导小组办公室根据岗位要求和报名条件进行初审,审查结果报工作领导小组审核。

DSP厂商及选型参考(精)

DSP厂商 1.德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的丁MS320系列 DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP 应用历史上的一个里程碑,从此,DSP芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括 TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx 等。 (2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括 TMS320C54x, TMS320C54xx,TMS320C55x等。 (3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括 TMS320C62xx、TMS320C64xx、TMS320C67xx等。 2.美国模拟器件公司 ADI公司在DSP芯片市场上也占有一定的份额,相继推出了一系列具有自己特点的DSP芯片,其定点DSP芯片有ADSP2101/2103/2105、ADSP2111/2115、 ADSP2126/2162/2164、ADSP2127/2181、ADSP-BF532以及Blackfin系列,浮点DSP 芯片有ADSP21000/21020、ADSP21060/21062,以及虎鲨TS101、TS201S。 Motorola公司 Motorola公司推出的DSP芯片比较晚。1986年该公司推出了定点DSP处理器 MC56001;1990年,又推出了与IEEE浮点格式兼容的的浮点DSP芯片MC96002。 还有DSP53611、16位DSP56800、24位的DSP563XX和MSC8101等产品。

设备租赁和购置方案经济比选报告样本

设备租赁和购置方案经济比选 为满足项目施工需要,根据项目策划及项目施工组织设计,项目部设备需求计划如下表: 按照公司精细化管理要求,为了设备配置方式选择的合理性,根据设备租赁、采购市场调查结果,现将设备租赁和购置方案经济比选如下: 一、履带挖掘机经济比较(以为例) 1、市场情况及预计成本 (1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约31万元。 (2)购置。新机单台售价约为130万元,使用10个月项目部需计提折旧费约万元,操作人员工资6万元,维修保养费用约万元,项目完工后设备退场运费计万元(运至武汉),总计约万元。 2、经济比较 租赁一台履带挖掘机所需承担的成本比采购一台高出约万元。 二、汽车起重机经济比较(以20T为例) 1、市场情况及预计成本

(1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约22万元。 (2)购置。新机单台售价约为60万元,使用10个月项目部需计提折旧费约万元,操作人员工资6万元,维修保养费用约4万元,检验取证费万元,项目完工后设备退场过路费、油费约万元(至武汉),总计约万元。 2、经济比较 租赁一台20T汽车起重机所需承担的成本比采购一台高出约万元。 三、装载机经济比较(以50型为例) 1、市场情况及预计成本 (1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约15万元。 (2)购置。新机单台售价约为35万元,使用10个月项目部需计提折旧费约万元,操作人员工资5万元,维修保养费用约万元,项目完工后设备退场运费约万元(至武汉),总计约万元。 2、经济比较 租赁一台50装载机机所需承担的成本比采购一台高出约万元。 四、震动压路机经济比较(以20T为例) 1、市场情况及预计成本 (1)租赁。单台月租赁价约万元,计划使用周期为10个月,期间需发生租赁费用约16万元。 (2)购置。新机单台售价约为35万元,使用10个月项目部需计提折旧费约万元,操作人员工资6万元,维修保养费用约万元,项目完工后设备退场运费约万元(至武汉),总计约万元。 2、经济比较 租赁一台20T压路机所需承担的成本比采购一台高出约万元。 五、综述 通过以上各类设备市场经济比较情况可以看出,因项目部设备使用周期不长,租赁费和购置设备摊销成本相差较小。从项目成本考虑,购置设备比

步进电机驱动芯片选型指南

以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它 的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。 (3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。(2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。

