搜档网
当前位置:搜档网 › 有限元分析理论基本

有限元分析理论基本

有限元分析理论基本
有限元分析理论基本

有限元分析概念

有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件

有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。

有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。

线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。

线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。

非线性问题与线弹性问题的区别:

1)非线性问题的方程是非线性的,一般需要迭代求解;

2)非线性问题不能采用叠加原理;

3)非线性问题不总有一致解,有时甚至没有解。

有限元求解非线性问题可分为以下三类:

1)材料非线性问题

材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。

2)几何非线性问题

几何非线性问题是由于位移之间存在非线性关系引起的。

当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。

3)非线性边界问题

在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。

平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。

实际的非线性可能同时出现上述两种或三种非线性问题。

有限元理论基础

有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。

1.加权余量法:

是指采用使余量的加权函数为零求得微分方程近似解的方法称为

加权余量法。(Weighted residual method WRM )是一种直接从所需求解的微分方程及边界条件出发,寻求边值问题近似解的数学方法。加权余量法是求解微分方程近似解的一种有效的方法。

设问题的控制微分方程为:

在V 域内 在S 边界上

式中 :

L 、B ——分别为微分方程和边界条件中的微分算子;

f 、

g ——为与未知函数u 无关的已知函数域值;

u ——为问题待求的未知函数 ()0

L u f -=(5.1.1)()0

B u g -=(5.1.2)

混合法对于试函数的选取最方便,但在相同精度条件下,工作量最大。对内部法和边界法必须使基函数事先满足一定条件,这对复杂结构分析往往有一定困难,但试函数一经建立,其工作量较小。

无论采用何种方法,在建立试函数时均应注意以下几点:

(1)试函数应由完备函数集的子集构成。已被采用过的试函数有幂级数、三角级数、样条函数、贝赛尔函数、切比雪夫和勒让德多项式等等。

(2)试函数应具有直到比消除余量的加权积分表达式中最高阶导数低一阶的导数连续性。

(3)试函数应与问题的解析解或问题的特解相关联。若计算问题具有对称性,应充分利用它。

显然,任何独立的完全函数集都可以作为权函数。按照对权函数的不同选择得到不同的加权余量计算方法,主要有:配点法、子域法、最小二乘法、力矩法和伽辽金法。其中伽辽金法的精度最高。

2、虚功原理

——平衡方程和几何方程的等效积分“弱”形式

虚功原理包含虚位移原理和虚应力原理,是虚位移原理和虚应力原理的总称。他们都可以认为是与某些控制方程相等效的积分“弱”形式。虚功原理:变形体中任意满足平衡的力系在任意满足协调条件的变形状态上作的虚功等于零,即体系外力的虚功与内力的虚功之和等于零。

虚位移原理是平衡方程和力的边界条件的等效积分的“弱”形式;

虚应力原理是几何方程和位移边界条件的等效积分“弱”形式。

虚位移原理的力学意义:如果力系是平衡的,则它们在虚位移和虚应变上所作的功的总和为零。反之,如果力系在虚位移(及虚应变)上所作的功的和等于零,则它们一定满足平衡方程。所以,虚位移原理表述了力

系平衡的必要而充分条件。一般而言,虚位移原理不仅可以适用于线弹性问题,而且可以用于非线性弹性及弹塑性等非线性问题。

虚应力原理的力学意义:如果位移是协调的,则虚应力和虚边界约束反力在他们上面所作的功的总和为零。反之,如果上述虚力系在他们上面所作的功的和为零,则它们一定是满足协调的。所以,虚应力原理表述了位移协调的必要而充分条件。

虚应力原理可以应用于线弹性以及非线性弹性等不同的力学问题。但是必须指出,无论是虚位移原理还是虚应力原理,他们所依赖的几何方程和平衡方程都是基于小变形理论的,他们不能直接应用于基于大变形理论的力学问题。

3、最小总势能法

应变能:作用在物体上的外载荷会引起物体变形,变形期间外力所做的功以弹性能的形式储存在物体中,即为应变能。

由n 个单元和m 个节点组成的物体的总势能为总应变能和外力所做功的差:

()11=n

m

e i i e i Fu ==∏Λ

-∑∑ 最小势能原理:对于一个稳定的系统,相对于平衡位置发生的位移总会使系统的总势能最小,即:

()110n m e i i e i i i i Fu u u u ==?∏??=Λ-=???∑∑,i=1,2,3,……,n

有限元法的收敛性

有限元法是一种数值分析方法,因此应考虑收敛性问题。

有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。

有限元的收敛条件包括如下四个方面:

1)单元内,位移函数必须连续。多项式是单值连续函数,因此选择多项式作为位移函数,在单元内的连续性能够保证。

2)在单元内,位移函数必须包括常应变项。每个单元的应变状态总可以分解为不依赖于单元内各点位置的常应变和由各点位置决定的变量应变。当单元的尺寸足够小时,单元中各点的应变趋于相等,单元的变形比较均匀,因而常应变就成为应变的主要部分。为反映单元的应变状态,单元位移函数必须包括常应变项。

3)在单元内,位移函数必须包括刚体位移项。一般情况下,单元内任一点的位移包括形变位移和刚体位移两部分。形变位移与物体形状及体积的改变相联系,因而产生应变;刚体位移只改变物体位置,不改变物体的形状和体积,即刚体位移是不产生变形的位移。空间一个物体包括三个平动位移和三个转动位移,共有六个刚体位移分量。

由于一个单元牵连在另一些单元上,其他单元发生变形时必将带动单元做刚体位移,由此可见,为模拟一个单元的真实位移,假定的单元位移函数必须包括刚体位移项。

4)位移函数在相邻单元的公共边界上必须协调。对一般单元而言,协调性是指相邻单元在公共节点处有相同的位移,而且沿单元边界也有相同的位移,也就是说,要保证不发生单元的相互脱离开裂和相互侵入重叠。要做到这一点,就要求函数在公共边界上能由公共节点的函数值唯一确定。对一般单元,协调性保证了相邻单元边界位移的连续性。

但是,在板壳的相邻单元之间,还要求位移的一阶导数连续,只有这样,才能保证结构的应变能是有界量。

总的说来,协调性是指在相邻单元的公共边界上满足连续性条件。

前三条又叫完备性条件,满足完备条件的单元叫完备单元;第四条是协调性要求,满足协调性的单元叫协调单元;否则称为非协调单元。完备性要求是收敛的必要条件,四条全部满足,构成收敛的充分必要条件。

在实际应用中,要使选择的位移函数全部满足完备性和协调性要求是比较困难的,在某些情况下可以放松对协调性的要求。

需要指出的是,有时非协调单元比与它对应的协调单元还要好,其原因在于近似解的性质。假定位移函数就相当于给单元施加了约束条件,使单元变形服从所加约束,这样的替代结构比真实结构更刚一些。但是,这种近似结构由于允许单元分离、重叠,使单元的刚度变软了,或者形成了(例如板单元在单元之间的绕度连续,而转角不连续时,刚节点变为铰接点)对于非协调单元,上述两种影响有误差相消的可能,因此利用非协调单元有时也会得到很好的结果。在工程实践中,非协调元必须通过“小片试验后”才能使用。

应力的单元平均或节点平均处理方法最简单的处理应力结果的方法是取相邻单元或围绕节点各单元应力的平均值。

? 1.取相邻单元应力的平均值

这种方法最常用于3节点三角形单元中。这种最简单而又相当实用的单元得到的应力解在单元内是常数。可以将其看作是单元内应力的平均值,或是单元形心处的应力。由于应力近似解总是在精确解上下振荡,可以取相邻单元应力的平均值作为此两个单元合成的较大四边形单元形心处的应力。

如2单元的情况下,取平均应力可以采用算术平均,

即平均应力=(单元1的应力+单元2的应力)/2。

也可以采用精确一些的面积加权平均,

即平均应力=[单元1应力×单元1的面积+单元2应力×单元2面积]/(单元1面积+单元2面积)

当相邻两单元面积相差不大时,两者的结果基本相同。在单元划分时应避免相邻两单元的面积相差太多,从而使求解的误差相近。

一般而言,3节点三角形单元的最佳应力点是单元的中心点,此点的应力具有1阶的精度。

? 2.取围绕节点各单元应力的平均值

首先计算围绕该节点(i )周围的相关单元在该节点出的应力值 ,然后以他们的平均值作为该节点的最后应力值 ,即

其中,1~m 是围绕在i 节点周围的全部单元。取平均值时也可进行面积加权。

有限元法求解问题的基本步骤

1.结构离散化

对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相连;

