搜档网
当前位置:搜档网 › 有限元分析报告理论基础

有限元分析报告理论基础

有限元分析报告理论基础
有限元分析报告理论基础

有限元分析概念

有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件

有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。

有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。

线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。

线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。

非线性问题与线弹性问题的区别:

1)非线性问题的方程是非线性的,一般需要迭代求解;

2)非线性问题不能采用叠加原理;

3)非线性问题不总有一致解,有时甚至没有解。

有限元求解非线性问题可分为以下三类:

1)材料非线性问题

材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。

2)几何非线性问题

几何非线性问题是由于位移之间存在非线性关系引起的。

当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。

3)非线性边界问题

在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。

平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。

实际的非线性可能同时出现上述两种或三种非线性问题。

有限元理论基础

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。

1.加权余量法:

是指采用使余量的加权函数为零求得微分方程近似解的方法称为

加权余量法。(Weighted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。加权余量法是求解微分方程近似解的一种有效的方法。

设问题的控制微分方程为:

在V 域内 在S 边界上

式中 :

L 、B ——分别为微分方程和边界条件中的微分算子;

f 、

g ——为与未知函数u 无关的已知函数域值;

u ——为问题待求的未知函数 ()0

L u f -=(5.1.1)()0

B u g -=(5.1.2)

混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。

无论采用何种方法,在建立试函数时均应注意以下几点:

(1)试函数应由完备函数集的子集构成。已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。

(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。

(3)试函数应与问题的解析解或问题的特解相关联。若计算问题具有对称性,应充分利用它。

显然,任何独立的完全函数集都可以作为权函数。按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。其中伽辽金法的精度最高。

2、虚功原理

——平衡方程和几何方程的等效积分“弱”形式

虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。他们都可以认为是与某些控制方程相等效的积分“弱”形式。虚功原理:变形体中任意满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚功与内力的虚功之和等于零。

虚位移原理是平衡方程和力的边界条件的等效积分的“弱”形式;

虚应力原理是几何方程和位移边界条件的等效积分“弱”形式。

虚位移原理的力学意义:如果力系是平衡的,则它们在虚位移和虚应变上所作的功的总和为零。反之,如果力系在虚位移(及虚应变)上所作的功的和等于零,则它们一定满足平衡方程。所以,虚位移原理表述了力系平衡的必要而充分条件。一般而言,虚位移原理不仅可以适用于线弹性问题,而且可以用于非线性弹性及弹塑性等非线性问题。

虚应力原理的力学意义:如果位移是协调的,则虚应力和虚边界约束反力在他们上面所作的功的总和为零。反之,如果上述虚力系在他们上面所作的功的和为零,则它们一定是满足协调的。所以,虚应力原理表述了位移协调的必要而充分条件。

虚应力原理可以应用于线弹性以及非线性弹性等不同的力学问题。但是必须指出,无论是虚位移原理还是虚应力原理,他们所依赖的几何方程和平衡方程都是基于小变形理论的,他们不能直接应用于基于大变形理论的力学问题。

3、最小总势能法

应变能:作用在物体上的外载荷会引起物体变形,变形期间外力所做的功以弹性能的形式储存在物体中,即为应变能。

由n 个单元和m 个节点组成的物体的总势能为总应变能和外力所做功的差:

()11

=n m e i i e i Fu ==∏Λ

-∑∑ 最小势能原理:对于一个稳定的系统,相对于平衡位置发生的位移总会使系统的总势能最小,即:

()110n m e i i e i i i i Fu u u u ==?∏??=Λ-=???∑∑,i=1,2,3,……,n

有限元法的收敛性

有限元法是一种数值分析方法,因此应考虑收敛性问题。

有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。

有限元的收敛条件包括如下四个方面:

1)单元内,位移函数必须连续。多项式是单值连续函数,因此选择多项式作为位移函数,在单元内的连续性能够保证。

2)在单元内,位移函数必须包括常应变项。每个单元的应变状态总可以分解为不依赖于单元内各点位置的常应变和由各点位置决定的

变量应变。当单元的尺寸足够小时,单元中各点的应变趋于相等,单元的变形比较均匀,因而常应变就成为应变的主要部分。为反映单元的应变状态,单元位移函数必须包括常应变项。

