搜档网
当前位置:搜档网 › 船舶码头系泊形式及水动力性能分析

船舶码头系泊形式及水动力性能分析

目录

目录

摘要 ...................................................................................................................................... I Abstract ................................................................................................................................ III 第1章绪论 (1)

1.1 引言 (1)

1.2 研究背景及意义 (1)

1.3 码头系泊的概述 (4)

1.3.1 系泊缆分类 (4)

1.3.2 系泊船舶环境因素 (5)

1.4 国内外研究进展 (5)

1.4.1 码头系泊运动响应研究进展 (5)

1.4.2 码头系泊系缆力研究进展 (6)

1.4.3 泊位长度及系缆墩布置研究进展 (7)

1.5 本文主要研究内容及创新点 (8)

1.5.1 论文研究内容 (8)

1.5.2 创新点 (9)

第2章基本理论 (11)

2.1 引言 (11)

2.2 表面波理论 (11)

2.2.1 表面波的基本方程和边界条件 (11)

2.2.2 波浪理论 (12)

2.2.3 辐射和绕射理论 (13)

2.2.4 格林函数法 (16)

2.3 环境载荷的计算 (18)

2.3.1 波浪载荷 (18)

2.3.2 风载荷 (19)

2.3.3 流载荷 (20)

2.4 系缆力的计算方法 (20)

2.5 护舷力的计算方法 (21)

2.6 多浮体理论 (21)

2.6.1 多浮体间的水动力相互作用 (21)

江苏科技大学工学硕士学位论文

2.6.2 多浮体的运动 (22)

2.7 本章小结 (24)

第3章码头系泊船舶水动力频域分析 (25)

3.1 引言 (25)

3.2 坐标系和环境载荷方向的设定 (25)

3.3 不同水深对船舶频域水动力性能的影响 (26)

3.3.1 不同水深对船舶附加质量的影响 (26)

3.3.2 不同水深对船舶辐射阻尼的影响 (27)

3.3.3 不同水深对船舶运动响应幅值算子的影响 (29)

3.3.4 不同水深对船舶一阶波激力的影响 (30)

3.3.5 不同水深对船舶定常漂移力的影响 (31)

3.4 不同浪向角对船舶频域水动力性能的影响 (32)

3.4.1 不同浪向角对船舶运动响应幅值算子的影响 (32)

3.4.2 不同浪向角对船舶一阶波激力的影响 (33)

3.4.3 不同浪向角对船舶定常漂移力的影响 (35)

3.5 码头对船舶频域水动力性能的影响 (35)

3.5.1 码头对船舶附加质量的影响 (35)

3.5.2 码头对船舶辐射阻尼的影响 (37)

3.5.3 码头对船舶运动响应幅值算子的影响 (38)

3.5.4 码头对船舶一阶波激力的影响 (39)

3.5.5 码头对船舶定常漂移力的影响 (40)

3.6 本章小结 (40)

第4章码头系泊船舶时域耦合分析 (43)

4.1 引言 (43)

4.2 环境条件 (43)

4.3 码头系泊系统动力响应分析 (44)

4.3.1 码头系泊系统简介 (44)

4.3.2 时域仿真及结果分析 (45)

4.4 风向对码头系泊系统的影响 (54)

4.4.1 风向对码头系泊船舶运动响应的影响 (54)

4.4.2 风向对码头系泊船舶系缆力的影响 (56)

4.5 浪向对码头系泊系统的影响 (57)

4.5.1 浪向对码头系泊船舶运动响应的影响 (57)

4.5.2 浪向对码头系泊船舶系缆力的影响 (60)

目录

4.6 流向对码头系泊系统的影响 (61)

4.6.1 流向对码头系泊船舶运动响应的影响 (61)

4.6.2 流向对码头系泊船舶系缆力的影响 (63)

4.7 本章小结 (64)

第5章船舶码头系泊形式的优化及动力响应分析 (65)

5.1 引言 (65)

5.2 沿型深方向优化分析 (65)

5.2.1 沿型深方向优化运动响应分析 (66)

5.2.2 沿型深方向优化系泊缆张力分析 (69)

