搜档网
当前位置:搜档网 › 多尺度方法综述

多尺度方法综述

多尺度方法综述
多尺度方法综述

跨原子/连续介质(第一类)多尺度分析的各种方法按照其控制方程的类型可分成两类,基于能量的方法和基于力平衡的方法

一、基于能量的方法

假定系统的总能量由原子区,握手区(可无),连续介质区构成

tot A H C ∏=∏+∏+∏

其中,握手区和连续介质区的能量是由有限元法近似求得的。

基于能量的方法一个最大的缺陷是很难消除耦合能量的非物理效应“鬼力”。鬼力产生的原因:

假设全区域采用原子进行计算,则其能量为:

,,atom atom A atom C ∏=∏+∏

对位移进行求导,可得

,,atom A atom C

f u u α

αα?∏?∏=--?? 在平衡时:,,atom A atom C

u u αα

?∏?∏=-?? 同理,对于无握手区的多尺度能量法,在平衡时,满足方程:

A C

u u

αα?∏?∏=-?? 同时因为在两种方法中,,A atom A ∏=∏ 即对于多尺度能量法需满足方程:,C Atom C

u u αα

?∏?∏=?? 因为在多尺度能量法的计算中,连续介质区的能量是由有限元法近似求得的,与原子计算的能量不一致,所以会产生“鬼力”。

1. QC 法(1998, Tadmor E B, OrtizMand Phillips R 1996 Quasicontinuum analysis of defects

in solids Phil. Mag. A 73 1529–63)

在之前的报告中阐述过,本周的阅读中暂无改进内容

2. CLS 法(1999,Broughton JQ, Abraham F F, BernsteinNand KaxirasE1999 Concurrent

coupling of length scales: methodology and application Phys. Rev. B 60 2391–403)

提出该方法的作者是基于自身对于MEMS (Micro-Electro-Mechanical

Systems)模拟分析的需求,包含了从量子,分子到连续介质三个区域的计算,与QC法的不同一方面由于处理领域的不同,在分子区域的计算上,CLS法采用的是Stillinger–Weber经验模型(适用于硅类半导体),QC法采用的是嵌入原子法(Embedded-Atom Method,EAM,适用于金属);另一方面,在连续介质的计算中采用线弹性本构关系,计算精度随着不同问题不同权重因子的选择而不同。

3.BSM法(2003,Wagner G J and Liu W K 2003 Coupling of atomistic and continuum

simulations using a bridging scale decomposition J. Comput. Phys. 190 249–74)

在之前的报告中阐述过,本周的阅读中暂无改进内容

4.BD法(2004,Xiao S P and Belytschko T 2004 A bridging domain method for coupling

continua with molecular dynamics Comput. Methods Appl. Mech. Eng. 193 1645–69 )

BD法的思路是希望通过握手区的设置,让原子区和连续介质区的过渡能够平缓均匀些,减弱“鬼力”效应。具体是在握手区采用两区域能量线性耦合的处理方法,并用位移插值的方法来决定握手区原子位移,引入Lagrange乘子,使边界弱协调。在静力问题中,该方法可以使能量控制方程的建立更方便,并可检查鬼力的大小,但另一方面,握手区的设置会使鬼力从一个原子或节点分散到多个原子或者节点上。同时,该方法边界的处理虽然在一定程度上牺牲计算精度,但非常便于网格的生成。

5.CACM法(2004,Datta D K, Picu R C and ShephardMS 2004 Composite grid atomistic

continuum method: an adaptive approach to bridge continuum with atomistic analysis Int. J.

Multiscale Comput. Eng. 2 71–90)

CACM法的主要思路是通过将原子和连续介质的能量泛函分开单独作用,避免因耦合产生的“鬼力”。其整体思路类似于数学中的Schwartz交替法,连续介质自己的能量泛函计算出衬垫区原子的位移,将此位移代入到原子区的计算中,然后再将计算出的处于原子区的连续介质点的位移代入到连续介质点的计算中,依次迭代循环,直到收敛。该方法在计算上的优势在于模块化,不足则是对于非线性问题收敛速度慢。

6.CQC(m)-E法(2009,Eidel B and Stukowski A 2009 A variational formulation of the

quasicontinuum method based on energy sampling of clusters J. Mech. Phys. Solids 57

87–108)

与下面CQC(m)-F法相对应,该方法是基于能量的方法,假定一个原子到另外一个原子的能量是平稳变化的,通过计算群内原子的能量来估计所有原子的能量,同样地,群的越大,计算越精确,所需的计算时间也越多。该方法在跨越原子与连续介质时是平滑过渡的,当群簇所代表的原子为1时,基于群集的方法变回归到原子尺度的计算。

二、基于力平衡的各方法

相比与基于能量的方法,基于力平衡的方法不会出现“鬼力”的方法,但其本身平衡方程的建立较难,求解过程收敛慢,同时对于非保守力,其解答可能找不到(所求得的力非系统真正的平衡点的力),其数值结果也不稳定。

基于力平衡方法无法计算在不同平衡状态下能量的变化,及沿过渡区域的激化能。

1.FEAt法(1991,Kohlhoff S, Gumbsch P and Fischmeister H F 1991 Crack propagation in

bcc crystals studied with a combined finite-element and atomistic model Phil. Mag. A 64

851–78)

最早的基于力平衡的多尺度方法,无握手区,采用强协调性条件。特点是在连续介质区采用非局部的弹性表达,来缓和其与原子区连接上的突变。

2.CQC(m)-F法(2001,Knap J and Ortiz M 2001 An analysis of the quasicontinuum

method J. Mech. Phys. Solids 49 1899–923 )