2.求出各单元的刚度矩阵[K](e)

[K](e)是由单元节点位移量{Φ}(e)求单元节点力向量{F}(e)的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e)

3.集成总体刚度矩阵[K]并写出总体平衡方程:

总体刚度矩阵[K]是由整体节点位移向量{Φ}求整体节点力向量 的转移矩阵,其关系式为{F}= [K] {Φ},此即为总体平衡方程。

4.引入支撑条件,求出各节点的位移

节点的支撑条件有两种:一种是节点n 沿某个方向的位移为零,另一种是节点n 沿某个方向的位移为一给定值。

5.求出各单元内的应力和应变。

对于有限元方法,其基本思路和解题步骤可归纳为:

i σ

(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件 )、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。对于自然边界条件,一般在积分表达式中可自动得到满

足。对于本质边界条件和混合边界条件,需按一定法 则对总体有限元方程进行修正满足。

(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭 方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

单元刚度矩阵的特性

单元刚度矩阵无论在局部坐标系中还是在整体坐标系中都具有相同

的三个特性: 1)对称性

由材料力学中的位移互等定理可知,对一个构件,作用在点j 的力引起点i 的绕度等于有同样大小而作用于点i 的力引起的点j 的绕度,即k ij (e) = k ji (e),表明单元刚度矩阵是一个对称矩阵。

2) 奇异性

无逆阵的矩阵就叫做奇异矩阵,其行列式的值为0,即|k (e)|=0,这一点可以从例题直接得到验证。其物理意义是引入支撑条件之前,单元可平移。

3) 分块性

有前面所讲的内容可以看出,矩阵[k (e)]可以用虚线分成四块,因此可写成如下的分块形式,

{}{}[][][][]{}{}()()()

111112222122e e e f k k f k k ?????Φ?????=??????Φ??????????

式中k mn(e)——局部坐标系中单元(e)按局部码标记的节点m、n之间的刚度子矩阵

刚架结构中非节点载荷的处理的方法在刚架结构以及其他较复杂的结构上,他们所受的载荷可以直接作用在节点上,又可以不直接作用在节点上而作用于单元节点间的其他位置上。后一种情况下的载荷称为非节点载荷。有限元分析时,总体刚度方程中所用到的力向量是节点力向量。因此在进行整体分析前应当进行载荷的移植,将作用于单元上的力移植到节点上。移植时按静力等效的原则进行。

处理非节点载荷一般可直接在整体坐标系内进行,其过程为:

1)将各杆单元看成一根两端固定的梁,分别求出两个固定端的约束反力。其结果可直接利用材料力学的公式求得;

2)将各固定端的约束反力变号,按节点进行集成,获得各节点的等效载荷

总体刚度矩阵的集成法

使用刚度矩阵获得的方法获得总体刚度矩阵。在此将其扩展到由整体坐标系中的单元刚度矩阵的子矩阵集成总体刚度矩阵。步骤如下:1)对一个有n个节点的结构,将总体刚度矩阵[K]划分为n×n各子区间,然后按节点总码的顺序进行编号;

2)将整体坐标系中单元刚度矩阵的各子矩阵根据其下标的两个总码对号入座,写在总体刚度矩阵相应的子区间;

3)同一子区间内的子矩阵相加,成为总体刚度矩阵中的相应的子矩阵。

总体刚度矩阵的特性

1)对称性:因为由此特性,在计算机中只需存储其上三角部分;

2)奇异性:物理意义仍为在无约束的情况下,整个结构可做刚体运动;

3)稀疏性:[K]中有许多零子矩阵,而且在非零子矩阵中还有大量的零元素,这种矩阵称为稀疏矩阵。大型结构的总体刚度矩阵一般都是稀疏矩阵;

4)分块性:

平面问题离散化时的规定

1)单元之间只在节点处相连;

2)所有的节点都为铰接点;

3)单元之间的力通过节点传递;