人工智能芯片技术趋势研究分析报告

人工智能芯片技术趋势研究分析报告 2010 年以来,由于大数据产业的发展,数据量呈现爆炸性增长态势,而传统的计算架构又无法支撑深度学习的大规模并行计算需求,于是研究界对AI 芯片进行了新一轮的技术研发与应用研究。AI 芯片是人工智能时代的技术核心之一,决定了平台的基础架构和发展生态。 AI芯片基本知识及现状从广义上讲只要能够运行人工智能算法的芯片都叫作AI 芯片。但是通常意义上的AI 芯片指的是针对人工智能算法做了特殊加速设计的芯片,现阶段,这些人工智能算法一般以深度学习算法为主,也可以包括其它机器学习算法。人工智能与深度学习的关系如图所示。 人工智能与深度学习深度学习算法,通常是基于接收到的连续数值,通过学习处理,并输出连续数值的过程,实质上并不能完全模仿生物大脑的运作机制。基于这一现实,研究界还提出了SNN(Spiking Neural Network,脉冲神经网络)模型。作为第三代神经网络模型,SNN 更贴近生物神经网络——除了神经元和突触模型更贴近生物神经元与突触之外,SNN 还将时域信息引入了计算模型。目前基于SNN 的AI 芯片主要以IBM 的TrueNorth、Intel 的Loihi 以及国内的清华大学天机芯为代表。 1、AI 芯片发展历程从图灵的论文《计算机器与智能》和图灵测试,到最初级的神经元模拟单元——感知机,再到现在多达上百层的深度神经网络,人类对人工智能的探索从来就没有停止过。上世纪八十年代,多层神经网络和反向传播算法的出现给人工智能行业点燃了新的火花。 反向传播的主要创新在于能将信息输出和目标输出之间的误差通过多层网络往前一级迭代反馈,将最终的输出收敛到某一个目标范围之内。1989 年贝尔实验室成功利用反向传播算法,在多层神经网络开发了一个手写邮编识别器。

选择方案教学反思

选择方案教学反思 本节课的内容是在学生已有的知识基础上,让学生能够依据实 际情况从给定的方案中选择较经济的方案,从而培养学生的应用意识。以下内容是为您精心的选择方案教学反思,欢迎参考! 走进新课堂,我不断反思自己的教学实践,做到在实践中反思,在反思后实践,新课程理念如何转化为教学行为始终让我在思考,在尝试,究竟怎样教会学生,使复杂的数学问题简单化呢?尤其是上好“课题学习”。 “数学课题学习”我想是在老师的指导下,通过学生自主活动,以获得直接经验和培养实践能力的课程。它可以弥补数学学科实践能力的不足,加强实践环节,重视数学思维的训练,促进学生兴趣、个性、特长等自主和谐的发展,从而全面提高学生的数学素质。它提倡的是参与探索、思考、实践的学习方式,真正体现了新课程理念所倡导的自主、探究、合作交流的学习方式。 在备课组老师的热心指导和帮助下,整节课我个人感觉还是比 较满意的,学生各有所获。下面就谈谈本人这堂公开课的教学反思: 一、反思本课教学过程的成功之处: (1)本节课指导思想正确,达到了以下目的: ①巩固一次函数知识,会运用函数关系解决相关实际问题. ②会把选择方案的实际问题转化为数学模型,再通过函数统一 起来使用,利用函数的解析式与图象,并结合方程,不等式来解决实际问题。

精心设计教学程序,让学生自己经历“问题情境——分析研究——建立模型——解释应用”的过程,体验数学与现实生活的联系。 (2)新课开始先利用了丰富的实际情景 (如圣诞大餐准备炸鸡翅,是直接去麦当劳6块/对,还是选择自己加工;寒假的旅行路线多家旅行社各自采取不同的打折优惠,又如何选择),引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣,教学反思《课题学习——选择方案⑴教学反思》。创设了轻松和谐的教学环境与氛围,师生互动较好,使学生主动开动思维,利用已有的知识顺利的解决这这些选择方案的问题。 (3)而对于教学中的重点例题,注意到利用问题串的形式,将难点分散,层层递进,逐步让学生掌握选择方案的一般方法。 在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。教学中还注意到尊重学生的个体差异,使每个学生都学有所获。 (4)最后通过巩固练习,训练了学生灵活应用函数的知识解决问题的能力。 小结中让学生体会到利用一次函数解决实际问题,关键在于建立数学函数模型。从总体看整个教学环节也比较完整。 教学时,能够达到三维目标的要求,突出重点把握难点。能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。用函数的观点处理实际问题的关键