5.3 艏艉缆优化分析 (69)

5.3.1 艏艉缆优化运动响应分析 (70)

5.3.2 艏艉缆优化系泊缆张力分析 (72)

5.4 艉横缆优化分析 (73)

5.4.1 艉横缆优化运动响应分析 (73)

5.4.2 艉横缆优化系泊缆张力分析 (76)

5.5 本章小结 (77)

第6章总结与展望 (79)

6.1 论文总结及结论 (79)

6.2 展望 (80)

参考文献 (83)

攻读硕士学位期间发表的学术论文及学术成果 (87)

致谢 (89)

江苏科技大学工学硕士学位论文

CONTENTS

CONTENTS

Chinese Abstract..................................................................................................................... I English Abstract .................................................................................................................. III Chapter 1 Exordium . (1)

1.1 Introduction (1)

1.2 Background and significance of research (1)

1.3 Overview of mooring at the dock (4)

1.3.1 Classification of mooring lines (4)

1.3.2 Environmental factor of mooring ship (5)

1.4 Domestic and overseas researches (5)

1.4.1 Researches on the response of the mooring at the dock (5)

1.4.2 Researches on the force of the mooring at the dock (6)

1.4.3 Researches on the berth length and dolphin arrangements (7)

1.5 Main contents and innovative points of this paper (8)

1.5.1 Research content of this paper (8)

1.5.2 Innovative point (9)

Chapter 2 Basic theory (11)

2.1 Introduction (11)

2.2 Formulation of surface wave (11)

2.2.1 Fundamental formulation and boundary conditions (11)

2.2.2 Wave theory (12)

2.2.3 Diffraction and radiation theory (13)

2.2.4 Green function method (16)

2.3 Calculation of environmental loads (18)

2.3.1 Wave loads (18)

2.3.2 Wind loads (19)

2.3.3 Current loads (20)

2.4 Calculation method of mooring force (20)

2.5 Calculation method of fender force (21)

2.6 Multiple body theory (21)

2.6.1 Multiple-body interaction of fluid (21)

江苏科技大学工学硕士学位论文

2.6.2 Multiple body motion (22)

2.7 Summary (24)

Chapter 3 The hydrodynamic analysis of the ship mooring at the dock in the frequency domain (25)

3.1 Introduction (25)

3.2 Setting of coordinate system and environmental loading direction (25)

3.3 Effects of different water depths on the hydrodynamic performance of the ship in

the frequency domain (26)

3.3.1 Effects of different water depths on the added mass of the ship (26)

3.3.2 Effects of different water depths on the radiation damping of the ship (27)

3.3.3 Effects of different water depths on the RAO of the ship (29)

3.3.4 Effects of different water depths on the first-order wave excitation force of

the ship (30)

3.3.5 Effects of different water depths on the steady drift force of the ship (31)

3.4 Effects of different wave angles on the hydrodynamic performance of the ship in

the frequency domain (32)

3.4.1 Effects of different wave angles on the RAO of the ship (32)

3.4.2 Effects of different wave angles on the first-order wave excitation force of

the ship (33)

3.4.3 Effects of different wave angles on the steady drift force of the ship (35)

3.5 Effects of the dock on the hydrodynamic performance of the ship in the frequency

domain (35)

3.5.1 Effects of the dock on the added mass of the ship (35)

3.5.2 Effects of the dock on the radiation damping of the ship (37)

3.5.3 Effects of the dock on the RAO of the ship (38)

3.5.4 Effects of the dock on the first-order wave excitation force of the ship (39)

3.5.5 Effects of the dock on the steady drift force of the ship (40)

3.6 Summary (40)

Chapter 4 The coupling analysis of the ship mooring at the dock in the time domain. 43

4.1 Introduction (43)

4.2 Environmental condition (43)

4.3 The analysis on dynamic response of mooring system at the dock (44)

4.3.1 Brief introduction of mooring system at the dock (44)

4.3.2 Simulation in the time domain and result analysis (45)

CONTENTS

4.4 The influence of the wind direction on the mooring system at the dock (54)

4.4.1 The influence of the wind direction on the motion response of the ship

mooring at the dock (54)

