搜档网
当前位置:搜档网 › 概率统计和随机过程课件11.2随机过程的数字特征

概率统计和随机过程课件11.2随机过程的数字特征

随机过程的数字特征

<概率统计习题解>, 15元一本地点: 主南311

第三节随机过程的数字特征随机变量数字特征复习:

Y X ,为随机变量, 联合概率密度),,(y x f 边沿概率密度)

(),(y f x f Y X 数学期望(均值)

???+∞∞-+∞

∞-+∞∞-==dxdy

y x xf dx x xf EX X ),()(=)],([Y X g E ??+∞∞-+∞

∞-dxdy

y x f y x g ),(),(

二阶原点矩

???+∞∞-+∞∞-+∞∞-==dxdy

y x f x dx x f x EX X ),()(2

22方差dx

x f EX x EX X E DX X )()()(22?+∞

∞--=-=2

2)(EX EX -=二阶原点混合矩??+∞∞-+∞

∞-=dxdy

y x xyf XY E ),()(

随机过程的数字特征是参数集,T ),(+∞-∞?T 随机变量族}),({T t t X ∈是一个随机过程,(11.1)

(1)过程在的状态的数学期望t )(t X 对于任意给定,t T ∈的状态)(t X ,具有一维概率密度)

;(11t x f 在t 时刻dx t x xf t X E t X );()]([)(1?+∞∞-==μ

对于一切,t T ∈称为随机过程)(t X 的均值函数,简称均值;

是的函数,t ()X t μ(2)过程在

的状态的二阶原点矩t )(t X dx t x f x t X E t X );()]([)(1222

?+∞∞-==ψ(11.2)

称为随机过程的均方值函数,简称均方值;

)(t X

(3)二阶中心矩(方差)22)]()([)]([)(t EX t X E t X D t X

-==σ2

)]()([t t X E X μ-=)()]([2

2t t X E X μ-=(11.3)

称为随机过程的方差函数,简称方差,)(t X 均方差;

)(t X σ

随机变量的数字特征试题答案

随机变量的数字特征试题 答案 It was last revised on January 2, 2021

第四章 随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )= B. E (X )=,D (X )= C. E (X )=2,D (X )=4 D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )= (C ) A. 1 B. 3 C. 5 D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004 B. C. D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(D ) A . D (X+Y )=D (X )+D (Y ) B . D (X+C )=D (X )+C C . D (X -Y )=D (X )-D (Y ) D . D (X -C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 B . 21 C .2 3 D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D = (C ) A . 34 B . 37 C . 323 D . 3 26

7、设随机变量X 服从参数为3的泊松分布,)31 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A . -13 B . 15 C . 19 D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 B . 22 C . 30 D . 46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A . 31 B . 1 C . 3 10 D . 10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0 D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D B . )(X D -)(Y D C .)(X D +)(Y D -2),cov(Y X D .)(X D +)(Y D +2),cov(Y X 12、设随机变量)2 1 ,10(~B X ,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数 XY ρ=(D ) A . B . -0.16 C . D . 13、已知随机变量X 的分布律为 25 .025.012p P x X i -,且E (X )=1?,则常数x =( B) A . 2 B . 4 C . 6 D . 8 14、设随机变量X 服从参数为2的指数分布,则随机变量X 的数学期望是(C ) A. B. 0 C. D. 2 15、已知随机变量X 的分布函数为F(x)=?? ?>--other x e x 00 12,则X 的均值和方差分别为(D )

四、随机变量的数字特征(答案)