与上周报告中的QC-FNL(The force-base non-local QC)法出自同一文献,二者总体思路是相同的,用有限元的思想把某些原子的位置运动约束在节点附近,形成一个群集,由群集上原子的力来确定结点上的力,用结点间的位移场来插值群集上原子的位移。该方法可以用群的大小来控制误差,但随着群的增大,需要花费的计算代价也随之增大。

3.CADD法(2002,Shilkrot L E, Miller R E and Curtin W A 2002 Coupled atomistic and

discrete dislocation plasticity Phys. Rev.Lett. 89 025501)

上周报告中对该方法的理解有误,以为其是QC法中的一种改进。该方法在有位错的连续介质区,采用线弹性描述,在无位错的区域,与QC法相似,都采用Cauchy-Born法则。不同与QC法,该方法是基于力平衡建立控制方程来求解。

4.HSM法(2006,Luan B Q, Hyun S, Molinari J F, Bernstein N and Robbins M O 2006

Multiscale modeling of two-dimensional contacts Phys. Rev. E 74 046710)

通过设置握手区来使连续介质区域的边界可采用弱协调性条件,和BD法类似,该方法便于网格的生成,但同时会损失一定的计算精度。HSM法可通过在交界处细分单元到原子间距同时将握手区的宽度缩减为0的途径退化成

FEAt法或着CADD法。

5.Atc法(2007,Badia S, Bochev P, Lehoucq R, Parks M L, Fish J, Nuggehally M and

Gunzburger M 2007 A force-based blending model for atomistic-to-continuum coupling Int.

J. Multiscale Comput. Eng. 5 387–406)

该方法在握手区的设置上与BD法相似,采用两区域线性耦合的处理方法。

该方法先假定原子区和连续介质区完全不耦合,分别进行计算,最后通过让握手区的原子受到有限元计算所得位移的约束和将握手区原子计算所得的力投影连续介质有限元计算的结点上两种途径进行耦合。

文献[5]

参考文献:

[1]. Miller R E and Tadmor E B 2002 The Quasicontinuum Method: Overview, applications and current directions J. Computer-Aided Materials Design 9 203–239

[2]. Curtin W A and Miller R E 2003 Atomistic/continuum coupling methods in computational

material Modeling Simul. Mater. Sci. Eng. 11 R33–R68

[3]. Liu W K, Karpov E G, Zhang S and Park H S 2004 An introduction to computational nano mechanics and materials Comput. Methods Appl. Mech. Eng. 193 1529–78

[4]. Park H S and Liu W K 2004 An introduction and tutorial on multiple-scale analysis in solids Comput. Methods Appl. Mech. Eng. 193 1733–72

[5]. Miller R E and Tadmor E B 2009 A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods Modeling Simul. Mater. Sci. Eng.17 053001

最优化方法简明教程—centre

①图与网 破圈法:任取一个圈,去掉一条权最大的边,直到最小树。 避圈法:选最小权的边,避圈前进,直到最小树。 最短路算法: Dijkstra法:从V s给定P标号T标号λ标号(T标号变为P标号λ标号记位置) 反向追踪:列表,d1(V1,V j)→d k(V1,V j)=min(ωij+d k(V1,V i))据最小权反向追踪 网络优化: 最小截集最大流:找到最小截集(弧的集合) 标号法:开始,为的标号, 最小费用最大流: 邮递员问题:通过消灭奇点,找欧拉回路 网络计划图: 最早开始最晚开始机动时间 最早结束最晚结束自由时差 工期优化:人力,费用,工期优化。 费用率=(最短时间费用-正常时间费用)/(正常时间-最短时间)②排队论(保证服务质量,又减少费用) 顾客源→(排队规则)队列→(服务规则)服务机构→离去 服务规则:FCFS,LCFS,随机服务,PR

M(顾客到达)|A(服务时间)|1(服务台数)|∞(容量)|∞(顾客源) N(t)队长N q (t)排队长T(t)顾客逗留时间T q (t)顾客等待时间 L 平均队长L q 平均等待队长W 平均逗留时间W q 平均等待时间 R 为系统利用率 泊松流(M):无后效性;平稳性;单个性; P 1(t,t+Δt)=λΔt+o(Δt); o(Δt)=∑∞ 2P n (t,t+Δt);E ξ=D ξ=λt (t 时刻n 个顾客的概率) 负指数分布(M):无记忆性(P(T>t+s/t>s)=P(T>t));[0,t)至少到达一 个顾客1-P 0(t )=1-e -t λ,t>0 !)()(K t e t V K t k λλ-= ,2,1,0=K ?? ?<≥-=-0,00,1)(t t e t F t i λξ),2,1( =i 爱尔朗分布(E K ):(相当于泊松流到达后被k 个服务台均分顾客形成) (其中,t>0,E(T)=1/μ,Var(T)=1/μ2k ) )! 1()()(1 >-= --t e k t t f t k μμμ K=1为M ,k=∞定长分布D,k ≥30正态分布近似 G 表示一般相互独立的随机分布 Little 公式:(四者知一即可) μ1 + =q W W W L λ= q q W L λ= ρ+=q L L ∑∞ ==0 n n nP L ∑∑∞=∞ =+=-=s n n m s n q nP P s n L 0 )( 服务率:ρ=λ/μ(λ为到达μ为服务) 排队系统分析:

图像分割方法综述

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering

analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方

层次分析法与模糊综合评价的区别

层次分析法与模糊综合判别的区别与联系 1、层次分析法 [ 参考文献:吋义成, 柯丽华, 黄德育. 系统综合评价技术及其应用[M]. 北京: 冶金工业出版社,2006] 人们在日常生活中经常要从一堆同样大小的物品中挑选出最重要的物品,如重量最大的物品,即至少要确定各物品的相对重量。这时,经验和常识告诉我们,可以利用两两比较的方法来达到目的。 若在没有称量仪器的条件下对一组物体的重量进行估计,则可以通过爱对比较这组物体相对重量的方法,得出每对物体相对重量比的判断,从而形成比较判断矩阵,再通过求解判断矩阵的最大特征根和它所对应的特征向量问题,就能计算出这组物体的相对重量。 将此方法应用到复杂的社会、经济和科学管理等领域中,就能确定各种方案、措施、政策等 相对于总目标的重要性排序情况,以供领导者决策。 一般的层次分析法模型由图5-1 所示,分为目标层、准则层、指标层、方案层组成。需要注意几点: (1)层次分析法的评价结构并非是上述部分一成不变的,其中的当指标层因素较少时准则层可以省去(图5-2 ),当某一准则对应的指标层元素过多时可以将其指标层细分为“子准则层和指标层”(图5-4 )。由于层次分析法是利用两两比较完成的,为了便于人的比较与判别,每层的元素个数在3~7 之间为佳,超过7 以后增加了比较判断的难度,因此当元素过多时,可以将其分类后分成两层或多层来判别。 (2)准则层与指标层之间的关系可以对比一下图5-1 和图5-4 ,即每个准则可能有独 用的指标体系,也可能是各准则之间共用某几个指标。 (3)层次分析法的特点是基于某个目标,对多个待评价方案进行评价,从而得到方案的重要性排序。具体到某个问题,其并无相应的数据。而模糊综合判别有相应的基础数据。两者可以结合一起用,比如常用的是模糊综合评判过程中,权重可以由层次分析法计算。 层次分析法的骤如下: 1)在作者建立评价模型后,根据经验对每层里的各个元素建立重要性判别矩阵,从判 别矩阵中可以得到某一层中各个指标的归一化权重(表5-1中的W B,W C1,W C2,W C3,W C4)。(表5-1和5-2 的数据为图5-1 模型的) 2)由层与层之间权重的传递可以得到最低层(具体指标层)的综合权重。如图5-1 所示的图中有得到各个C ij的综合权重W ij(表5-2第2列)。 3)最后,在指标层与方案层之间建立判别矩阵,针对每一个指标C ij 都需要建立一个各 方案A i的比较矩阵,判别A针对C j的重要性w A i (表5-2的每一行)。最后将指标C ij的综合权重W ij与W Ai进行乘法求和,从而得到方案A的最终综合权重刀(W ij心Ai),即为续表5-2的最后一行。

多尺度方法综述

跨原子/连续介质(第一类)多尺度分析的各种方法按照其控制方程的类型可分成两类,基于能量的方法和基于力平衡的方法 一、基于能量的方法 假定系统的总能量由原子区,握手区(可无),连续介质区构成 tot A H C ∏=∏+∏+∏ 其中,握手区和连续介质区的能量是由有限元法近似求得的。 基于能量的方法一个最大的缺陷是很难消除耦合能量的非物理效应“鬼力”。鬼力产生的原因: 假设全区域采用原子进行计算,则其能量为: ,,atom atom A atom C ∏=∏+∏ 对位移进行求导,可得 ,,atom A atom C f u u α αα?∏?∏=--?? 在平衡时:,,atom A atom C u u αα ?∏?∏=-?? 同理,对于无握手区的多尺度能量法,在平衡时,满足方程: A C u u αα?∏?∏=-?? 同时因为在两种方法中,,A atom A ∏=∏ 即对于多尺度能量法需满足方程:,C Atom C u u αα ?∏?∏=?? 因为在多尺度能量法的计算中,连续介质区的能量是由有限元法近似求得的,与原子计算的能量不一致,所以会产生“鬼力”。 1. QC 法(1998, Tadmor E B, OrtizMand Phillips R 1996 Quasicontinuum analysis of defects in solids Phil. Mag. A 73 1529–63) 在之前的报告中阐述过,本周的阅读中暂无改进内容 2. CLS 法(1999,Broughton JQ, Abraham F F, BernsteinNand KaxirasE1999 Concurrent coupling of length scales: methodology and application Phys. Rev. B 60 2391–403) 提出该方法的作者是基于自身对于MEMS (Micro-Electro-Mechanical

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

多尺度传递过程的研究进展

存档日期:存档编号: 北京化工大学 研究生课程论文 课程名称:计算流体力学与传热 课程代号:ChE515 任课教师:张建文 完成日期:2012 年12 月23 日 专业:化学工程与技术 学号:2012200028 姓名:王冰洁 成绩:_____________

多尺度传递过程的研究进展 摘要:近些年来,化学家们开始关注多尺度现象,而在更广泛的意义上是关注一门新学科—多尺度科学。本文分析了传递过程中的多尺度现象,讨论了多尺度研究的几个主要内容和方法并分析了它们的特点。多尺度科学应作为一门独立的科学来对待,多尺度现象将是21世纪科学家们面临的最大挑战。 关键词:多尺度、传递过程、研究进展 Progress in Multi-scale transfer process Abstract:In recent years, chemists have started to pay attention to the phenomenon of multi-scale,the broader sense is concerned about a new subject - Multiscale Science. This paper analyzes the multi-scale phenomena in the transfer process, and discusses several major content and method of multi-scale research and analysis of their characteristics. The multi-scale science should be treated as an independent scientific. The multiscale phenomenon will be the biggest challenge faced by the scientists of the 21st century. Keyword:Multi-scale、transfer process、progress 1 引言 多尺度科学[l]是一门研究不同空间尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学内涵和研究价值。多尺度模拟考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合起来,提高模拟和计算效率,是求解各种复杂的材料和工程问题的重要方法和技术。多尺度现象存在于生活的各个方面,涵盖多个领域,如微观、细观和宏观等多个物理、力学及其耦合领域[2]。多尺度模拟和计算是一个正在迅速发展的热点与前沿研究领域[3],特别是在多物理的(mufti-physical)现象非常显著材料科学、化学、流体力学和生物学等领域[4]。