3)在单元内,位移函数必须包括刚体位移项。一般情况下,单元内任一点的位移包括形变位移和刚体位移两部分。形变位移与物体形状及体积的改变相联系,因而产生应变;刚体位移只改变物体位置,不改变物体的形状和体积,即刚体位移是不产生变形的位移。空间一个物体包括三个平动位移和三个转动位移,共有六个刚体位移分量。

由于一个单元牵连在另一些单元上,其他单元发生变形时必将带动单元做刚体位移,由此可见,为模拟一个单元的真实位移,假定的单元位移函数必须包括刚体位移项。

4)位移函数在相邻单元的公共边界上必须协调。对一般单元而言,协调性是指相邻单元在公共节点处有相同的位移,而且沿单元边界也有相同的位移,也就是说,要保证不发生单元的相互脱离开裂和相互侵入

重叠。要做到这一点,就要求函数在公共边界上能由公共节点的函数值唯一确定。对一般单元,协调性保证了相邻单元边界位移的连续性。

但是,在板壳的相邻单元之间,还要求位移的一阶导数连续,只有这样,才能保证结构的应变能是有界量。

总的说来,协调性是指在相邻单元的公共边界上满足连续性条件。

前三条又叫完备性条件,满足完备条件的单元叫完备单元;第四条是协调性要求,满足协调性的单元叫协调单元;否则称为非协调单元。完备性要求是收敛的必要条件,四条全部满足,构成收敛的充分必要条件。

在实际应用中,要使选择的位移函数全部满足完备性和协调性要求是比较困难的,在某些情况下可以放松对协调性的要求。

需要指出的是,有时非协调单元比与它对应的协调单元还要好,其原因在于近似解的性质。假定位移函数就相当于给单元施加了约束条件,使单元变形服从所加约束,这样的替代结构比真实结构更刚一些。但是,这种近似结构由于允许单元分离、重叠,使单元的刚度变软了,或者形成了(例如板单元在单元之间的绕度连续,而转角不连续时,刚节点变为铰接点)对于非协调单元,上述两种影响有误差相消的可能,因此利用非协调单元有时也会得到很好的结果。在工程实践中,非协调元必须通过“小片试验后”才能使用。

应力的单元平均或节点平均处理方法

最简单的处理应力结果的方法是取相邻单元或围绕节点各单元应力的平均值。

? 1.取相邻单元应力的平均值

这种方法最常用于3节点三角形单元中。这种最简单而又相当实

用的单元得到的应力解在单元内是常数。可以将其看作是单元内应力的平均值,或是单元形心处的应力。由于应力近似解总是在精确解上下振荡,可以取相邻单元应力的平均值作为此两个单元合成的较大四边形单元形心处的应力。

如2单元的情况下,取平均应力可以采用算术平均,

即平均应力=(单元1的应力+单元2的应力)/2。

也可以采用精确一些的面积加权平均,

即平均应力=[单元1应力× 单元1的面积+单元2应力× 单元

2面积]/(单元1面积+单元2面积)

当相邻两单元面积相差不大时,两者的结果基本相同。在单元划

分时应避免相邻两单元的面积相差太多,从而使求解的误差相近。

一般而言,3节点三角形单元的最佳应力点是单元的中心点,此

点的应力具有1阶的精度。

? 2.取围绕节点各单元应力的平均值

首先计算围绕该节点(i )周围的相关单元在该节点出的应力

值 ,然后以他们的平均值作为该节点的最后应力值其中,1~m 是围绕在i 节点周围的全部单元。取平均值时也可进行面积加权。

i σ

有限元法求解问题的基本步骤

1.结构离散化

对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连;

2.求出各单元的刚度矩阵[K](e)

[K](e)是由单元节点位移量{Φ}(e)求单元节点力向量{F}(e)的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e)