概率论与数理统计练习题 、选择题: 二、填空题: 1 4.设随机变量 X 的密度函数为f(x) e |x| ( x ),则E(X) 0 三、计算题: 1.袋中有5个乒乓球,编号为1 , 2, 3, 4, 5,从中任取3个,以X 表示取出的3个球中最大编 号,求E(X) 解:X 的可能取值为3, 4, 5 E(X) 3 丄 4 色 5 3 4.5 10 10 5 1/5 1/6 1/5 1/15 11/30 系 _____ 第四章 专业 ______ 班 _________ 随机变量的数字特征(一) 学号 1 ?设随机变量 X 的可能取值为0, 1, 相应的概率分布为 0.6,0.3 , .01,则 E(X) 0.5 2 .设X 为正态分布的随机变量,概率密度为 f(x) 2?2 e (x 1)2 2 8 ,贝U E(2X 1) ,则 E(X 3X 2) 116/15 1 ?设随机变量X ,且 E(X)存在,则 E(X)是 (A )X 的函数 (B )确定常数 随机变量 (D )x 的函数 2 .设X 的概率密度为 f(x) 1 x e 9 9 0 ,则 E( 9X) 3 ?设 x x e 9 dx 1 (B) 9 x x e 9dx (C ) (D ) 1 是随机变量, E( )存在,若 ¥,则 E() E() (B)罟 (C ) E() P(X 3) 1 10 , P(X 4) C 5 3 10 P(X 5) § 10

2 ?设随机变量X 的密度函数为f(X ) 2 (1 %)0甘它1,求E(X) 0 其它 2 3?设随机变量X~N(,),求E(|X I) (1) Y 1 e 2X ( 2)Y 2 max{ X, 2} 解:(1) E(Y) 2x x 1 e e dx 0 3 (2) EM) 2 x 2e dx xe 0 2 x dx 2 2e 2 3e 2 2 2 e (3) E(Y 3) 2 e x dx 2e x 0 2 dx 1 c 2 c 2 」 2 3e 2e 1 e 概率论与数理统计练习题 ________ 系 _______ 专业 ______ 班 ___________________学号 _________ 第四章 随机变量的数字特征(二) 、选择题: 解:E(X) X 2(1 x)dx 解: |x (x )2 1 — dx 令y 2 y I y |e 2dy 4 .设随机变量 X 的密度函数为f (x) x 0 ,试求下列随机变量的数学期望。 x 0 (3) Y min{ X,2} 2 2~ 2 o ye dy

随机变量的数字特征

第四章 随机变量的数字特征 一、填空题 1. 设随机变量X 服从参数为1的指数分布,则数学期望____________)(2=+-X e X E 。 2. 若随机变量X 服从均值为2,方差为2 σ的正态分布,且3.0)42(=<=--其他,05,)()5(y e y y ?,则 _______________)(=XY E 。 二、选择题

四、随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

第三章 随机变量的数字特征答案

第三章 随机变量的数字特征答案 一、1、35;2、 6175;;259,59,259, 563、σ σμ1 , =±=b a ; 4、()(),2 1212 1211 )(2 2 2 212111 2??? ? ??-- ---+-? = ? = = x x x x e e e x πππ ? ),(~所以2 1 1N ξ ,2 1 ,12 = ===σ ξμξD E 5、2 1-;6.a=2,b=0,或a=-2,b=2;32)(=ξE 或31 ; 7、()()125,01022===+=+=+=+a D a b a D b a b aE b a E ξξξξ 所以2,5 1 2,51=-=-== b a b a 或 8、()()6.2022,2=++=++=+ηξρηξηξηξηξξηD D D D Cov D D D ()()4.232,2=-+=-+=-ηξρηξηξηξηξξηD D D D Cov D D D 9、148,57; 10、()()()()n D a E D a E i i 2 2 ,,,σξ ξσξξ= ===所以 二、1、C 2、B 3、C 4、B 5、C 三、1、,2.03.023.004.02-=?+?+?-=ξE ()8.23.023.004.02222 2=?+?+?-=ξE ()() ()() ( )04.114,412,4.1353532 222=-==-=+=+ξξξξξξE E D D E E 2、ξ~[]10,0U ,()32512010,5210 02 =-==+=ξξD E , 3 35=ξD 3、4)(,1)2 (==ξξ D D ,则 1)(,4)1(==-ξξ E D 所以0)1(=-ξE 所以 ()()()() 2 2 2111404E D E ξξξ-=-+-=+= 4、()()()()()()32323223,2D D D D Cov ξηξηξηξη-=+-=+-+- ()( )941225.6D D ξηρ=+-=