多尺度方法在复合材料力学研究中的进展

多尺度方法在复合材料力学分析中的研究进展 摘要简要介绍了多尺度方法的分量及其适用范围,详细论述了多尺度分析方法在纤维增强复合材料弹性、塑性等力学性能中的研究进展,最后对多尺度分析方法的前景进行了展望。 关键词多尺度分析方法,复合材料,力学性能,细观力学,均匀化理论 1 引言 多尺度科学是一门研究不同长度尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学内涵和研究价值。多尺度现象并存于生活的很多方面,它涵盖了许多领域。如介观、微观个宏观等多个物理、力学及其耦合领域[1]。空间和时间上的多尺度现象是材料科学中材料变形和失效的固有现象。 多尺度分析方法是考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合的新方法,是求解各种复杂的计算材料科学和工程问题的重要方法和技术。对于求解与尺度相关的各种不连续问题。复合材料和异构材料的性能模拟问题,以及需要考虑材料微观或纳观物理特性,品格位错等问题,多尺度方法相当有效。 复合材料是由两种或者两种以上具有不同物理、化学性质的材料,以微观、介观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一个多相材料系统[2]。复合材料作为一种新型材料,由于具有较高的比强度和比刚度、低密度、强耐腐蚀性、低蠕变、高温下强度保持率高以及生物相容性好等一系列优点,越来越受到土木工程和航空航天工业等领域的重视。 复合材料是一种多相材料,其力学性能和失效机制不仅与宏观性能(如边界条件、载荷和约束等)有关,也与组分相的性能、增强相的形状、分布以及增强相与基体之间的界面特性等细观特征密切相关,为了优化复合材料和更好地开发利用复合材料,必须掌握其细观结构对材料宏观性能的影响,即应研究多尺度效应的影响。 如何建立起复合材料的有效性能和组分性能以及微观结构组织参数之间的

模糊层次分析法的程序实现

、模糊层次分析法的程序实现 给出模糊层次分析法的Matlab程序。 clear; clc; E=input('输入计算精度e:') Max=input('输入最大迭代次数Max:') F=input('输入优先关系矩阵F:'); %计算模糊一致矩阵 N=size(F); r=sum(F'); for i=1:N(1) for j=1:N(2) R(i,j)=(r(i)-r(j))/(2*N(1))+0.5; end end E=R./R'; % 计算初始向量---------- % W=sum(R')./sum(sum(R)); % 和行归一法 %--------------------------------------------------------- for i=1:N(1) S(i)=R(i,1); for j=2:N(2) S(i)=S(i)*R(i,j); end end S=S^(1/N(1)); W = S./sum(S);%方根法%-------------------------------------------------------- % a=input('参数a=?'); %W=sum(R')/(N(1)*a)-1/(2*a)+1/N(1); %排序法 % 利用幂法计算排序向量----V(:,1)=W'/max(abs(W)); %归一化 for i=1:Max V(:,i+1)=E*V(:,i); V(:,i+1)=V(:,i+1)/max(abs(V(:,i+1))); if max(abs(V(:,i+1)-V(:,i)))k=i; A=V(:,i+1)./sum(V(:,i+1)); break Else End End 四、计算实例 由优先关系矩阵得到模糊一致矩阵 利用三种方法计算排序向量分别为:

多尺度法初识和应用

多尺度法初识和应用 摘要:简要介绍多重尺度发的中心思想,另外,举例说明多重尺度法在求解方程中的应用。 非线性问题的研究 非线性问题的“个性”很强,处理起来十分棘手。历史上曾有过一些解非 线性方程的“精品”,但与大量存在的非线性方程相比,只能算是“凤毛麟角”。 因此,长期以来,对非线性问题的研究一直分散在自然科学和技术科学的各个 领域。本世纪六十年代以来,情况发生了变化。人们几乎同时从非线性系统的 两个极端方向取得了突破:一方面从可积系统的一端,即从研究多自由度的非 线性偏微分方程的一端获得重大进展。如在浅水波方程中发现了“孤子”,发 展起一套系统的数学方法,如反散射法,贝克隆变换等,对一些类型的非线性 方程给出了解法;另一方面,从不可积系统的极端,如在天文学、生态学等领 域对一些看起来相当简单的不可积系统的研究,都发现了确定性系统中存在着 对初值极为敏感的复杂运动。促成这种变化的一个重要原因十计算机的出现和 广泛应用。科学家们以计算机为手段,勇敢地探索那些过去不能用解析方法处 理的非线性问题,从中发掘出规律性的认识,并打破了原有的学科界限,从共性、普适性方面来探讨非线性系统的行为。 线性与非线性的意义 “线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在 的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系 统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。 “非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲线。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函 数关系,如一切高于一次方的多项式函数关系,都是非线性的。由非线性函数关系 描述的系统称为非线性系统。 多尺度法的基本思想 多尺度法首先是由Sturrock(1957) 、Cole(1963) 、 Nayfeh(1965)等提 出的,此后得到进一步的发展。 上面介绍该法的基本思想与方法。我们考虑形式为 的方程所控制的系统,设方程的解为 将原点移至中心位置 是合适的。于是有 ()0=+q f q +++=+=22100x x q x q q εε0q q =