3.集成总体刚度矩阵[K]并写出总体平衡方程:

总体刚度矩阵[K]是由整体节点位移向量{Φ}求整体节点力向量的转移矩阵,其关系式为{F}= [K] {Φ},此即为总体平衡方程。

4.引入支撑条件,求出各节点的位移

节点的支撑条件有两种:一种是节点n沿某个方向的位移为零,另一种是节点n沿某个方向的位移为一给定值。

5.求出各单元内的应力和应变。

对于有限元方法,其基本思路和解题步骤可归纳为:

(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点

进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满足。对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

单元刚度矩阵的特性

单元刚度矩阵无论在局部坐标系中还是在整体坐标系中都具有相同的三个特性:

1)对称性

由材料力学中的位移互等定理可知,对一个构件,作用在点j 的力引起点i 的绕度等于有同样大小而作用于点i 的力引起的点j 的绕度,即k ij (e) = k ji (e),表明单元刚度矩阵是一个对称矩阵。

2) 奇异性 无逆阵的矩阵就叫做奇异矩阵,其行列式的值为0,即|k (e)|=0,这

一点可以从例题直接得到验证。其物理意义是引入支撑条件之前,单元可平移。

3) 分块性 有前面所讲的内容可以看出,矩阵[k (e)]可以用虚线分成四块,因此

可写成如下的分块形式,

式中k mn (e)——局部坐标系中单元(e)按局部码标记的节点m 、n 之间

的刚度子矩阵

刚架结构中非节点载荷的处理的方法

在刚架结构以及其他较复杂的结构上,他们所受的载荷可以直接作用在节点上,又可以不直接作用在节点上而作用于单元节点间的其他位置上。后一种情况下的载荷称为非节点载荷。有限元分析时,总体刚度方程中所用到的力向量 是节点力向量。因此在进行整体分析前应当{}{}[][][][]{}{}()()()111112222122e e e f k k f k k ?????Φ?????=??????Φ??????????

进行载荷的移植,将作用于单元上的力移植到节点上。移植时按静力等效的原则进行。

处理非节点载荷一般可直接在整体坐标系内进行,其过程为:

1)将各杆单元看成一根两端固定的梁,分别求出两个固定端的约束反力。其结果可直接利用材料力学的公式求得;

2)将各固定端的约束反力变号,按节点进行集成,获得各节点的等效载荷

总体刚度矩阵的集成法

使用刚度矩阵获得的方法获得总体刚度矩阵。在此将其扩展到由整体坐标系中的单元刚度矩阵的子矩阵集成总体刚度矩阵。步骤如下:1)对一个有n个节点的结构,将总体刚度矩阵[K]划分为n×n各子区间,然后按节点总码的顺序进行编号;

2)将整体坐标系中单元刚度矩阵的各子矩阵根据其下标的两个总码对号入座,写在总体刚度矩阵相应的子区间;

3)同一子区间内的子矩阵相加,成为总体刚度矩阵中的相应的子矩阵。

总体刚度矩阵的特性

1)对称性:因为由此特性,在计算机中只需存储其上三角部分;

2)奇异性:物理意义仍为在无约束的情况下,整个结构可做刚体运

动;

3)稀疏性:[K]中有许多零子矩阵,而且在非零子矩阵中还有大量的零元素,这种矩阵称为稀疏矩阵。大型结构的总体刚度矩阵一般都是稀疏矩阵;

4)分块性:

平面问题离散化时的规定

1)单元之间只在节点处相连;

2)所有的节点都为铰接点;

3)单元之间的力通过节点传递;

4)外载荷都要移植到节点上;

5)在节点位移或某一分量可以不计之处,就必须在该节点安置一个铰支座或相应的连杆支座。

通过以上的规定来建立平面有限元分析模型。

结构对称性的利用规律

一般来说,作用在对称结构上的载荷系统分为对称的、反对称的和一般的三种情况。

1.结构对称,载荷对称或反对称

这种情况下,对称面上的边界条件可按以下规则确定:

A.在不同的对称面上,将位移分量区分为对称分量和反对称分量;

B.将载荷也按不同的对称面分别区分为对称分量和反对称分量;

C.对于同一个对称面,如载荷是对称的,则对称面上位移的反对称分量为零,如载荷是反对称的,则对称面上位移的对称分量为零。

如果所分析的结构对称,但载荷是不对称的,也不是反对称的,这时可以将这种结构系统简化成载荷为对称和/或反对称情况的组合,仍可以简化分析过程,提高分析的综合效率。

如图a所示,结构对称,载荷一般,可将其载荷分解为图b和图c 的组合。图b为对称结构,载荷对x、y轴均为对称,图c为结构对称,载荷对x轴反对称、对y轴对称,此时可取相同的四分之一进行研究,分别施加对称面上节点的边界条件,进行两次分析计算,并将计算结果迭加起来,即可得到原结构四分之一的解答,进而得出整个结构的解答。

利用结构的对称性取某一部分建立有限元模型时,往往会产生约束不足现象。

例如,若取上例中图c的四分之一建立有限元时,根据上述分析,

在两对称面上应加水平放置的滚动铰支座,因此模型在垂直方向存在刚体位移。对这种约束不足问题,利用有限元分析时,必须增加附加约束,以消除模型的刚体位移。在本例中,垂直方向可以用刚度很小的杆单元或边界弹簧单元连接到模型某节点上,使得既消除了模型的刚体位移,又不致于因附加的杆单元或边界弹簧单元刚度太大而影响结构原有的变形状态。

单元形态的选择原则

单元形态包括单元形状、边中节点的位置、细长比等,在结构离散化过程中必须合理选择。一般来说,为了保证有限元分析的精度,必须是单元的形态尽可能的规则。

对于三角形单元,三条边长尽量接近,不应出现大的钝角、大的边长。这是因为根据误差分析,应力和位移的误差都和单元的最小内角的正弦成反比。因而,等边三角形单元的形态最好,它与等腰直角三角形单元的误差之比为sin45°:sin60°=1:1.23。但是为了适应弹性体边界,以及单元由小到大逐渐过渡,不可能是所有的三角形单元都接近等边三角形。实际上,常常使用等腰直角三角形。

对于矩形单元来说,细长比不宜过大。细长比是指单元最大尺寸和最小尺寸之比。最优细长比在很大程度上取决于不同方向上位移梯度的差别。梯度较大的方向,单元尺寸要小些,梯度小的方向,单元尺寸可以大一些;如果各方向上位移梯度大致相同,则细长比越接近1,精度越高。有文献推荐,一般情况下,为了得到较好的位移结果,细长比不

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元理论基础

有限元理论基础

有限元理论基础 2.1 数值模拟技术 2.1.1数值模拟技术简介 在工程技术领域中许多力学问题和场问题,实质上就是在一定的边界条件下求解一些微分方程。对于少数简单问题,人们可以通过建立它们的微分方程与边界约束求出该问题的解析解。但是对于比较复杂的数学方程问题以及不规则的边界条件通过激吻戏法往往难以求解,而需要借助各种数值模拟方法活的相应的工程数值解,这就是所谓的数值模拟技术。 在实际工程领域中,用数值模拟技术可以对复杂的工程结构进行受力和响应分析,这样可以在设计或者加工前预知实体结构工作状态下的大概情况。 目前在工程实际应用中,常用的数值求解方法有:有限单元法、有限差分法、边界元等但从实用性和使用范围来说,有限单元法则是随着计算机技术的发展而被广泛应用的一种行之有效的数值计算方法。 2.2.2 有限元法 有限元法是一种基于能量原理的数值计算