随机变量的数字特征试题答案

第四章 随机变量的数字特征试题答案 一、选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A. E (X )=,D (X )=? B. E (X )=,D (X )= C. E (X )=2,D (X )=4? D. E (X )=2,D (X )=2 2、设随机变量X 与Y 相互独立,且X~N (1,4),Y~N (0,1),令Y X Z -=,则D (Z )=? (??C?) A. 1 ? B. 3 C. 5? D. 6? 3、已知D (X )=4,D (Y )=25,cov (X ,Y )=4,则XY ρ =(C ) A. 0.004? B. ? C. ? D. 4 4、设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是(?D ) A . D (X+Y )=D (X )+D (Y ) ?B . D (X+C )=D (X )+C C . D (X-Y )=D (X )-D (Y ) ?D . D (X-C )=D (X ) 5、设随机变量X 的分布函数为???? ???≥<≤-<=4, 14 2,12 2, 0)(x x x x x F ,则E(X)=(D ) A . 31 ?B . 21 C .2 3 ?D . 3 6、设随机变量X 与Y 相互独立,且)61,36(~B X ,)3 1 ,12(~B Y ,则)1(+-Y X D =(C ) A . 34 ? B . 37 C . 323 ? D . 3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y , X 与Y 相互独立,则)43(--Y X D =(C ) A . -13 ? B . 15 C . 19 ? D . 23 8、已知1)(=X D ,25)(=Y D ,XY ρ=,则)(Y X D -=(B ) A . 6 ?B . 22 C . 30 ?D . 46 9、设)3 1,10(~B X ,则)(X E =(C ) A . 31 ?B . 1 C . 3 10 ?D . 10 10、设)3,1(~2 N X ,则下列选项中,不成立的是(B ) A. E (X )=1? B. D (X )=3? C. P (X=1)=0? D. P (X<1)= 11、设)(X E ,)(Y E ,)(X D ,)(Y D 及),cov(Y X 均存在,则)(Y X D -=(C ) A . )(X D +)(Y D ?B . )(X D -)(Y D

第四章 随机变量的数字特征试题答案

第四章随机变量的数字特征试题答案 一、 选择(每小题2分) 1、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是(D ) A.E (X )=0.5,D (X )=0.5?B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4?D.E (X )=2,D (X )=2 2 Y X -=,则34) A C 5A 6、)1= (C ) A .3 4?B .3 7C . 323?D .3 26 7、设随机变量X 服从参数为3的泊松分布,)3 1 ,8(~B Y ,X 与Y 相互独立,则 )43(--Y X D =(C ) A .-13? B .15 C .19? D .23 8、已知1)(=X D ,25)(=Y D ,XY ρ=0.4,则)(Y X D -=(B )

A .6? B .22 C .30? D .46 9、设)3 1 ,10(~B X ,则)(X E =(C ) A .31? B .1 C .3 10?D .10 10、设)3,1(~2N X ,则下列选项中,不成立的是(B ) A.E (X )=1? B.D (X )=3? C.P (X=1)=0? D.P (X<1)=0.5 11 A .C .12、XY ρ= (D 13x =(B) A . 14、(C ) A.-15、为(A .C .21)(,41)(== X D X E ?D .4 1 )(,21)(==X D X E 16、设二维随机变量(X ,Y )的分布律为

则)(XY E =(B ) A .9 1-?B .0 C .9 1?D .3 1 17、已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为(D ) A 18,0.5),则A 19,则X A 20, 则21(B A C 22、设n X X X ,,,21 是来自总体),(2σμN 的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为(B ) A .{}2 2 εσεμn n X P ≥ <-?B .{} 22 1ε σεμn X P -≥<- C .{}2 2 1ε σεμn X P - ≤≥-?D .{}2 2 εσεμn n X P ≤ ≥-