模糊层次分析法的Matlab实现

一、引言 层析分析法是将定量与定性相结合的多目标决策法,是一种使用频率很高的方法,在经济管理、城市规划等许多领域得到了广泛应用。由于其结果受主观思维的影响较大,许多科研工作者对其进行了深入的研究,将模糊理论与层次分析法相结合,提出了模糊层次分析法。为克服层次分析法中判断矩阵的一致性与人类思维的一致性存在的显著差异,文献[1-2]引入了模糊一致矩阵。为解决解的精度及收敛问题,文献[3-4]引入幂法来求排序向量。运用模糊层次分析法研究实际问题时,常采用迭代法来得到精度更高的排序向量,这就要求选择合适的初始值并通过大量的计算,为此,文中利用三种方法计算了初始排序向量,并给出了算法的Matlab程序,最后通过实例说明。 二、模糊层次分析法 为解决AHP种所存在的问题,模糊层次分析法引入模糊一致矩阵,无需再进行一致性检验,同时使用幂法来计算排序向量,可以减少迭代齿数,提高收敛速度,满足计算精度的要求.具体步骤: 1.构造优先关系矩阵 采用0.1~0.9标度[2],建立优先判断矩阵 2.将优先关系矩阵转化为模糊一致矩阵 3.计算排序向量 (1)和行归一法: (2)方根法: (3)利用排序法: (4)利用幂法[5-6]求精度更高的排序向量: 否则,继续迭代。 三、模糊层次分析法的程序实现 给出模糊层次分析法的Matlab程序。 clear; clc; E=input('输入计算精度e:') Max=input('输入最大迭代次数Max:')

F=input('输入优先关系矩阵F:'); %计算模糊一致矩阵 N=size(F); r=sum(F'); for i=1:N(1) for j=1:N(2) R(i,j)=(r(i)-r(j))/(2*N(1))+0.5; end end E=R./R'; % 计算初始向量---------- % W=sum(R')./sum(sum(R)); % 和行归一法 %--------------------------------------------------------- for i=1:N(1) S(i)=R(i,1); for j=2:N(2) S(i)=S(i)*R(i,j); end end S=S^(1/N(1)); W = S./sum(S);%方根法%-------------------------------------------------------- % a=input('参数a=?'); %W=sum(R')/(N(1)*a)-1/(2*a)+1/N(1); %排序法 % 利用幂法计算排序向量----V(:,1)=W'/max(abs(W)); %归一化 for i=1:Max V(:,i+1)=E*V(:,i); V(:,i+1)=V(:,i+1)/max(abs(V(:,i+1))); if max(abs(V(:,i+1)-V(:,i)))k=i; A=V(:,i+1)./sum(V(:,i+1)); break Else End End 四、计算实例

基于.层次分析法的模糊综合评价

校园环境质量的模糊综合评价方法 信息与计算科学2003级马文彬 指导教师杜世平副教授 摘要:本文应用模糊数学理论,把模糊综合评价方法具体应用到校园环境质量综合评价研究中,结合校园的实际情况将环境评价系统根据需要分成若干个指标,建立了因子集、评价集、隶属函数和权重集,实现对校园环境的质量等级综合评判。采用层次分析法计算评价的权重集,并对取大取小算法和评价结果的最大隶属度原则进行了改进,取得较好的效果。实例表明:模糊综合评价方法可操作性强、效果较好,可在一般环境的质量评价中广泛应用。 关键词:校园环境质量,模糊综合评价,层次分析法,权重 Fuzzy Comprehensive Evaluation Method for the Environment Quality of university Campus MA Wen-bin Information and Computational Science , Grade 2003 Directed by Du Shi-ping (Associate Prof ) Abstract: In this paper,based on fuzzy mathematics theory, the fuzzy comprehensive evaluation is applied in the environment quality evaluation of university campus,combining the actual situation list to evaluate the general level of university campus by fuzzy comprehensive evaluation. By setting up the factor sets, the evaluation sets, subjection functions and the weighting sets. Implementation of the Campus Environment Quality Level comprehensive evaluation. The evaluation of the weighting sets are made by AHP. The choosing big or small algorithm and the maximal subjection degree of the evaluation result is improved, and the effect is very good.The applying example indicates: the researched method is feasible and effective, it can be used widely in the environment quality assessment. Keywords:Environment quality of university campus,Fuzzy Comprehensive Evaluation,Analytical Hierarchy Process,Weighting