4)外载荷都要移植到节点上;

5)在节点位移或某一分量可以不计之处,就必须在该节点安置一个铰支座或相应的连杆支座。

通过以上的规定来建立平面有限元分析模型。

结构对称性的利用规律

一般来说,作用在对称结构上的载荷系统分为对称的、反对称的和一般的三种情况。

1.结构对称,载荷对称或反对称

这种情况下,对称面上的边界条件可按以下规则确定:

A.在不同的对称面上,将位移分量区分为对称分量和反对称分量;

B.将载荷也按不同的对称面分别区分为对称分量和反对称分量;

C.对于同一个对称面,如载荷是对称的,则对称面上位移的反对称分量为零,如载荷是反对称的,则对称面上位移的对称分量为零。

如果所分析的结构对称,但载荷是不对称的,也不是反对称的,这时可以将这种结构系统简化成载荷为对称和/或反对称情况的组合,仍可以简化分析过程,提高分析的综合效率。

如图a所示,结构对称,载荷一般,可将其载荷分解为图b和图c 的组合。图b为对称结构,载荷对x、y轴均为对称,图c为结构对称,载荷对x轴反对称、对y轴对称,此时可取相同的四分之一进行研究,分别施加对称面上节点的边界条件,进行两次分析计算,并将计算结果迭加起来,即可得到原结构四分之一的解答,进而得出整个结构的解答。

利用结构的对称性取某一部分建立有限元模型时,往往会产生约束不足现象。

例如,若取上例中图c的四分之一建立有限元时,根据上述分析,在两对称面上应加水平放置的滚动铰支座,因此模型在垂直方向存在刚体位移。对这种约束不足问题,利用有限元分析时,必须增加附加约束,以消除模型的刚体位移。在本例中,垂直方向可以用刚度很小的杆单元或边界弹簧单元连接到模型某节点上,使得既消除了模型的刚体位移,又不致于因附加的杆单元或边界弹簧单元刚度太大而影响结构原有的变形状态。

单元形态的选择原则

单元形态包括单元形状、边中节点的位置、细长比等,在结构离散化过程中必须合理选择。一般来说,为了保证有限元分析的精度,必须是单元的形态尽可能的规则。

对于三角形单元,三条边长尽量接近,不应出现大的钝角、大的边

有限元分析基本理论问答 基础理论知识

1. 诉述有限元法的定义 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. ?梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. ?简述单元刚度矩阵的性质和矩阵元素的物理意义 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么 答:整个结构的节点载荷列阵(外载荷、约束力),整个结构的节点位移列阵,结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. ?简述整体刚度矩阵的性质和特点 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 11. 简述整体坐标的概念 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X’Y’Z’下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。 答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。 15.弹性力学和材料力学相比,其研究方法和对象有什么不同。 答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。因此,弹性力学的研究对象要广泛得多。研究方法:弹性力学和材料力学

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元分析理论基础

有限元分析概念 有限元法:把求解区域瞧作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状与大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性与复杂的边界条件 有限元模型:它就是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:就是利用数学近似的方法对真实物理系统(几何与载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元就是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也就是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程就是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力与应变就是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有她们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题就是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系就是非线性关系。研究这类问题一般都就是假定材料的应力与应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触与摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。 有限元理论基础

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

有限元分析的概念和理论

第五章有限元素方法

§5.1有限元素方法的基本思想 有限元素法是一套求解微分方程的系统化数值计算方法。它比传统解法具有理论完整可靠,物理意义直观明确,适应性强,形式单纯、规范,解题效能强等优点。 从数学上来说, 有限元素方法是基于变分原理。它不象差分法那样直接去解偏微分方程, 而是求解一个泛函取极小值的变分问题。有限元素法是在变分原理的基础上吸收差分格式的思想发展起来的。 采用有限元素法还能使物理特性基本上被保持, 计算精度和收敛性进一步得到保证。 有限元素法优点: - 降低实验所需成本 - 減少試验对象的变异困难 - 方便参数控制 - 可获得实验无法获得的信息

有限元素法基本概念: 元素(element),节点(node),连結元素 有限元素法的基本思想: ?实际的物理問題很难利用单一的微分方程式描述,更无法順利求其解析解. ?有限元素法是将复杂的几何外型結构的物体切割成许多简单的几何形状称之为元素. ?元素与与元素间以“节点”相连. ?由于元素是简单的几何形状,故可以順利地写出元素的物理方程式,並求得节点上的物理量. ?采用內插法求得元素內任意点的物理量.