方法,是解决工程实际问题的一种有效的数值计 算工具。它是里茨法的另一种表示形式,它可应用里茨法分析的所有弹性理论。 限元法是处理连续的结构体离散或有限个单元集合,也就是将连续的求解域离散为一定数量的单元集合体。且每个单元都具有一定的节点,相邻单元通过节点相互连续,同时使用等效节点力代替作用于单元上的力和选定场函数的节点值作为基本未知量。并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律:进而利用力学中的某些变分原理去建立用以求解节点未知量的有限元法方程,从而将一个连续域中的无限自由度问题化为离散域中的有限自由度问题。求解后,可利用解出的节点值和设定的插值函数确定整个单元集体上的场函数。有限元求解问题中的单元分析:t t t a k F= 式中::t F单元节点作用力。 t K:单元刚度矩阵。 t a:单元节点位移。 通过单元分析确定单元刚度矩阵,建立单元节点作用力和单元为伊关系。有限元求解问题时建立 的结构整体平衡方程:P KU=

有限元分析报告理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元分析报告

《有限元基础理论》报告 学院: 班级: 姓名: 学号: 任课老师: 二〇一一年十二月

题目一:三维托架实体受力分析 题目:1、三维托架实体受力分析:托架顶面承受50psi的均匀分布载荷。托架通过有孔的表面固定在墙上,托架是钢制的,弹性模量E=29×106psi,泊松比v=0.3.试通过ANSYS输出其变形图及其托架的von Mises应力分布。 题目1的分析:先进行建模,此建模的难点在对V3的构建(既图中的红色部分)。要想构建V3,首先应将A15做出来,然后执行Main Menu>Preprocessor>Modeling>Operate>Booleans>Add>V olumes命令,将所有的实体合并为一个整体。建模后,就对模型进行网格的划分,实行Main Menu>Preprocessor>Meshing>MeshTool,先对网格尺寸进行编辑,选0.1,然后点Meshing,Pick all进行网格划分,所得结果如图1.1。划分网格后,就可以对模型施加约束并进行加载求解了。施加约束时要注意,由于三维托架只是通过两个孔进行固定,故施加约束应该只是针对两孔的内表面,执行Main Menu>Solution>Define Loads>Apply>Structrual>Displacement>Symmetry B.C>On Areas命令,然后拾取两孔的内表面,单击OK就行了。施加约束后,就可以对实体进行加载求解了,载荷是施加在三维托架的最顶上的表面的,加载后求解运算,托架的变形图如图1.2。

图1.1、托架网格图 图1.2输出的是原型托架和施加载荷后托架变形图的对比,虚线部分即为托架的原型,从图1.2可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们 在应用托架的时候应当注意的。

轿车盘式制动器结构设计及有限元分析(含CAD图纸)

毕业设计说明书 题目:轿车盘式制动器结构 设计及有限元分析 学院: 年级专业: 姓名: 学号: 指导教师: 完成时间:

目 录 摘要 (1) Abstract (1) 1前言 (2) 2制动器的结构形式及分类 (3) 2.1制动器的结构形式 (3) 2.2制动器分类 (3) 3制动器的主要参数及其选择 (8) 3.1基本参数 (8) 3.2制动力与制动力分配系数 (8) 3.3同步附着系数 (8) 3.4制动强度与附着系数利用率 (9) 3.5同步附着系数 (8) 3.6制动器的最大制动力矩 (10) 3.7盘式制动器主要参数的确定 (11) 3.7.1制动盘直径D (11) 3.7.2制动盘厚度h (11) 3.7.3摩擦衬块内半径1R 和外半径2R (11) 3.7.4摩擦衬块工作面积A (12) 3.7.5有效半径e R 的确定 (12) 4盘式制动器的设计计算 (14) 4.1摩擦衬片的磨损特性计算 (14) 4.2驻车制动计算 (15) 4.3制动器温升核算 (16) 4.4制动力矩与盘的压力 (17) 5盘式制动器的主要元件 (18) 5.1制动盘 (18) 5.2制动钳 (18)