随机变量的数字特征

随机变量的数字特征 讨论随机变量数字特征的原因 (1) 在实际问题中,有的随机变量的概率分布 难确定,有的不可能知道,而它的一些数字特征较易确定。 (2)实际应用中,人们更关心概率分布的数字特征。 (3)一些常用的重要分布,如二项分布、泊松 分布、指数分布、正态分布等,只要知道了它们的某些数字特征,就能完全确定其具体的分布。 §4.1 数学期望 一、数学期望的概念 1.离散性随机变量的数学期望 例4.1:大学一年级某班有32名同学,年龄情况如下: 解: 平均年龄=1 4810721 224218201019718217+++++?+?+?+?+?+? 25.19= 把上式改写为: 32 12232421328203210193271832217?+?+?+?+?+?

设X 为从该班任选一名同学的年龄,其概率分布为 定义4.1:设离散型随机变量X 的分布列为: 若 ∑k k k p x 绝对收敛(即 +∞ <=∑∑k k k k k k p x p x ),则称它为X 的 数学期望或均值(此时,也称X 的数学期望存在),记为E(X),即 若 ∑k k k p x 发散,则称X 的数学期望不存在。 说明: (1)随机变量的数学期望是一个实数,它体现了随机变量取值的平均; (2) 要注意数学期望存在的条件: ∑k k k p x 绝对 收敛; (3) 当X 服从某一分布时,也称某分布的数学 期望为EX 。 ∑=k k k p x EX

例4.2:设X服从参数为p的两点分布,求EX EX=p 例4.3:设X~B(n,p),求EX EX=np 例4.4:设X服从参数为λ的泊松分布,求EX EX=λ 2.连续型随机变量的数学期望 定义4.2: 设连续型随机变量X 的概率密度为f(x).若积分 ?+∞∞-dx x xf) ( 绝对收敛,(即?∞∞ - +∞ < dx x f x) ( ),则称它 为X的数学期望或均值(此时,也称X的数学期望存在),记为E(X),即 ) ( ) (?∞∞- =dx x xf X E 若?∞∞ - +∞ = dx x f x) ( , 则称X的数学期望不存在。 例4.5:设X服从U[a,b],求E(X)。 EX= 2b a+ 例4.6:设X服从参数为λ的指数分布,求EX EX=λ 例4.7: ) , ( ~2σ μ N X,求EX

实验一平稳随机过程的数字特征

实验一 平稳随机过程的数字特征 一、实验目的 1、加深理解平稳随机过程数字特征的概念 2、掌握平稳随机序列期望、自相关序列的求解 3、分析平稳随机过程数字特征的特点 二、实验设备 计算机、Matlab 软件 三、实验内容和步骤 设随机电报信号X(n)(-∞m 时, m k k e k m I m n X n X P λλ-∞ =∑==+022 )!2()(})()({

m k k e k m I m n X n X P λλ-∞ =+∑+==+0122 )!12()(})()({ m e I m n X n X E m R λ22)]()([)(-=+= 五、实验要求 1、写出求期望和自相关序列的步骤; 2、分析自相关序列的特点; 3、打印相关序列和相关系数的图形; 4、附上程序和必要的注解。 六、实验过程 input('王斌欢迎您') I=input('输入I 的值'); a=0.5; %a 的值为P{X(n)=+I} b=0.5; %b 的值为P{X(n)=-I} EX=I*a+(-I)*b %EX 为期望的输出值 xuehao=21; %学号为21 k=1/xuehao; Ex=I*0.5+(-I)*0.5; m=-64:1:64; Rx=I*I*exp(-2*k*abs(m)); Cx=Rx-Ex*Ex; Cx0=I*I*exp(-2*k*abs(0))-Ex*Ex; rx=Cx/Cx0; figure(1); subplot(211);stem(EX);title('期望') %输出图像 subplot(212);stem(m,Rx);title('自相关序列'); figure(2); stem(m,rx);title('相关系数'); 七、实验结果及分析

随机变量的数字特征(答案)

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1.设随机变量X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为910()9 00 x e x f x x -?≥?=??

