搜档网
当前位置:搜档网 › 吡啶类农药的研究新进展及合成

吡啶类农药的研究新进展及合成

吡啶类农药的研究新进展及合成
吡啶类农药的研究新进展及合成

二氢吡啶类降压药比较

临床上常用的钙离子拮抗剂有三类: 苯烷胺类(如维拉帕米) 二氢吡啶类(如一代硝苯地平;二代缓释硝苯地平、非洛地平;三代拉西地平、氨氯地平) 地尔硫卓类(如地尔硫卓) 钙离子拮抗剂适用人群: 1老年性单纯收缩压增高,首选长效钙离子拮抗剂,如苯磺酸氨氯地平,苯磺酸左旋氨氯地平,硝苯地平控释片,拉西地平,非洛地平等。单用效果不理想,可加服利尿剂(吲哒帕胺,氢氯噻嗪等),或联用长效ACEI类(依那普利,培哚普利等),或联用ARE类(厄贝沙坦,替米沙坦等)。 用药原理:长效制剂,降压作用温和,持久。确保24小时血压平稳,尽量避免血压波动,预防心血管事件的发生。 2、高血压合并稳定性心绞痛 用药提示:该药能舒张冠脉特别是已痉挛收缩的狭窄冠脉,故能增加缺血区流量,可治心绞痛。 二氢吡啶类(以“地平”结尾),这类钙拮抗药发展较快,在作用和药代动力学方面都有所改进,主要有以下几种: 1、硝苯地平。该药能舒张冠脉特别是已痉挛收缩的狭窄冠脉,故能 增加缺血区流量,可治心绞痛。也能舒张外周小动脉,降低血压,治疗轻、

中度高血压,还能治疗急性腹泻。

硝苯地平制剂规格/用法用量 片剂:5mg,sig:10m—30mg tid 缓释制剂:10mg20mg sig:10m—20mg bid 控释制剂:30mg sig:30mg qd 温馨提示:普通片剂为短效制剂,不良反应发生率较高,有明显的“峰谷”现象。 缓释制剂为等比释药,“峰谷”现象较弱,为中长效制剂。 控释制剂为等量释药,无“峰谷”现象,为长效制剂,每日服药一次即可。缓释制剂的服药时间为一天两次,分别是晨起和下午17: 00。(对 应人体血压的两个高峰时段:9:00和19:00) 避免晚间服用,以免夜间血压过低。 【不良反应】发生率达20% 一般较轻,主要是低血压,降压过快引起反射性心律加快,面色潮红,脚踝水肿(可用利尿药吲哒帕胺或氢氯噻嗪对抗)。长期用药约有5%患者出现头痛。少数患者偶见心肌缺血症状加重,可能是严重冠脉阻塞、心率加快、血压过低所致。 2、氨氯地平(amlodipine)舒张冠脉及外周血管,用于治疗中、轻度高血压作用缓慢持久,降低血压10%-18%无反射性心动过速。治疗稳定型心绞痛效果明显。它的消除t i/2较久,达35?45小时,日服一次即可。

氯代吡啶类除草剂开发应用现状

氯代吡啶类除草剂开发应用现状

————————————————————————————————作者:————————————————————————————————日期:

氯代吡啶类除草剂开发应用现状 前言 随着世界人口持续增长,人类生活品质不断提高,高效、安全农药已经成为世界农药的发展方向,解决粮食安全问题的有力保障和人类社会和谐发展的需要。近20年来,农药开发中最有成效的是众多杂环化合物被开发为超高效农药。而在杂环化合物中,含氮杂环化合物,尤其是吡啶衍生物又是最为突出的,不但有杀菌剂、杀虫剂,而且有高效的除草剂,这为化学农药的发展开拓了新天地。 早在17世纪末至18世纪初欧洲人已开始使用含吡啶的天然产物烟草浸出液作为杀虫剂,后经分析确认有效成分为烟碱。然而真正合成的吡啶类农药则是1955年英国ICI公司开发的除草剂敌草快(diquat)和1958年开发的百草枯(paraquat),到目前仍有较好的市场。 随着有机合成技术和农药活性分子设计技巧的发展及农业生产对新型农药的需求,从60年代后期多种吡啶类农药相继问世,比如道化学公司开发的毒莠定、绿草定、氟草烟等,这些产品都属于取代吡啶类除草剂,因其化学结构,统一划归为“氯代吡啶类除草剂”。这类除草剂有着相似的化学结构,都属于激素类除草剂,除草活性高,主要防治阔叶杂草,随着杂草的演替,这类产品应用范围越来越广,销量逐年攀升。鉴于该市场情况,本文将对“氯代吡啶类”除草剂的开发应用现状介绍如下: 一、简介 中文名称英文名称化学名称分子式结构式