5.3制动块18 5.4摩擦材料 (19) 5.5制动器间隙的调整方法及相应机构 (19) 5.6制动盘的安装 (20) 5.7制动盘的修理 (20) 6盘式制动器的三维设计 (21) 6.1制动盘的三维建模 (21) 6.2制动钳体和支架的三维建模 (21) 6.3制动衬块和背板的三维建模 (22) 6.4其他小零件的三维建模 (23) 6.5装配图的展示 (24) 7有限元分析 (27) 7.1有限元法概述 (27) 7.1.1有限元法介绍 (27) 7.2有限元软件ANSYS介绍 (27) 8盘式制动器有限元模型的建立 (29) 8.1 制动盘的模态分析 (29) 8.2 摩擦衬块的静态分析 (35) 9结论 (41) 总结与体会 (42) 谢辞 (43) 参考文献 (44)

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

有限元分析报告

有限元仿真分析实验 一、实验目的 通过刚性球与薄板的碰撞仿真实验,学习有限元方法的基本思想与建模仿真的实现过程,并以此实践相关有限元软件的使用方法。本实验使用HyperMesh 软件进行建模、网格划分和建立约束及载荷条件,然后使用LS-DYNA软件进行求解计算和结果后处理,计算出钢球与金属板相撞时的运动和受力情况,并对结果进行可视化。 二、实验软件 HyperMesh、LS-DYNA 三、实验基本原理 本实验模拟刚性球撞击薄板的运动和受力情况。仿真分析主要可分为数据前处理、求解计算和结果后处理三个过程。前处理阶段任务包括:建立分析结构的几何模型,划分网格、建立计算模型,确定并施加边界条件。 四、实验步骤 1、按照点-线-面的顺序创建球和板的几何模型 (1)建立球的模型:在坐标(0,0,0)建立临时节点,以临时节点为圆心,画半径为5mm的球体。 (2)建立板的模型:在tool-translate面板下node选择临时节点,选择Y-axis,magnitude输入5.5,然后点击translate+,return;再在2D-planes-square 面板上选择Y-axis,B选择上一步移下来的那个节点,surface only ,size=30。 2、画网格

(1)画球的网格:以球模型为当前part,在2D-atuomesh面板下,surfs 选择前面建好的球面,element size设为0.5mm,mesh type选择quads,选择elems to current comp,first order,interactive。 (2)画板的网格:做法和设置同上。 3、对球和板赋材料和截面属性 (1)给球赋材料属性:在materials面板内选择20号刚体,设置Rho为2.000e-08,E为200000,NU为0.30。 (2)给球赋截面属性:属性选择SectShll,thickness设置为0.1,QR设为0。 (3)给板赋材料属性:材料选择MATL1,其他参数:Rho为2.000e-08,E 为100000,Nu为0.30,选择Do Not Export。 (4)给板赋截面属性:截面选择SectShll,thickness设为0.2。其他参数:SHRE为8.333-01,QR为0,T1为0.2。 (5)给板设置沙漏控制:在Properties-Create面板下Card image选择HourGlass,IHQ为4,QM为0.100。更新平板。 4、加载边界条件 (1)将板上最外面的四行节点分别建成4个set。 (2)建立一个load collector。 (3)Analysis-constraints面板中,设置SIZE为1,nodes通过by sets 选择set_1、set_2、set_3、set_4,然后点击creat即可,边界条件加载完毕。 5、建立载荷条件(给球一个3mm的位移) (1)建立一个plot: post-xy plots-plots-creat plot,然后点击return;

有限元法的理论基础

有限元法的理论基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元

ANSYS实体建模有限元分析-课程设计报告

南京理工大学 课程设计说明书(论文) 作者:学号: 学院(系):理学院 专业:工程力学 题目:ANSYS实体建模有限元分析 指导者: (姓名) (专业技术职务) 评阅者: (姓名) (专业技术职务) 20 年月日