§5.2二维场的有限元素方法 1. 场域划分的约定 三角形元素。三角形元素越小,场域的分割就越细,计算的精度就会越高。因而在实际应用中是按精度的要求来决定场域内各处三角形元素的大小。 一般规定每个三角形元素的三个边的边长尽量地接近,尽量避免三角形元素具有大的钝角,一般最长的一条边不得大于最短边的三倍。 在分割场域时要求各三角形元素之间只能以顶点相交,即两相邻的三角形元素有两个公共的顶点及一条等长的公共边。不能把一个三角形的顶点取在另一个三角形的边上。 划分时还应当注意要尽量地使由相邻边界节点之间的线段所近似构成的曲线足够光滑。 如果在场域D内有不同的介质,则需要将介质的交面线选为分割线。

Matlab有限元分析操作基础共11页

Matlab有限元分析20140226 为了用Matlab进行有限元分析,首先要学会Matlab基本操作,还要学会使用Matlab进行有限元分析的基本操作。 1. 复习:上节课分析了弹簧系统 x 推导了系统刚度矩阵

2. Matlab有限元分析的基本操作 (1)单元划分(选择何种单元,分成多少个单元,标号)(2)构造单元刚度矩阵(列出…) (3)组装系统刚度矩阵(集成整体刚度矩阵) (4)引入边界条件(消除冗余方程) (5)解方程 (6)后处理(扩展计算)

3. Matlab有限元分析实战【实例1】

分析: 步骤一:单元划分

>>k1=SpringElementStiffness(100)

a) 分析SpringAssemble库函数 function y = SpringAssemble(K,k,i,j) % This function assembles the element stiffness % matrix k of the spring with nodes i and j into the % global stiffness matrix K. % function returns the global stiffness matrix K % after the element stiffness matrix k is assembled. K(i,i) = K(i,i) + k(1,1); K(i,j) = K(i,j) + k(1,2); K(j,i) = K(j,i) + k(2,1); K(j,j) = K(j,j) + k(2,2); y = K; b) K是多大矩阵? 今天的系统刚度矩阵是什么? 因为 11 22 1212 k k k k k k k k - ?? ?? - ????--+ ?? 所以 1000100 0200200 100200300 - ?? ?? - ????-- ???

有限元分析基础

有限元分析基础 第一章有限元法概述 在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。否则力学分析将无法进行。但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。所以过去设计经验和类比占有较大比重。因为这个原因,人们也常常在设计中选择较大的安全系数。如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。 近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。该方法彻底改变了传统工程分析中的做法。使计算精度和计算领域大大改善。 §1.1 有限元方法的发展历史、现状和将来 一,历史 有限元法的起源应追溯到上世纪40年代(20世纪40年代)。1943年R.Courant从数学的角度提出了有限元法的基本观点。50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。 60、70年代计算机技术的发展,极大地促进了有限元法的发展。具体表现在: 1)由弹性力学的平面问题扩展到空间、板壳问题。 2)由静力平衡问题——稳定性和动力学分析问题。 3)由弹性问题——弹塑性、粘弹性等问题。 二,现状 现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。已经形成了一种非常成熟的数值分析计算方法。大型的商业化有限元分析软件也是层出不穷,如: SAP系列的代表SAP2000(Structure Analysis Program) 美国安世软件公司的ANSYS大型综合有限元分析软件 美国航天航空局的NASTRAN系列软件 除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。 三,将来 有限元的发展方向最终将和CAD的发展相结合。运用“四个化”可以概括其今后的发展趋势。那就是:可视化、集成化、自动化和网络化。 §1.2 有限元法的特点 机械零构件的受力分析方法总体说来分为解析法和数值法两大类。如大家学过的材料力学、结构力学等就是经典的解析力学分析方法。在这些解析力学方法中,弹性力学的分析方法在数学理论上是最为严谨的一种分析方法。 其解题思路是:从静力、几何和物理三个方面综合考虑,建立描述弹性体的平衡、应力、应变和位移三者之间的微分方程,然后考虑边界条件,从而求出微分方程的解析解。其最大的有点就是,严密精确。缺点就是微分方程的求解困难,很多情况下,无法求解。 数值方法是一种近似的计算方法。具体又分为“有限差分法”和“有限元法”。 “有限差分法”是将得到的微分方程离散成近似的差分方程。通过对一系列离散的差分