氯氟吡氧乙酸、使它隆、氟草定fluroxy pyr 4-氨基-3, 5-二氯-6- 氟-吡啶-2- 吡啶氧乙酸 1-甲基- 庚基酯 C7H5C l2FN2O3 二氯吡啶 酸、毕克草clopyra lid 3,6-二氯吡 啶-2-羧酸 C6H3Cl2NO2 三氯吡氧乙酸、绿草 定、 盖灌能、盖灌林、定草酯 tr iclopyr, Garlon, Grands tsnd, Dowco233 3,5,6-三 氯-2-吡啶 基氧乙酸 C7H4Cl3NO 3 氨氯吡啶酸、毒莠 定、毒莠定 101 picl oram, Tordon, Tordan 4-氨基- 3,5,6- 三氯吡啶羧 酸 C6H3Cl3 N2O2二、开发应用现状 1.氯氟吡氧乙酸 作用特点:氯氟吡氧乙酸是内吸传导型苗后除草剂。药后很快被植物吸收,使敏感杂草出现典型激素类除草剂的反应,植株畸形、扭曲。在耐药性植物如小麦体内

全球吡啶类化合物的市场现状及前景分析

全球吡啶类化合物的市场现状及前景分析 一、综述 吡啶类化合物是一类含有氮原子的杂环芳烃,除了吡啶本身之外,吡啶类化合物包括:甲基吡啶(picolines皮考林),二甲基吡啶(卢剔啶lutidines)和三甲基吡啶(可力丁collidines)。吡啶类化合物最大的应用市场是农用化学品(主要为除草剂)和烟酰胺/烟酸。 20世纪50年代初开始吡啶的化学合成之前,煤焦油中分离是吡啶的唯一来源。如今,世界上几乎所有的吡啶都是化学合成的。本次论坛只讨论合成吡啶。 合成吡啶所用的原料有甲醛、乙醛和氨,催化剂是普通的沸石催化剂,反应温度也不高300~500℃。从表面是看,吡啶的合成应该是一件很容易的事,实际上将乙醛和甲醛环起来再在环上加上一个杂原子氮是一项技术含量很高的合成工艺。世界上能够掌握这项技术的公司为数不多,10年前有美国、日本、德国和瑞士等几家公司。目前又增加了中国台湾、中国大陆和印度等几家公司。 二、全球吡啶及其衍生物的供需情况 本报告讨论的吡啶及其衍生物主要包括吡啶、2-甲基吡啶、3-甲基吡啶、4-甲基吡啶和2-甲基-5-乙基吡啶(MEP)。表1列出了2007年全球吡啶及其衍生物的供需情况。 表1 2007年全球吡啶及其衍生物的供需情况t a. 包括2-甲基-5-乙基吡啶(MEP)和少量的二甲基吡啶(卢剔啶)和三甲基吡啶(可力丁);

b. 包括印度尼西亚、马来西亚、新加坡和泰国。 来源:CEH 估计。 三、全球吡啶及其衍生物的消费情况 2007年全球吡啶的消费量为11.8万t/a。产能利用率为66%,这是因为吡啶产能的增速已经超过了全球的需求。在2003-2007年间,世界吡啶产能的平均增长率为8.7%,超过了全球消费的平均增长率3.5%。2003~2007年底,大约有4.5万t/a产能增加,主要都分布在中国、印度和美国。大部分亚洲产能增加都用于百草枯和烟酸/烟酰胺的强劲需求。而2003-2007 年亚洲新增吡啶需求被美国和西欧需求的降低给平衡掉了。表2列出了世界吡啶的消费情况。 表2 世界吡啶的消费情况t/% a. 包括2-甲基-5-乙基吡啶(MEP) 来源:CEH 估计。 2007年和2012年全球吡啶产品的消费情况分别如图1和图2所示。 图1 2007年全球吡啶产品的消费情况