练习题一 要求: 照图利用ANSYS软件建立实体模型和有限元离散模型,说明所用单元种类、单元总数和节点数。 操作步骤: 拟采用自底向上建模方式建模。 1.定义工作文件名和工作标题 1)选择Utility Menu>File>Change Jobname命令,出现Change Jobname对话框,在[/FILNAM ] Enter new jobname文本框中输入工作文件名learning1,单击OK按钮关闭该对话框。 2)选择Utility Menu>File>Change Title命令,出现Change Title对话框,在[/TITLE] Enter new title文本框中输入08dp,单击OK按钮关闭该对话框。 2.定义单元类型 1)选择Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,出现Element Types对话框,单击Add按钮,出现 Library of Element Types 对话框。在Library of Element Types 列表框中选择 Structural Solid, Tet 10node 92,在Element type reference number文本框中输入1,单击OK按钮关闭该对话框。 2)单击Element Types对话框上的Close按钮,关闭该对话框。 3.创建几何模型 1)选择Utility Menu>P1otCtrls>Style>Colors>Reverse Video命令,设置显示颜色。 2)选择Utility Menu>P1otCtrls>View Settings>Viewing Direction命令,出现Viewing Direction对话框,在XV,YV,ZV Coords of view point文本框中分别输入1, 1, 1,其余选项采用默认设置,单击OK按钮关闭该对话框。 3)建立支座底块 选择Main Menu>Preprocessor> Modeling>Create>volumes>Block>By Demensios 命令,出现Create Block by Demensios对话框,在X1,X2 X-coor dinates文本框

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

有限元分析基础

有限元分析基础 第一章有限元法概述 在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。 近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。 §1.1 有限元方法的发展历史、现状和将来 一,历史 有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。 60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在: 1)由弹性力学的平面问题扩展到空间、板壳问题。 2)由静力平衡问题——稳定性和动力学分析问题。 3)由弹性问题——弹塑性、粘弹性等问题。 二,现状 现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如: SAP系列的代表SAP2000(Structure Analysis Program) 美国安世软件公司的ANSYS大型综合有限元分析软件 美国航天航空局的NASTRAN系列软件 除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。 三,将来 有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。 §1.2 有限元法的特点 机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。 其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。 数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。 “有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

厚壁圆筒有限元分析报告

有限元与CAE分析报告 专业: 班级: 学号: 姓名: 指导教师: 实习时间: 年月日

平面问题的厚壁圆筒问题 一、问题提出 如图所示为一厚壁圆筒,其内半径为r1=50mm,外半径为r2=100mm,作用在内孔上的压力p=10 Mpa,无轴向压力,轴向长度很长可视为无穷,要求对其进行结构静力分析,并计算厚壁圆筒径向应力和切向应力沿半径r方向的分布。弹性模量E=200 Gpa,泊松比μ=0.3。 图1 厚壁圆筒 二、建模步骤 1 定义工作文件名 依次单击Utility Menu>File>Change Jobname,在文本框中输入:1245523229,在“New Log and error files”处选中“yes”,单击“OK”。 2 定义工作标题 依次单击Utility Menu>File>Change Title ,在文本框中输入:1245523229,单击“OK”。依次单击Plot>Replot, 3 定义单元类型 1)依次单击Main Menu>Prefrences,选中“Structural”,单击“OK”。

2)依次单击Main Menu>Preprocessor>Element type>Add/Edit/Delete,出现对话框,单击“Add”,出现一个“Library of Element Type”对话框,。在“Library of Element Type”左面的列表栏中选择“Structural Solid”,在右面的列表栏中选择“Quard 4node 182”,单击“OK”。 2) 单击对话框中的“Options”,在弹出的单元属性对话框中,选择K3关键字element behavior为“Plane strain”,再单击“Close”,完成单元的设置。

有限元分析报告

创新实习报告 题目名称基于Solidworks simulation的潜孔冲击器前接头有限元分析学院(系)机械工程学院 专业班级材料成型及控制工程0801班 学生姓名(10) 指导教师杨雄教授 日期2012.2.27 至2012.3.23