CCD芯片地选择

CCD芯片就像人的视网膜,是摄像头的核心。 目前市场上大部分摄像头采用的是日本SONY、SHARP、松下、LG等公司生产的芯片,现在国也有能力生产,但质量就要稍逊一筹。 因为芯片生产时产生不同等级,各厂家获得途径不同等原因,造成CCD采集效果也大不相同。在购买时,可以采取如下方法检测:接通电源,连接视频电缆到监视器,关闭镜头光圈,看图像全黑时是否有亮点,屏幕上雪花大不大,这些是检测CCD芯片最简单直接的方法,而且不需要其它专用仪器。然后可以打开光圈,看一个静物,如果是彩色摄像头,最好摄取一个色彩鲜艳的物体,查看监视器上的图像是否偏色,扭曲,色彩或灰度是否平滑。好的CCD可以很好的还原景物的色彩,使物体看起来清晰自然;而残次品的图像就会有偏色现象,即使面对一白纸,图像也会显示蓝色或红色。个别CCD由于生产车间的灰尘,CCD靶面上会有杂质,在一般情况下,杂质不会影响图像,但在弱光或显微摄像时,细小的灰尘也会造成不良的后果,如果用于此类工作,一定要仔细挑选。 第二章摄像机的主要技术参数 一、CCD尺寸 即摄象机靶面。目前采用的芯片大多数为1/3”和1/4”。 在购买摄像头时,特别是对摄像角度有比较严格要求的时

候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。在相同的光学镜头下,成像尺寸越大,视场角越大。 1英寸——靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。 2/3英寸——靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。 1/2英寸——靶面尺寸为宽6.4mm *高4.8mm,对角线8mm。 1/3英寸——靶面尺寸为宽4.8mm *高3.6mm,对角线6mm。 1/4英寸——靶面尺寸为宽3.2mm *高2.4mm,对角线4mm。 二、CCD像素 是CCD的主要性能指标,它决定了显示图像的清晰程度,分辨率越高,图像细节的表现越好。CCD是由面阵感光元素组成,每一个元素称为像素,像素越多,图像越清晰。现在市场上大多以25万和38万像素为划界,38万像素以上者为高清晰度摄象机。 三、水平分辨率 分辨率是用电视线(简称线TV LINES)来表示的。彩色摄象机的典型分辨率是在320到500电视线之间,主要有330线、380线、420线、460线、500线等不同档次。 分辨率与CCD和镜头有关,还与摄像头电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80线。频带越宽,图像越清晰,线数值相对越大。

数据库主机选型方案

(一)数据库主机选型 AS/400从诞生一开始就通过提供卓越的业务处理 功能,可靠性,安全性和可扩展性从而提供真正 的商业价值。在全球,各种规模的企业都选择将 其关键的业务构筑于AS/400之上,其高的性能价 格比已得到各界用户的普遍认同。在国内与医疗 业保险相近的客户有:珠海医疗保险、深圳社会 保险、大连社会保险等。 AS/400是世界上已知的最易于使用、功能最完善 的计算机系统。鉴于它能使客户在其经营上花更 多的时间,而很少花时间去管理他们的信息系统,因而相当多的客户均选择了该系统。所有的AS/400计算机均用同一使用方便的、完善的OperatingSystem/400(OS/400),它拥有强大的集成的关系数据库、多种通信协议、高度安全性、强大的文件维护及打印能力、完善的系统及网络管理特性,同时提供详细的中文联机帮助。而且全都使用易于理解的中文菜单方式或HTML浏览器方式进行访问。最新版本的操作系统包含一种全新的集成语言环境(ILE),它使应用开发可以使用多种编程语言同时进行,更快、更灵活和更有效。 ★选择AS/400e主要理由: 卓越的性能 AS/400e的成功赢利及众多的装机量,使得IBM每年不断投入大量人力物力以最新技术对其进行改进,AS/400e的性能不断提高,1990年以来,AS/400e的高端性能每年增长60-70%,性能价格比每年增长30%?AS/400e系列产品其可伸缩性从低端到高端跨度1100倍以上。TPC-C值达152,346Tpmc。 下面从影响AS/400e性能的三个主要方面逐一阐述:芯片、I/O子系统、先进的体系结构。 I 芯片