多尺度PCA及其应用综述

基于Gabor特征的人脸识别算法的研究 摘要:Gabor特征能从不同方向和尺度有效表示人脸图片的局部特征,但是利用传统Gabor特征的方法却忽略原始人脸图片所包含的全局特征.文中把Gabor特征和原始图片信息结合起来,构成增强的Gabor特征,并结合直接分步线性判别分析算法,提出一种人脸识别方法.在Yale、ORL和Georgia Tech人脸库的仿真实验结果表明,相对于传统Gabor特征,增强Gabor特征能够有效提高人脸识别率. 关键字:Gabor,人脸识别 近些年,“生物特征识别技术”因其良好的安全性越来越多地应用于身份识别,人脸识别技术因造价低、使用友好等优点成为其中很有前景的一部分。由于在一个场景中找到一张脸并且识别它的能力在人类生活中是很重要的,因此将这项任务自动化是非常有意义的。人脸识别是一个非常具有挑战性的问题。首先因为人脸图像的获取过程不同,导致二维图像信息在质量、几何、光线上都有内在的不同,此外还有脸部受到遮挡和化妆等因素的影响。但是,更内在的原因是,人脸是具有高度相似性的非刚体。人脸不同于普通物体,不同人的脸具有高度的相似性,同一人的脸又具有不同的状态,这使得人脸识别问题不同于普通物体的识别问题。目前,许多研究机构致力于这一领域的研究,取得了丰硕的理论成果并有不同的应用软件应运而生。人脸识别领域中,判别主成分分析算法是最有效的算法之一。主成分分析(PCA)基于人脸的全局特征,不能有效提取局部特征。局部特征分析(LFA)可以提取人脸图像的局部特征,但由于人脸特征点定位不准确通常会导致系统性能下降。与图像灰度信息特征相比,Gabor特征通常具有更好的鲁棒性。.生物学研究发现H J,Gabor小波可较好地模拟大脑皮层中简单细胞感受野的轮廓,能够捕捉空间定位、方向选择等视觉属性.特别是Gabor小波可像放大镜一样放大灰度的变化,人脸的一些关键功能区域(眼镜、鼻子、嘴、眉毛等)的局部特征被强化,从而有利于区分不同的人脸图像.因此,Gabor小波特征在人脸识别领域得到广泛应用,如弹性图匹配旧J、基于Gabor特征的增强Fisher判别分析局部Gabor直方图序列等.但是,这些方法往往只利用Gabor 特征,捕获人脸图像的局部特征,却忽略人脸图像原始的灰度值信息所代表的全局特征. 1.Gabor算法的实现与原理分析 1.1Gabor算法的分类和实现原理 1.11EGM算法 EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有讨厌数据等所谓的不完全数据(incomplete data)。 假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成,Z = (X,Y)和 X 分别称为完整数据和不完整数据。假设Z的联合概率密度被参数化地定义为P(X,Y|Θ),其中Θ表示要被估计的参数。Θ的最大似然估计是求不完整数据的对

模糊层次分析法

5.结论 由以上计算过程可以看出,模糊层次分析法同普通层次分析法相比具有以下优点:(1)检验一次性更方便。根据定理2.1或定理2.2可直接检验模糊矩阵是否具有一致性。(2)调整过程更简洁。通过调整模糊矩阵的元素可很快使模糊矩阵具有模糊一致性。(3)判断依据更合理。根据定理2.1或定理2.2作为检验一致性的标准更科学简便。 参考文献[1]张吉军.模糊层次分析法.模糊系统与数学,2000,14(2):80-88 [2]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序.模糊系统与数学,2002,16(2):79-85 [3]JohnMGleason.Fuzzysetcomputationalprocessesinriskanalysis.IEEETransactionson EngineeringManagement,1991,38(2):177-178 4.3.2层次总排序 同理,可求得其他矩阵对应元素的权重,并得到C层次总排序如下: 4.3.5结论 球面网壳动力稳定临界力简化计算 王节1黄显民2 (1.黑龙江省林业设计研究院2.哈尔滨工业大学建筑设计研究院150008) 摘要:球面网壳动力稳定临界力简化估算公式是针对跨度30m ̄60m,矢跨比1/10 ̄1/6的单层球面网壳,对于其它类型的网壳结构要具体分析。 关键词:单层球面网壳动力稳定动力稳定临界力中图分类号:TB122文献标识码:A 网壳结构是杆件沿曲面有规律布置而组成的空间杆系结构。具有刚度大、自重轻、受力均匀、在水平、竖向及多维地震作用下的动内力分布均匀且较小,结构抗震性能良好。结构在罕遇地震作用下的动力失稳临界峰值较高,随着矢跨比增加,结构刚度增大,地震作用稳定性提高。而且造型丰富美观、综合技术指标好等特点,是大跨度、大空间结构的主要结构形式之一。目前世界上跨度最大的网壳结构是美国新奥尔良体育馆的超级穹顶,跨度213米。近年来,网壳结构在我国获得了迅速的发展,哈尔滨速滑馆,由筒壳及两个半球壳组成的组合网壳,网壳平面投影86.2m×191.2m,是已建成最大的网壳结构。 在我国,单层球面网壳多应用在跨度较小的结构中,主要原因是该类结构为缺陷敏感性结构,在大雪、强风和强烈地震作用下,杆件进入塑性,结构通过塑性变形吸收地震能量,随着地震输入能量的增加,结构产生很大的塑性变形甚至失稳倒塌破坏。目前关于球面网壳的研究主要集中在结构静力稳定性及静力后屈

生态学尺度及尺度推绎方法综述

生态学尺度及尺度推绎方法综述 摘要:通过适宜的空间和时间尺度可以揭示和把握复杂的生态学规律,因此尺度问题日益受到生态学家的重视。本文描述了生态学尺度及尺度推绎的基本概念,论述了尺度推绎的特点,重点阐述了尺度推绎的方法和途径,分析了推绎结果的不确定性,并提出推绎过程中需注意的问题。 关键词:生态学;尺度;尺度推绎 20世纪60年代,生态学家就注意到了尺度问题的重要性,对于尺度和尺度推绎的观点开始于20世纪80年代中期,现在普遍深入到生态学的各个领域,并且在其他的自然社会科学中对于尺度和尺度推绎的关注也有同样的趋势。尺度研究的根本目的在于通过适宜的空间和时间尺度来揭示和把握复杂的生态学规律。 1 尺度的概念 不同学者分别从不同角度对尺度概念进行了表述。尺度指现象的时空畴,尺度纬包括时间、空间和组织水平。根据邬建国,广义地讲,尺度(scale)是指在研究某一物体或现象时所采用的空间或时间单位,同时又可指某一现象或过程在空间和时间上所涉及的围和发生的频率。前者是从研究者的角度来定义尺度,而后者则是根据所研究的过程或现象的特征来定义尺度。尺度可分为空间尺度和时间尺度,此外,组织尺度(organizational scale)是指在由生态学组织层次(如个体、种群、群落、生态系统和景观等)组成的等级系统中的相对位置(如种群尺度、景观尺度等)。具体地说,生态尺