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

桥梁的有限元分析

基于有限元模式下的桥梁结构分析 前言有限元法(finite element method)是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。 关键词结构划分分割单元分析 一有限元运用原理 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 二有限元运用步骤 步骤1:剖分: 将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点).步骤2:单元分析: 进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数 步骤3:求解近似变分方程用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有

有限元学习心得

有限元学习心得 吴清鸽车辆工程 50110802411 短短八周的有限元课已经结束。关于有限元,我一直停留在一个很模糊的概念。我知道这是一个各个领域都必须涉及的点,只要有关于CAE分析的,几乎都要涉及有限元。总体来说,这是一门非常重要又有点难度的课程。 有限元方法(finite element method) 或有限元分析(finite element analysis),是 求取复杂微分方程近似解的一种非常有效的工具,是现代数字化科技的一种重要 基础性原理。将它用于在科学研究中,可成为探究物质客观规律的先进手段。将 它应用于工程技术中,可成为工程设计和分析的可靠工具。本课程教学基本内容 有固体力学和结构力学简介;有限元法基础;桁架、梁、刚架、二维固体、板和 壳、三维固体的有限元法;建模技术;热传导问题的有限元分析;PATRAN软件 的使用. 通过有限元分析课程学习使我了解和掌握了一些有限元知识: 1.简要了解二维和三维固体以及桁架、梁和板结构的三组基本力学方程,即表示位移-应变关系的几何方程,表示应力-应变关系的本构方程和表示内力-外力关系的平衡方程。 2.了解利用能量法形成有限元离散系统方程的基本原理,即哈密尔顿原理。掌握有限元分 析的基本方法及步骤,包括域的离散、位移插值、构造形函数、单元有限元方程 的建立、坐标变换、整体有限元方程的组装、整体有限元方程的求解技术。 3.具体深入的了解并掌握桁架结构、梁结构、刚架结构、二维固体、板和壳结构、三维固体的有限元法分析技术,包括他们具体的形函数构造,应变矩阵,局部坐标系和整体坐标系中的单元矩阵。各种结构的实例研究。 4.了解并掌握建立高质量建模所涉及的各种关键技术。包括单元类型的选择,单元畸形的限制,不同阶数单元混用时网格的协调性问题,对称性的应用(平面对称、轴对称、旋转对称、重复对称),由多点约束方程形成刚域及应用(模拟偏移、不同自由度单元的连接、网格协调性的施加)等,以及多点约束方程的求解。以PATRAN有限元通用软件为例了解一般商业有限元软件的组成及结构。掌握PATRAN软件的基本使用。利用PATRAN软件上机实践完成两个上机练习:刚架结构有限元分析和三维固体有限元分析。 课程的具体学习内容: 内容: 1.三节点三角形单元:单元分析、总刚度矩阵组装、引入约束条件修正总刚度 矩阵、载荷移置、方程求解; 2.四边形单元分析、四节点四面体单元分析、八节点六面体单元分析;

有限元法理论及应用参考答案

有限元法理论及应用大作业 1、试简要阐述有限元理论分析的基本步骤主要有哪些? 答:有限元分析的主要步骤主要有: (1)结构的离散化,即单元的划分; (2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程; (3)等效节点载荷计算; (4)整体分析,建立整体刚度方程; (5)引入约束,求解整体平衡方程。 2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。 题2图 答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。 有限元划分网格的基本原则: 1.拓扑正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接 2.几何保持原则。即网络划分后,单元的集合为原结构近似 3.特性一致原则。即材料相同,厚度相同 4.单元形状优良原则。单元边、角相差尽可能小 5.密度可控原则。即在保证一定精度的前提下,网格尽可能的稀疏一些。(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。 (c)中没有考虑对称性,单元边差很大。 3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?