随机变量的数字特征归纳

第四章 随机变量的数字特征 ㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义 (1) 定义 离散型和连续型随机变量X 的数学期望定义为 {}?????==?∑∞ ∞ - d )( )()( , , 连续型离散型x x xf x X x X k k k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望 1、离散型随机变量的数学期望 设离散型随机变量的概率分布为 ,若,则称级数为随 机变量 的数学期望(或称为均值),记为 , 即 2、两点分布的数学期望 设 服从0—1分布,则有 ,根据定义, 的数学期望为 . 3、二项分布的数学期望 设 服从以 为参数的二项分布, ,则 。 4、泊松分布的数学期望 设随机变量 服从参数为的泊松分布,即,从而有 。 ①常见的连续型随机变量的数学期望 1)均匀分布

设随机变量ξ服从均匀分布,ξ~U [a,b] (a0,- <μ<+ ) 则令得 ∴ E(ξ)=μ . 3)指数分布 设随机变量服从参数为的指数分布,的密度函数为 ,则. (2) 随机变量的函数的数学期望设)(x g y=为连续函数或分段连续函数,而X是任一随机变量,则随机变量) (X g Y=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数) , (Y X g Z=,有类似的公式: (){} ? ? ? ? ?= = = ? ∑ ∞ ∞ . ; (连续型) 离散型 - d) ( ) ( ) ( ) ( x x f x g x X x g X g Y k k k P E E

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程 粗略的说——随机过程的统计特征不随时间的推移而变化。一.严平稳随机过程 1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数 综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。 a):一般在实用中,只要产生随机过程的主要物理条件,在时间 进程中不变化。则此过程就可以认为是平稳的。 例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。 12121212 12 1 21212 2 2 2 (,)(,;)() (,)()()(,;)()()(0)(0)[()] X X X X X X X X X X X X X X R t t x x f x x dx dx R C t t x m x m f x x dx dx C R m C R m D X t τττττσ=?==??==?=?==∫∫∫∫

∞<)]([2 t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。即在观测的有限时间段内,认为是平稳过程。 因此,工程中平稳过程的定义如下: 二、宽平稳过程1、定义 若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数 R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关 则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。 可见:一个均方值有限的严平稳过程,一定是宽平稳过程。反之:一个宽平稳过程,则不一定是严平稳过程。 c):一般在工程中,通常只在相关理论的范围内讨论过程的平稳问题。即:讨论与过程的一、二阶矩有关的问题。

随机变量分布及数字特征

第十章 随机变量分布及数字特征 10.1 随机变量 10.2 离散型随机变量分布 1、学时:2学时 2、过程与方法: 结合实例介绍随机变量概念,离散型随机变量的概率分布、分布列、分布函数、概率及性质. 3、教学要求: (1)掌握随机变量及离散型随机变量的概率分布、分布列、分布函数、概率及性质 (2)几种常见概率分布 教学重点:离散型随机变量的概率分布、分布列、分布函数、概率及性质 教学难点:离散型随机变量的分布函数 教学形式:多媒体讲授 教学过程: 一、新课教学内容 10.1 随机变量 概率论与数理统计是从数量上来研究随机现象的统计规律,因此我们必须把随机事件数量化. 在随机试验中,结果有多种可能性,试验结果样本点很多可以与数值直接发生关系,如产品检验,我们关心的是抽样中出现的废品件数.商店销售我们重视每天销售额,利润值.在投骰子中是每次出现的点数等. 但是也有不少试验结果初看与数字无直接关系,但我们可通过如下示性函数使之数值化,比如,产品合格与不合格令???=01ξ 不合格 合格 事件10A A X ?=??发生与否用 不发生发生 这些事件数值化后,数量是会