1、绝缘硅技术(SOI) 绝缘硅片技术实际上是一种微处理器技术,它能将更多的硅和硅氧化层添加到处理器中用于绝缘。具体来讲,它是在处理器芯片内部的硅晶片上先嵌埋一层二氧化硅绝缘物,再以这一绝缘物作为基板来制造各个晶体管,通过绝缘的氧化层起到保护芯片上数万个晶体管的作用,减小晶体管的静电电容,而使晶体管的状态切换加快,降低了误差、提高了晶体管的工作效率以及微处理器的速度;同时,减小了状态切换时的充电电流,以降低功耗,延长了设备的实用寿命。 2、PowerPC64位处理器技术 AS/400e是目前唯一从硬件、操作系统到应用程序全面实现64位处理的计算机系统。此芯片的设计是为了适应商业环境的需要,采用5级流水,4级超标量运算,有20多条专为AS/400e设计的专用指令,这种扩展主要是针对商用工作负荷进行优化,使得AS/400e更适于定点运算,这样使AS/400e在商业环境中可以做一个非常优秀的服务器。在不同的应用领域,AS/400e的64位技术体现出强大的性能和巨大的潜力。它的TPC-C值在业界也处于领先地位。 3、CMOS技术 采用CMOS技术,在原有PowerPC60x的228条64位的指令上增加了20多条专为AS/400e设计的专用指令至253条,增加的指令主要包括数据值运算支持,一些新的载入和储存指令,对指令预装入的处理等,这些指令对商用运算非常重要。 4、256bit总线宽度与升级Cache通信 在总线方面,PowerPCAS采用256bit总线宽度与升级Cache通信,确保了中央处理器能够大容量地处理数据和指令。而很多的RISC芯片均采用64bit的总线宽度与Cache通信,这在商用数据的大吞吐量面前势必会形成瓶颈。尽管系统可吞吐大量数据,但Cache通常仍是多数RISC系统的瓶颈,AS/400e采用256KB单循环数据Cache来克服这个问题,Cache带宽高达4.9GB/S,系统总线带宽达36GB/S,这一值是许多RISC芯片总线宽度的两倍。 5、指令预取处理技术 在指令预取方面,大多数的RISC芯片的击中准确率仅为80%或90%,也就是说系统在为下一步运算预取指令后,常常需要重新再预取,这是因为程序中的跳转和转移等命令所致。这使得中央处理器未得到充分利用,某些时候处于空闲状态,而PowerPCAS芯片采用特殊指令预取处理技术使预取准确率达100%,充分利用了CPU的处理能力。 6、全面的错误检验技术 在商业应用方面另一个重要因素是数据的高度集成和可用性。PowerPCAS芯片中采用全面的错误检验技术,不同的奇偶校验方式被集成到多数控制和数据流逻辑单元上,使得芯片级校验非常完备和可靠。 II I/O子系统 系统的设备通过I/O总线连接到主机上,对AS/400e来说,大量的I/O处理器分别承担了不同的任务处理,极大地减轻了中央处理器的负担,使得中央处理器能对

德州仪器公司(TI)最新DSP选型指南

DSP Selection Guide

Worldwide Contact Information

Table of Contents Introduction to TI DSPs Introduction to TI DSP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 DSP Developer’s Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 TMS320? DSPs TMS320C6000? DSP Platform – High Performance DSPs TMS320C64x?, TMS320C62x?, TMS320C67x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Complementary Analog Products for the TMS320C6000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .10 TMS320C5000? DSP Platform – Industry’s Best Power Efficiency TMS320C55x?, TMS320C54x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Complementary Analog Products for the TMS320C5000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .17 TMS320C2000? DSP Platform – Most Control-Optimized DSPs TMS320C28x?, TMS320C24x? DSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Complementary Analog Products for the TMS320C2000 DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . .24 TMS320C3x? DSP Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Complementary Analog Products for the TMS320C3x DSP Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 eXpressDSP? Real-Time Software Technology eXpressDSP Real-Time Software Technology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Code Composer Studio? Integrated Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 DSP/BIOS? Scalable Real-Time Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 TMS320? DSP Algorithm Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 TI DSP Third-Party Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 eXpressDSP-Compliant Algorithms and Plug-Ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Support Resources DSP Development Tools Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 DSP Development Tools Feature Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Online Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Training Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

相关主题