4.4.2 The influence of the wind derection on the tension of the mooring lines of

the ship mooring at the dock (56)

4.5 The influence of the wave direction on the mooring system at the dock (57)

4.5.1 The influence of the wave direction on the motion response of the ship

mooring at the dock (57)

4.5.2 The influence of the wave direction on the tension of the mooring lines of

the ship mooring at the dock (60)

4.6 The influence of the current direction on the mooring system at the dock (61)

4.6.1 The influence of the wave direction on the motion response of the ship

mooring at the dock (61)

4.6.2 The influence of the wave direction on the tension of the mooring lines of

the ship mooring at the dock (63)

4.7 Summary (64)

Chapter 5 The optimization of mooring forms and the analysis of dynamic response. 65

5.1 Introduction (65)

5.2 The optimized analysis along the depth direction (65)

5.2.1 The optimized analysis of the motion response along the depth direction (66)

5.2.2 The optimized analysis of the tension of the mooring lines along the depth

direction (69)

5.3 The optimized analysis about the fore line and the stern line (69)

5.3.1 The optimized analysis of the motion response about the fore line and the

stern line (70)

5.3.2 The optimized analysis of the tension of the mooring lines about the fore

line and the stern line (72)

5.4 The optimized analysis about the stern lateral lines (73)

5.4.1 The optimized analysis of the motion response about the stern lateral lines 73

5.4.2 The optimized analysis of the tension of the mooring lines about the stern

lateral lines (76)

5.5 Summary (77)

Chapter 6 Conclusion and Prospection (79)

6.1 Conclusion (79)

江苏科技大学工学硕士学位论文

6.2 Prospection (80)

Reference (83)

Papers and Academic Achievements During Master Period (87)

Acknowledgement (89)

第1章绪论

第1章绪论

1.1 引言

由于国民经济的发展越来越快,船舶工程和海洋工程也得到了飞速发展,对外进出口贸易在我国经济发展中占有重要地位。虽然我国地大物博,但由于人口众多和经济发展的需要等原因,煤矿和铁矿等资源需要大量的从国外进口,同时我国优势产品的对外出口也在逐年增加,这些都导致港口的吞吐量越来越大。然而,也正是由于对外进出口贸易的迅速增加,导致我国航运业面临许多挑战,例如:随着船舶数量和吨位的不断增加,半开敞式和开敞式码头的建设过程中,港口码头的技术难题急需要解决[1,2]。

在港口码头的技术难题中,码头系泊方式的选择和布置,对于缆绳受力和船舶运动响应有很大影响。系泊方式是指系泊缆的数量和出缆角度等的布置方式,系泊方式选择的是否合理直接关系到缆绳能否承受复杂的环境载荷。系泊缆可以分为艏艉缆、倒缆和横缆三类,无论环境载荷如何变化,缆绳的布置要使缆绳在各个方向都能有效的约束船舶的运动,一定不能出现在一个方向上缆绳的受力始终很小,而在另一个方向上很容易使缆绳受力达到破断载荷[3]。

船舶码头系泊时,如果系泊缆破断,会造成无法估量的经济损失,所以对码头系泊的研究具有现实意义[4],近些年来,受到国内外科研工作者的关注[5,6]。码头系泊问题涉及到许多非线性问题,所以对于此问题的研究进行模型试验较多,但数值模拟很少[7]。

1.2 研究背景及意义

21世纪以来,随着陆地资源的不断减少,人们对海上石油和天然气的需求越来越大,而且各国之间的贸易往来日趋频繁,海运成为主要运输方式。为了保证船舶在停靠过程中,可以完成正常作业,必须减小船舶在码头系泊状态下的运动响应[8]。同时需要注意的是,由外海传来的波浪和附近船舶出港或入港时兴起的波浪,也会对码头系泊船舶产生影响。有时甚至会发生一些特殊情况,虽然波浪的振幅相对较小,但同样会使船舶发生较大的运动响应,一旦影响到正常作业,就会导致船舶停靠码头的时间增加,进而会增加相应的运营成本,如果发生断缆等情况,会发生无法估量的损失。

相关主题