变化的称为变量.变量取值机会有大有小所以叫随机变量 . 定义1:在某一随机试验中,对于试验的每一个样本点ω都唯一对应一个数,这样依不同样本点ω而取不同值的点叫随机变量.通常用希腊字母或大写英文字母X 、Y 、Z 等表示.用小写英文字母i i y x 、表示随机变量相应于某个试验结果所取的值. 举例: 1°投骰子出现的点数用随机变量X 表示,X 可取值为{ },,,,,,654321 2°电信局话务台每小时收到呼叫次数用Y 表示,Y 可取值为{}Λ210,, 3°总站每五分钟发某一路车,乘客在车站候车时间{} 50≤≤=t t ξ 4°某一电子零件的寿命用{} 30000≤≤=t t T 按其取值情况可以把随机变量分成两类: (1)离散型随机变量:取有限个或无限可列个值.如例1°、2°. (2)非离散型随机变量:可在整个数轴上取值或取实数某部分区间的全部值.非离散型随机变量范围较广,本书只研究其中常遇见的一种称为连续型随机变量如例3°、4°. 例1 设有2个一级品,3个二级品的产品,从中随机取出3个产品,如果用X 表示取出产品中一级品的个数,求X 取不同值时相应概率. 解 X 可取值为{}210,, 101)0(3533===C C X P 53)1(352312===C C C X P 103 )2(35 1 322==C C C X P 例2 抛一枚匀称的硬币,引进一变量Y 令???=0 1Y 出现反面 出现正面求出现正面与反面概率: 解 21)0(= =Y P 2 1)1(==Y P 10.2 离散型随机变量分布 10.2.1 离散型随机变量的概率分布 例1 某汽车公司销售汽车数据表示在过去100天营业时间是有24天每天销售汽车是为0辆,38天

随机过程的模拟与数字特征

实验二随机过程的模拟与数字特征 一、实验目的 1. 学习利用MATLAB模拟产生随机过程的方法。 2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。 二、实验原理 1.正态分布白噪声序列的产生 MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。 函数:randn 用法:x = randn(m,n) 功能:产生m×n 的标准正态分布随机数矩阵。 如果要产生服从N (,) 分布的随机序列,则可以由标准正态随机序列产生。如果X ~ N(0,1),则N (,)。 2.相关函数估计 MATLAB提供了函数xcorr用于自相关函数的估计。 函数:xcorr 用法:c= xcorr (x,y) c= xcorr (x)

c= xcorr (x,y ,'opition') c= xcorr (x, ,'opition') 功能:xcorr(x,y) 计算X (n ) 与Y (n)的互相关,xcorr(x)计算X (n )的自相关。 option 选项可以设定为: 'biased' 有偏估计。 'unbiased' 无偏估计。 'coeff' m = 0 时的相关函数值归一化为1。 'none' 不做归一化处理。 3.功率谱估计 对于平稳随机序列X(n),如果它的相关函数满足 (2.1) 那么它的功率谱定义为自相关函数R X(m)的傅里叶变换: (2.2) 功率谱表示随机信号频域的统计特性,有着重要的物理意义。我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。 (1)自相关法 先求自相关函数的估计X(m),然后对自相关函数做傅里叶变换 (2.3) 其中N 表示用于估计样本序列的样本个数。 (2)周期图法