度首先应该包括面积或时间间隔,即规模或幅度(extent),即研究对象在空间或时间上的持续围或长度,包括空间幅度和时间幅度。其次是面积和时间间隔都可以进一步划分为最小面积和最短时间 间隔,最小面积或最短时间间隔被称为粒度(grain)或分辨率(resolution)。例如,野外测量生物量的取样时间间隔(如一个月或半个月取1次),某一干扰事件发生的频率,或模拟的时间间隔[6],是时间粒度的例子。空间粒度如样方、像元。 地理学和地图学中的比例尺是分析尺度。在生态学中,尺度的定义显然不同于比例尺。大尺度(或粗尺度,coarse scale)是指大空间围或时间幅度,往往对应于小比例尺、低分辨率;而小尺度(或细尺度,fine scale)则常指小空间围或短时间,往往对应于大比例尺和高分辨率,尽管情况可能并不总是如此。 有关尺度在文献中经常被讨论的三个有特色又相关的论点是:特征尺度(characteristic scales)、尺度效应(scale effects)和尺度推绎(scaling)。 尺度推绎指不同时空尺度或组织层次之间的信息转换。下面将作详细介绍。 2 尺度推绎的概念 由于空间异质性和时空变异性在自然界中的广泛存在,大尺度的信息特征值并非是若干小尺度值的简单叠加,而小尺度的信息特征值也不能简单的通过对大尺度值进行插值或分解得到,常需借助各种尺度转换途径与方法来分析尺度转换过程中的非线性问题,建立

第九章 最优化方法

第九章 最优化方法 本章主要介绍线性规划、0-1规划、非线性规划等问题的MATLAB 求解。 9.1 线性规划(Linear Programming ,简写为LP )问题 线性规划问题就是求多变量线性函数在线性约束条件下的最优值。满足约束条件的解称为可行解,所有可行解构成的集合称为可行域,满足目标式的可行解称为最优解。 MATLAB 解决的线性规划问题的标准形式为: min z f x ¢ =? .. A x b s t Aeq x beq lb x ub ì祝??? ?í??#??? 其中,,,,,f x b beq lb ub 为列向量,,A Aeq 为矩阵。 其它形式的线性规划问题都可经过适当变换化为此标准形式。 在MATLAB 中求解线性规划问题函数为linprog ,其使用格式为: [x, fval, exitflag, output, lambda] = linprog(f, A, b, Aeq, beq, lb, ub) 输入部分:其中各符号对应线性规划问题标准形式中的向量和矩阵,如果约束条件中有缺少,则其相应位置用空矩阵[]代替。 输出部分:其中x 为最优解,用列向量表示;fval 为最优值;exitflag 为退出标志,若exitflag=1表示函数有最优解,若exitflag=0表示超过设定的迭代最大次数,若exitflag=-2,表示约束区域不可行,若exitflag=-3,表示问题无解,若exitflag=-4,表示执行迭代算法时遇到NaN ,若exitflag=-5,表示原问题和对偶问题均不可行,若exitflag=-7,表示搜索方向太小,不能继续前进;output 表明算法和迭代情况;lambda 表示存储情况。 例1 用linprog 函数求下面的线性规划问题

多尺度模拟方法概述 计算传热学作业

《计算传热学》学期作业 多尺度模拟方法概述 摘要:本文简单介绍多尺度模拟的思想,应用及存在的问题。 关键词:数值模拟;多尺度模拟 世界的本质是多尺度的,在不同的尺度下物质表现出不同的特征。如流体在分子尺度下表现为离散的不确定的粒子,而在宏观尺度下表现为连续的确定性的介质。在不同的时间和空间尺度下由于其尺度特性的不同,往往所采用的方法也不同,如图1[1]所示。 图1各种空间时间尺度下适用的模拟方法 文献[2]利用Kn数来鉴定何种特征尺度下流体流动适合用何种方法。Kn数的物理意义是分子平均自由程与特征长度的比值。 Kn<10-3,流动符合连续介质假设,可用N-S方程; 10-310,分子流动,可用分子动力学模拟方法。 模拟方法大致可分为宏观方法,介观方法,微观方法。宏观方法即流动符合