题3图 答:(a )划分为杆单元, 8个节点,12个自由度。 (b )划分为平面梁单元,8个节点,15个自由度。 (c )平面四节点四边形单元,8个节点,13个自由度。 (d )平面三角形单元,29个节点,38个自由度。 4、什么是等参数单元?。 答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。 5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么? (1). ?????++=++=2 65432 21),(),(y x y x v y x y x u αααααα (2). ?????++=++=2 65242 3221),(),(y xy x y x v y xy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。所以位移多项式应按巴斯卡三角形来选择。 (2)不能,位移函数应该包括常数项和一次项。

有限元法的理论基础

有限元法的理论基础 有限元法是一种离散化的数值计算方法,对于结构分析而言,它的理论基础是能量原理。能量原理表明,在外力作用下,弹性体的变形、应力和外力之间的关系受能量原理的支配,能量原理与微分方程和定解条件是等价的。下面介绍有限元法中经常使用的虚位移原理和最小势能原理。 1.虚位移原理 虚位移原理又称虚功原理,可以叙述如下:如果物体在发生虚位移之前所受的力系是平衡的(物体内部满足平衡微分方程,物体边界上满足力学边界条件),那么在发生虚位移时,外力在虚位移上所做的虚功等于虚应变能(物体内部应力在虚应变上所做的虚功)。反之,如果物体所受的力系在虚位移(及虚应变)上所做的虚功相等,则它们一定是平衡的。可以看出,虚位移原理等价于平衡微分方程与力学边界条件。所以虚位移原理表述了力系平衡的必要而充分的条件。 虚位移原理不仅可以应用于弹性性力学问题,还可以应用于非线性弹性以及弹塑性等非线性问题。 2.最小势能原理 最小势能原理可以叙述为:弹性体受到外力作用时,在所有满足位移边界条件和变形协调条件的可以位移中,真实位移使系统的总势能取驻值,且为最小值。根据最小势能原理,要求弹性体在外力作用下的位移,可以满足几何方程和位移边界条件且使物体总势能取最小值的条件去寻求答案。最小势能原理仅适用于弹性力学问题。 2.2有限元法求解问题的基本步骤 弹性力学中的有限元法是一种数值计算方法,对于不同物理性质和数学模型的问题,有限元法的基本步骤是相同的,只是具体方式推导和运算求解不同,有限元求解问题的基本步骤如下。 2.2.1问题的分类 求解问题的第一步就是对它进行识别分析,它包含的更深层次的物理问题是什么?比如是静力学还是动力学,是否包含非线性,是否需要迭代求解,要从分析中得等到什么结果等。对这些问题的回答会加深对问题的认识与理解,直接影响到以后的建模与求解方法的选取等。 2.2.2建模 在进行有限元离散化和数值求解之值,我们为分析问题设计计算模型,这一步包括决定哪种特征是所要讨论的重点问题,以便忽略不必要的细节,并决定采用哪种理论或数学公式描述结果的行为。因此,我们可以忽略几何不规则性,把一些载荷看做是集中载荷,并把某些支撑看做是固定的。材料可以理想化为线弹性和各向同性的。根据问题的维数、载荷以及理论化的边界条件,我们能够决定采用梁理论、板弯曲理论、平面弹性理论或者一些其他分析理论描述结构性能。在求解中运用分析理论简化问题,建立问题的模型。 2.2.3连续体离散化 连续体离散化,习惯上称为有限元网络划分,即将连续体划分为有限个具有规则形状的单元的集合,两相邻单元之间只通过若干点相互连接,每个连接点称为节点。单元节点的设置、性质、数目等应视问题的性质、描述变形的需要和计算精度而定,如二维连续体的单元可为三角形、四边形,三维连续体的单元可以是四面体、长方体和六面体等。为合理有效地表示连续体,需要适当选择单元的类型、数目、大小和排列方式。 离散化的模型与原来模型区别在于,单元之间只通过节点相互连接、相互作用,而无其他连接。因此这种连接要满足变形协调条件。离散化是将一个无限多自由度的连续体转化为一个有限多自由度的离散体过程,因此必然引起误差。主要有两类:建模误差和离散化误差。