第四章 随机变量的数字特征课后习题参考答案

第四章 随机变量的数字特征 1. 解:令A 表示一次检验就去调整设备的事件,设其概率为p ,T 表示每次检验发现的次品个数,易知(10,0.1)T B ~,且(4,)X B p ~。 得, 0010119 1010(){1}1{1}1(0.1)(0.9)(0.1)(0.9)0.2639p P A P T P T C C ==>=-≤=--=。 因为(4,)X B p ~,得()4 1.0556E X p =?=。 2. 解:1500 3000 2220 1500 ()()(3000)5001000150015001500x x E X xf x dx dx x dx +∞ -∞ -= =+-=+=?? ?。 3. 解:1 ()(2)0.400.320.30.2k k i E X x p ∞ == =-?+?+?=-∑; 2 21 (35)(35)170.450.3170.313.4k k i E X x p ∞ =+=+=?+?+?=∑ 22(35)3()513.4E X E X +=+=。 4.解:(1)0 ()(2)2()2 ()22(| )2x x x E Y E X E X xf x dx x e dx xe e dx +∞ +∞ +∞ --+∞ --∞ ==== =-+=???. (2)223300 1 1 33 ()()()|X x x x E Y E e e f x dx e dx e +∞ +∞ ----+∞ -∞ == = =-=??. 5.解:(1)3 33 1 1 1 ()10.420.230.42i i i ij i i j E X x p x p ? ==== ==?+?+?=∑∑∑. 3 3 3 1 1 1 ()10.300.410.30j j j ij j j i E Y y p y p ?======-?+?+?=∑∑∑. (2) 7 1 11 ()10.2(0.50.1)...0.50.10.1315i i i E Z z p ===-?+-?++?+?=-∑。 2 2 1 ()40.400.340.3 2.8 k k i E X x p ∞ ===?+?+?=∑

第四章随机变量的数字特征单元测试题

随机变量的数字特征章节测试题 一、选择题(本大题共15个小题,每小题2分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量X 满足D (X )=2,则D (3X +2)=( ) A .2 B .8 C .18 D .20 2.设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和45 4,则n 、p 的 值分别是( ) A .50,1 4 B .60,14 C .50,3 4 D .60,3 4 . 3.某次语文考试中考生的分数X ~N (90,100),则分数在70~110分的考生占总考生数的百分比是( ) A .68.26% B .95.44% C .99.74% D .31.74% 4.某市期末教学质量检测,甲、乙、丙三科考试成绩近似服从正态分布,则由如图曲线可得下列说法中正确的是( ) A.甲学科总体的方差最小 B.丙学科总体的均值最小 C.乙学科总体的方差及均值都居中 D.甲、乙、丙的总体的均值不相同 5.设随机变量X 和Y 独立同分布,若记随机变量,=-=+U X Y V X Y ,则随机变量U 与V 必然( ) A.不独立 B.独立 C.相关系数不为零 D.相关系数为零 6.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2.又已知E (X )=4 3,D (X ) =2 9 ,则x 1+x 2的值为( ) A.53 B.73 C.11 3 D .3 7.已知X 为随机变量,且E (X ), D (X )均存在,则下列式子不成立的是( ) .[()]() .[()]2() .[()]0.[()]() =+=-==A E E X E X B E X E X E X C E X E X D D E X E X 8.设随机变量X 服从[,]a b 上的均匀分布,若1 ()2,()3==E X D X ,则均匀分布中的常 数,a b 的值分别为( ) .1,3.1,2.2,3.2,2========A a b B a b C a b D a b

第三章、随机变量的数字特征

第三章、随机变量的数字特征 一、选择题: 1.设随机变量X 的分布函数为4 0,1(),011,1x F x x x x ? ,则EX= ( C ) A .140x dx ? B .15 14 x dx ? C .1 4 4x d x ? D .1 40 1 x dx xdx +∞ + ?? 2.设X 是随机变量,0x 是任意实数,EX 是X 的数学期望,则 ( B ) A .220()()E X x E X EX -=- B .22 0()()E X x E X EX -≥- C .220()()E X x E X EX -<- D .2 0()0E X x -= 3.已知~(,)X B n p ,且EX=2.4,EX=1.44,则参数,n p 的值为 (B ) A .n = 4,p = 0.6 B .n = 6,p = 0.4 C .n = 8,p = 0.3 D .n = 24,p = 0.1 4.设X 是随机变量,且EX a =,2 EX b =, c 为常数,则D (CX )=( D ) A .2 ()c a b - B .2 ()c b a - C .22()c a b - D .22 ()c b a - 5.设随机变量X 在[a ,b ]上服从均匀分布,且EX=3,DX=4/3,则参数a ,b 的值为 (B ) A .a = 0,b = 6 B .a = 1,b = 5 C .a = 2,b = 4 D .a = -3,b = 3 6.设ξ服从指数分布()e λ,且D ξ=0.25,则λ的值为 ( A ) A .2 B .1/2 C .4 D .1/4 7.设随机变量ξ~N (0,1),η=2ξ+1 ,则 η~ ( A ) A .N (1,4) B .N (0,1) C .N (1,1) D .N (1,2) 8.设随机变量X 的方 差DX =2 σ,则()D aX b += ( D )