连续介质假设,传热的空间尺度和时间尺度符合傅立叶导热定律;微观方法是从分子运动碰撞理论来建立方程;介观方法是介于微观方法和宏观方法之间。这三种方法各有优缺点。宏观方法不能揭示微观的物理现象,但是方法成熟,应用方便。微观或介观方法更适合描述极端尺度的物理现象,但是计算量巨大,方法不成熟,工程应用极少。如果在采用宏观方法的过程中,可将微观尺度的信息带入,建立一种微观——宏观耦合的多尺度模拟方法可以结合两者的优点,又可以削弱两者的缺点。 多尺度问题表现[3]为: 已知一个模型的宏观描述, 但这种宏观描述在某些局部区域失效, 必须要用低尺度微观非线性描述代替。模型的微观特性既受制于宏观上的作用因素, 又可能显著影响宏观性能。但微观结构, 性能与状态何时、以怎样的途径去影响宏观性能并不清楚。 假定一个给定系统的微观行为可以使用微观模型变量u表示, 系统的宏观行为用宏观模型变量U表示, 那么宏观模型变量U与微观模型变量u可以通过压缩乘子Q或者重构算子R联系起来: U=Qu RU=u 多尺度模拟的难度在于两种尺度的耦合,即如何建模。建模的策略有两种[4-6]:一种策略是先在较低的尺度上建模, 然后将结果放入高尺度模型中, 这是一个从小尺度到大尺度的递阶过程。但低尺度建模的理论是一个重要问题。采用这种策略的方法一般称作信息传递的多尺度方法或递阶的多尺度方法另一种策略是在不同尺度上同时建模, 将区域分成不同尺度定律控制的区域, 这些区域可以重叠也可以不重叠,在交界处实现连接。在这种策略中, 区域之间的连接也是一个重要问题采用这种策略的方法一般称作并发(一致) 的多尺度方法。 国内外许多学着都致力于开发多尺度模拟方法,主要是介观宏观耦合和微观宏观耦合。多尺度模拟可用于分析材料、化学、能源工程等领域的问题,特别是微小装置的结构、流动和传热问题。随着微纳米科学技术的发展诞生出一个新的技术领域,微/纳机电系统(Micro/Nano ElectroMechanical System,M/NEMS)。微机电系统在工业、通信、环境、生物、医疗和航空航天等领域有着十分广阔的应用前景。 对于M/NEMS 尺度来说,分子动力学模拟虽可提供原子尺度信息,但只能考虑几百万个原子,处理的规模太小;而连续介质力学模拟不能提供接触区域(通常只有几层原子)微观结构的变化;因而不利于人们全面地揭示微/纳尺度下各种现象的相关性。多尺度模拟在一个系统的不同区域内采用不同的模型。例如,在发生较大变形的区域采用量子力学或分子动力学模型,在Kn数较大的区域采用分子动力学模拟或格子Boltzmann方法,以获得该区域的原子尺度信息;在变

图像多尺度几何分析综述_李财莲

收稿日期:2010-11-04 基金项目:国家自然科学基金项目(40901216);国防预研资助项目(513220206) 作者简介:李财莲(1973-),女,湖南涟源人,海南大学信息科学技术学院工程师,国防科学技术大学电子科 学与工程学院2007级博士研究生. 第29卷第3期海南大学学报自然科学版Vol.29No.3 2011年9月NATURAL SCIENCE JOURNAL OF HAINAN UNIVERSITY Sep.2011 文章编号:1004-1729(2011)03-0275-09 图像多尺度几何分析综述 李财莲1,2,孙即祥1,康耀红 2(1.国防科学技术大学电子科学与工程学院,湖南长沙410073;2.海南大学信息科学技术学院,海南海口570228) 摘要:阐述了图像多尺度几何分析技术的国内外发展现状及趋势,并介绍了其在图像处理中的部分应用, 探讨了图像多尺度几何分析方法存在的问题及进一步的研究方向,为多尺度几何分析技术的发展状况提供 了清晰的轮廓. 关键词:多尺度几何分析;小波变换;图像处理;Tetrolet 变换 中图分类号:TP 391文献标志码:A 由于超越傅里叶变换的诸多优点,小波变换被广泛应用到图像处理的各个领域,成为继傅里叶变换 之后的又一变换分析工具.但是, 由于小波变换只能反映信号的零维奇异性,即只能表达奇异点的位置和特性,却不能有效表示二维图像中具有多方向性的边缘和纹理等几何特性,因此,小波基并不是最优的图 像表示方法 [1-9].DO M N 在总结前人研究的基础上给出了图像有效表示需要满足以下条件[10]: 1)多分辨率表示方法能够进行多尺度分解,对图像从粗糙到精细连续逼近; 2)局部性表示方法的基函数在空域上和频域上都应该有良好的局部性质,并且能随尺度变化; 3)临界采样表示方法具有较低的冗余结构; 4)方向性表示方法应该包含多个方向的基函数; 5)各向异性表示方法的基函数的支撑集具有不同长宽比的形状,能处理图像边缘轮廓的平滑性.显然,傅里叶变换和二维可分离小波变换仅满足上述的部分性质,为了寻找最优的图像表示方法,更 加有效地表示和处理图像等高维空间数据, 一门崭新的信号分析工具———多尺度几何分析(Multiscale Ge-ometric Analysis ,MGA )被提出来并迅速成为当前研究的热点[2],它能满足上述图像有效表示的所有条 件, 在图像分析中获得了较大成功,体现出了一定的优势和潜力.目前,研究者提出了包括Ridgelet ,Curvelet ,Bandelet ,Contourlet 等一系列多尺度几何分析工具,由于 它们主要以变换为核心,因此也称为多尺度多方向变换.为了能充分利用原函数的几何正则性,这些变换 基的支撑区间表现为“长条形”,以达到用最少的系数来逼近奇异曲线.多尺度几何分析技术在图像压缩、 去噪、增强及特征提取等领域,表现出的性能优势显示了其强大的发展和应用潜力,但其理论和算法都处于发展阶段,还尚待完善和开发. 文献[4]以二维函数的非线性逼近为主线,分析了推动多尺度几何分析发展的深刻数学和生理学背 景.文献[ 6]分析了Contourlet 变换及其构造原理,探讨了Contourlet 变换在图像处理中的部分应用.本文在此基础上,阐述了国内外多尺度几何分析技术的研究现状及发展趋势,给出了部分图像处理应用结果,探讨了图像多尺度几何分析方法存在的问题及进一步研究的方向,为多尺度几何分析技术的发展提供清晰的轮廓.DOI:10.15886/https://www.sodocs.net/doc/3d2207024.html,ki.hdxbzkb.2011.03.012

相关主题