有限元法的基本思想及计算步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列阵(δ)e表示: {δ}e=[u i v i u j v j u m v m]T 同样,可把作用于结点处的六个结点力用列阵{F}e表示: {F}e=[F ix F iy F jx F jy F mx F my]T 应用弹性力学理论和虚功原理可得出结点位移与结点力之间的关系

有限元分析基础教程(ANSYS算例)(曾攀)

有限元分析基础教程Fundamentals of Finite Element Analysis (ANSYS算例) 曾攀 清华大学 2008-12

有限元分析基础教程曾攀 有限元分析基础教程 Fundamentals of Finite Element Analysis 曾攀 (清华大学) 内容简介 全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。 本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。

目录 [[[[[[\\\\\\ 【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57

有限元分析基础教程

有限元分析基础教程

前言 有限元分析已经在教学、科研以及工程应用中成为重要而又普及的数值分析方法和工具;该基础教程力求提供具备现代特色的实用教程。在教材的内容体系上综合考虑有限元方法的力学分析原理、建模技巧、应用领域、软件平台、实例分析这几个方面,按照教科书的方式深入浅出地叙述有限元方法,并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供完整的典型推导实例、MATLAB实际编程以及ANSYS应用数值算例,并且给出的各种类型的算例都具有较好的前后对应性,使学员在学习分析原理的同时,也进行实际编程和有限元分析软件的操作,经历实例建模、求解、分析和结果评判的全过程,在实践的基础上深刻理解和掌握有限元分析方法。 一本基础教材应该在培养学员掌握坚实的基础理论、系统的专业知识方面发挥作用,因此,教材不但要提供系统的、具有一定深度的基础理论,还要介绍相关的应用领域,以给学员进一步学习提供扩展空间,本教程正是按照这一思路进行设计的;全书的内容包括两个部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。在基本原理方面,以基本变量、基本方程、求解原理、单元构建等一系列规范的方式进行介绍;在阐述有限元分析与应用方面,采用典型例题、MATLAB程序及算例、ANSYS算例的方式,以体现出分析建模的不同阶段和层次,引导学员领会有限元方法的实质,还提供有大量的练习题。 本教程的重点是强调有限元方法的实质理解和融会贯通,力求精而透,强调学员综合能力(掌握和应用有限元方法)的培养,为学员亲自参与建模、以及使用先进的有限元软件平台提供较好的素材;同时,给学员进一步学习提供新的空间。 本教程力求体现以下特点。 (1)考虑教学适应性:强调对学员在数学原理、分析建模、软件应用几个方面的培养目标要求,注重学员在工程数值方面的基础训练,培养学员“使用先进软件+分析实际问题”的初步能力。 (2)考虑认知规律性:力求按照有限元分析方法的教学规律和认知规律,在教材中设计了“基本变量、基本方程、求解原理、单元构建”这样的模块;并体现出有限元原理“在使用中学习,在学习中使用”的交互式特点,在介绍每一种单元的同时,提供实用的MATLAB实际编程和数值实例;在每一章还进行要点总结,给出典型例题,以引导学员领会有限元方法的实质,体现教材的启发性,有利于激发学员学习兴趣和便于自学。 (3)考虑结构完整性:本教程提供完整的教材结构:绪论、正文、典型例题、基于MATLAB的编程算例与数值算例、具有一定深度的ANSYS算例、各章要点、习题、专业术语的英文标注、关键词中文和英文索引、参考文献,便于学员查阅。 (4)内容上的拓展性:除基本内容外,还介绍了较广泛的应用领域,包括:静力结构分析、结构振动分析、传热过程分析、弹塑性材料分析;提供了有关的典型问题的建模详细分析过程,基本上反映了有限元分析在一些主要领域的应用状况及建模方法。 (5)编排上的逻辑性:本教程力求做到具有分明的层次和清楚的条理,在每一章中重点突出有限元方法的思想、数理逻辑及建模过程,强调相应的工程概念,提供典型例题及详解,许多例题可作为读者进行编程校验的标准考题(Benchmark),还提供了对应的MATLAB编程算例与ANSYS算例,特别是介绍了基于APDL参数化的ANSYS建模方法,并给出具体的实例,力求反映有限元分析的内在联系及特有思维方式。

相关主题