随机信号分析报告实验:随机过程的模拟与数字特征

实验二 随机过程的模拟与数字特征 实验目的 1. 学习利用MATLAB 模拟产生随机过程的方法。 2. 熟悉和掌握特征估计的基本方法及其MATLAB 实现。 实验原理 1.正态分布白噪声序列的产生 MATLAB 提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn 。 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从),(2 σμN 分布的随机序列,则可以由标准正态随机序列产生。如果 )1,0(~N X ,则),(~σμσμN X +。 2.相关函数估计 MATLAB 提供了函数xcorr 用于自相关函数的估计。 函数:xcorr 用法:c = xcorr(x,y) c = xcorr(x) c = xcorr(x,y,'opition') c = xcorr(x,'opition') 功能:xcorr(x,y)计算)(n X 与)(n Y 的互相关,xcorr(x)计算)(n X 的自相关。 option 选项可以设定为: 'biased' 有偏估计。 'unbiased' 无偏估计。 'coeff' m = 0时的相关函数值归一化为1。 'none' 不做归一化处理。 3.功率谱估计 对于平稳随机序列)(n X ,如果它的相关函数满足

∞<∑+∞ -∞ =m X m R )( (2.1) 那么它的功率谱定义为自相关函数)(m R X 的傅里叶变换: ∑+∞ -∞ =-= m jm X X e m R S ωω)()( (2.2) 功率谱表示随机信号频域的统计特性,有着重要的物理意义。我们实际所能得到的随机信号的长度总是有限的,用有限长度的信号所得的功率谱只是真实功率谱的估计,称为谱估计或谱分析。功率谱估计的方法有很多种,这里我们介绍基于傅里叶分析的两种通用谱估计方法。 (1)自相关法 先求自相关函数的估计)(?m R X ,然后对自相关函数做傅里叶变换 ∑---=-=1 ) 1()(?)(?N N m jm X X e m R S ωω (2.3) 其中N 表示用于估计样本序列的样本个数。 (2)周期图法 先对样本序列)(n x 做傅里叶变换 ∑-=-=1 )()(N n n j e n x X ωω (2.4) 其中10-≤≤N n ,则功率谱估计为 2)(1)(?ωωX N S = (2.5) MATLAB 函数periodogram 实现了周期图法的功率谱估计。 函数:periodogram 用法:[Pxx,w] = periodogram(x) [Pxx,w] = periodogram(x,window) [Pxx,w] = periodogram(x,window,nfft) [Pxx,f] = periodogram(x,window,nfft,fs) periodogram(...) 功能:实现周期图法的功率谱估计。其中: Pxx 为输出的功率谱估计值; f 为频率向量; w 为归一化的频率向量;

随机变量的数字特征历年真题数学

随机变量的数字特征历年真题 数学一: 1(87,2分) 已知连续型随机变量X 的概率密度为 1 22 1 )(-+-= x x e x f π 则EX = ,DX = 。 2(89,6分) 设随机变量X 与Y 独立,且X~N (1,2),Y~N (0,1),试求随机变量Z =2X -Y +3的概率密度函数。 3(90,2分) 已知随机变量X 服从参数为2的泊松分布,且胡机变量Z =3X -2,则EZ = 。 4(90,6分) 设二维随机变量(X ,Y )在区域D :0

相关主题