基于Solidworks simulation的潜孔冲击器前接头有限元分析 目录 1.有限元分析软件简介 (2) 2.潜孔冲击器前接头实物及断口相片 (5) 3.潜孔冲击器前接头的基本属性,工作情况,受力情况的分析 (6) 4.利用三维画图软件建模 (7) 5. 利用solidworkd sinulation对零件进行有限元分析 (14) 5.1 分析原理及步骤…………………………………………………………… 5.2 算例属性…………………………………………………………………… 5.3 单位………………………………………………………………………… 5.4 材料属性…………………………………………………………………… 5.5 载荷和约束………………………………………………………………… 5.6 载荷………………………………………………………………………… 5.7 接触………………………………………………………………………… 5.8 网格信息…………………………………………………………………… 5.9 反作用力,自由实体力,自由体力矩…………………………………… 5.10 算例结果………………………………………………………………… 6.分析结论 (15) 6.1失效分析…………………………………………………………………… 6.2提出优化方案………………………………………………………………… 6.3对优化方案进行有限元分析………………………………………………… 6.4分析比较并得出结论………………………………………………………… 7.小结 (18) 8.参考文献 (18)

有限元分析报告

班级:土木1204 学号:19 姓名:廖枭冰

班级:土木1204 学号:23 姓名:梅雨辰

混凝土上承式空腹式拱桥研究 一引言 本文通过SAP2000软件,对混凝土上承式空腹式拱桥在上部车辆荷载作用下,各个部位的内力和应力的分布进行分析,对强度和刚度进行校核,提出存在的问题,最后进行改进。 工程实例图 模型三维图

二 模型尺寸及构件截面 该拱桥总跨度L=80m,高H=20m,宽度10m ,分为五个构件 1拱肋:一段圆弧线,水平投影长度80m,采用箱型截面,高1.6m,宽2m ,翼缘厚度0.22m,腹板厚度0.15m 2主梁:长80m,采用箱型截面,高6m,宽2m,翼缘厚度1.1m,腹板厚度0.55m 3立柱:拱桥与主梁的之间的竖向构件,采用矩形截面,长宽均为1.2m ,分别在桥的每隔10m 布置1根 4横系梁:拱肋之间的横向构件,采用矩形截面,高0.6m,宽0.4m 5桥面:长80m,宽10m,厚度为0.6m,保护层厚度30mm 三 材料定义 所有构件均采用C50混凝土,配置钢筋,抗压强度,50cu k f MPa =,弹性模量43.4510E MPa =? 四 计算模型假设与简化 ⑴由于拱肋,主梁,立柱,横系梁长度远大于宽度及高度,将其定义为杆件单元。 ⑵由于桥面的厚度远小于其长度和宽度,将其定义为平面厚壳单元。 ⑶圆弧拱肋采用在圆弧线上取点,用折线杆件进行逼近。 ⑷由于拱肋伸入桥台或桥墩,位移和转角均被束缚,两端采用固定端

约束,形成无铰拱模型。 ⑸由于主梁支撑在刚度较其大的多的桥台或桥墩上,又考虑到主梁长度方向的热胀冷缩,将其一端定义为固定铰支座,另一端定义为辊轴支座。 ⑹由于工程实际多采用混凝土现浇工艺,所有构件的连接处视为刚接 ⑺由于拱顶与主梁之间的混凝土的厚度较小,可忽略这部分混凝土,让拱顶与主梁直接接触。 ⑻由于桥面的重量较其它杆件大得多,故只考虑桥面的重量。 ⑼计算车辆对桥面的荷载时,不考虑车辆的具体尺寸,将其定义为均布荷载加在桥面上。 五模型受力分析 在桥面上施加规范规定的2 kN m的公路一级荷载,来模拟车辆对 10.5/ 桥的压力。 六结果展示(分析与校核) 1 强度分析 桥面单元 桥 面 弯 矩

汽车结构有限元分析试题及答案(精华)

一 、20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。 3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力基本方程平衡方程物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元 三 选择题(14分) 1 等参变换是指单元坐标变换和函数插值采用__B___的结点和______的插值函数。

有限元法的理论基础

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 2.2有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元可以是四面体、长方体和六面体等。为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。 离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。因此这种连接要满足变形协调条件。离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。主要有两类:建模误差和离散化误差。

相关主题