阿司匹林合成路线

阿司匹林的合成路线介绍 阿司匹林是世界最重要的解热镇痛药之一。目前全世界阿司匹林原料药产量已达5万吨左右,年产片剂1千多亿片。多年来,阿司匹林一直是我国解热镇痛药的支柱产品之一,年产量达1万多吨,也是我国医药原料药出口的大宗产品,2005年的出口量为7522吨,出口金额达到2055万美元。 1 . 采用乙酸酐为酰化剂的工艺路线 催化剂类别 需用原料及配方实例 原料名称规格组分比(份) 酚甲酸98.5% 25 乙酸酐98.5% 27 制备工艺: 混料投入带配有冷凝器的烧瓶中,在油浴上控温于150~160℃,反应约3小时,于减压下蒸去过量之乙酸酐及反应中生成的乙酸,其蒸出物重约16份,余品重为31份。再用2倍重量的苯重结晶,可得18份纯品。若将余液浓度增高,还可收得10份纯品。 经过几十年的生产实践,阿司匹林的生产形成了一套十分成熟的工艺:以苯酚为原料,经过和二氧化碳的羧化反应,生成水杨酸,经升华后得到升华水杨酸,再采用醋酐-醋酸法。由于此生产工艺不复杂,收率、成本等也较为理想,几十年来,国内外生产企业基本按照这条工艺路线进行生产。故该工艺较为成熟。由于长期以来,国内外科研机构、生产厂商对其生产工艺进一步深入研究的工作做得不多,所以这方面的专利以及研究论文也较为少见。 工艺探索不断 在传统的阿司匹林生产中,由水杨酸和醋酐反应生成阿司匹林的过程需要加温,使反应在80℃~90℃温度下进行,反应时间2小时左右,耗能量较大。近年来,由于基本能源价格不断上涨,反应时间越长则能耗越大,成本越高。从近几年的研究趋势看,研究的重点主要集中在水杨酸和醋酐反应过程中,通过添加不同的催化剂,使得反应更易进行,时间更短,耗能更少,产品质量更好。 1.1 水杨酸与醋酸酐法加入氧化钙或氧化锌 美国专利局2001年8月公开了Handal-Vega等人的“阿司匹林工业生产合成方法”的发明专利,该专利提出了一个水杨酸和醋酐合成阿司匹林的新方法:在水杨酸和醋酐反应中按一定比例加入氧化钙或氧化锌,得到一种乙酰水杨酸和醋酸钙或醋酸锌以及最大为2%游离水杨酸的混合物。此反应十分快速,属于放热反应,也是一锅反应,且无污染物,不需要排放残渣酸,也不需要任何有机溶剂,产物不需要再结晶。因产物是固体,合成完成后可以马上和普通药物制剂辅料混合压片,成阿司匹林片。 1.2 用一水硫酸氢钠作催化剂 肖新荣等人在《精细化工中间体》杂志上发表文章认为,水杨酸乙酸酐反应合成阿司匹林中,用一水硫酸氢钠为催化剂,反应时间约40分钟,反应温度80~90C,收率约为86.7%。硫酸氢钠为一价廉易得,使用安全的物质,其催化合成阿司匹林效果较好,因其难溶于有机溶剂,易于分离回收重用。

吡啶

吡啶 汉语拼音:bǐdìng 英文名称:pyridine 中文名称2:氮(杂)苯 CAS No.:110-86-1 分子式:C5H5N 分子量:79.10 吡啶是含有一个氮杂原子的六元杂环化合物。可以看做苯分子中的一个(CH)被N取代的化合物,故又称氮苯。 吡啶及其同系物存在于骨焦油、煤焦油、煤气、页岩油、石油中。 [编辑本段]物理性质 外观与性状:无色或微黄色液体,有恶臭。 熔点(℃):-41.6 沸点(℃):115.3 相对密度(水=1):0.9827 折射率:1.5067(25℃) 相对蒸气密度(空气=1):2.73 饱和蒸气压(kPa): 1.33/13.2℃ 闪点(℃):17 引燃温度(℃):482 爆炸上限%(V/V):12.4 爆炸下限%(V/V): 1.7 溶解性:溶于水、醇、醚等多数有机溶剂。 与水形成共沸混合物,沸点92~93℃。(工业上利用这个性质来纯化吡啶。) [编辑本段]化学性质 吡啶及其衍生物比苯稳定,其反应性与硝基苯类似。典型的芳香族亲电取代反应发生在3、5位上,但反应性比苯低,一般不易发生硝化、卤化、磺化等反应。吡啶是一个弱的三级胺,在乙醇溶液内能与多种酸(如苦味酸或高氯酸等)形成不溶于水的盐。工业上使用的吡啶,约含1%的2-甲基吡啶,因此可以利用成盐性质的差别,把它和它的同系物分离。吡啶还能与多种金属离子形成结晶形的络合物。吡啶比苯容易还原,如在金属钠和乙醇的作用下还原成六氢吡啶(或称哌啶)。吡啶与过氧化氢反应,易被氧化成N-氧化吡啶。 [编辑本段]用途 除作溶剂外,吡啶在工业上还可用作变性剂、助染剂,以及合成一系列产品(包括药品、消毒剂、染料、食品调味料、粘合剂、炸药等)的起始物。 吡啶还可以用做催化剂,但用量不可过多,否则影响产品质量。 [编辑本段]来源(合成方法) 吡啶可从天然煤焦油中获得,也可由乙醛和氨制得。吡啶及其衍生物也可通过多种方法合成,其中应用最广的是汉奇吡啶合成法,这是用两分子的β-羰基化合物,如乙酰乙酸乙酯与一分子乙醛缩合,产物再与一分子的乙酰乙酸乙酯和氨缩合形成二氢吡啶化合物,然后用氧化剂(如亚硝酸)脱氢,再水解失羧即得吡啶衍生物。 也可用乙炔、氨和甲醇在500℃通过催化剂制备。 [编辑本段]衍生物 吡啶的许多衍生物是重要的药物,有些是维生素或酶的重要组成部分。吡啶的衍生物异烟肼是一种抗结核病药,2-甲基-5-乙烯基吡啶是合成橡胶的原料。 中文名称:吡啶 [编辑本段]危险信息及使用注意事项(MSDS) 燃爆危险:本品易燃,具强刺激性。 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热极易燃烧爆炸。与氧化剂接触猛烈反应。高温时分解,释出剧毒的氮氧化物气体。与硫酸、硝酸、铬酸、发烟硫酸、氯磺酸、顺丁烯二酸酐、高氯酸银等剧烈反应,有爆炸危险。流速过快,容易产生和积聚静电。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高热,容器内压增大,有开裂和爆炸的危险。燃烧(分解)产物:一氧化碳、二氧化碳、氧化氮。 吡啶的危害:

吡啶的合成方法

吡啶的合成方法 1.hantzsch合成 用两分子β-酮酸酯,一分子醛基及氨作原料经多分子环化成吡啶 例如 One-Pot Synthesis of 1,4-Dihydropyridines via a Phenylboronic Acid Catalyzed Hantzsch Three-Component Reaction Efficient Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives in Aqueous Micelles A. Kumar, R. A. Maurya, Synlett, 2008, 883-885. A. Debache, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Synlett, 2008, 509-512. Yb(OTf)3 catalyzed an efficient, operationally simple and environmentally benign Hantzsch reaction via a four-component coupling reaction of aldehydes, dimedone, ethyl acetoacetate and ammonium acetate at ambient temperature to yield polyhydroquinoline derivatives in excellent yield. L.-M. Wang, J. Sheng, L. Zhang, J.-W. Han, Z.-Y. Fan, H. Tian, C.-T. Qian, Tetrahedron, 2005, 61, 1539-1543.

吡啶的生产工艺与技术路线的选择

吡啶的生产工艺与技术路线的选择 在吡啶类化合物中,最早被发现的是2-甲基吡啶。1946年,英国Anderson 自煤焦油中分离得到;1951年Anderson从骨油中分离得到吡啶并做了鉴定。 但煤焦油中分离吡啶量有限,产量少,组分复杂,随着世界能源结构发展,以油代煤的变化,从煤焦油中分离提取吡啶的方法已不适应大批量工业化生产,逐步被化学合成法淘汰。 2.1 焦油法生产粗轻吡啶 吡啶以往主要从煤焦油中提取,我国部分焦化厂以氨气中和法从饱和器母液中生产粗轻吡啶,见下图:..…. 2.2 化学合成法生产吡啶 吡啶以往主要从煤焦油中提取,现在主要由化学合成法获取。 化学合成的生产工艺是一步合成,分步分离、精制。 化学合成法生产吡啶,产品不仅仅是单一的吡啶,而是一个混合物,其组成依技术、反应条件及添加剂有所不同。..…. 2.2.1 醛(酮)-氨法合成烷基吡啶 此法自20世纪50年代工业化以来,因原料价廉易得、可以根据市场需求调整合成路线、生产多种产品而一直是热门的研究课题。..…. 我国红太阳集团有限公司吡啶合成工艺技术考虑下游产品发展及吡啶衍生物在国内市场的需求情况,工艺采用乙醛+甲醛--氨合成工艺技术,以吡啶和3-甲基吡啶为主要产品。..….

2.2.2 醛(酮)-烯腈法合成烷基吡啶 该法主要以不饱和烃为原料生产烷基吡啶,乙烯和乙腈在(Me4N2CoB10H12)2 催化剂作用下,可得2-甲基吡啶,产率18%。..…. 2.3 吡啶生产方法研究及相关专利 我国在吡啶及下游产品开发方面也取得一些新的成果。 东南大学从事吡啶的合成技术研究,1996年获得成功的一项新工艺投产后,为我国开发二类新药奥兰啦唑提供原料,..….2009年09月08日沙隆达集团公司 申请了“一种合成吡啶与甲基吡啶的方法及装置”专利,见下表: 表2.5 一种合成吡啶与甲基吡啶的方法及装置专利表 申请专利号200910063901 专利申请日2009/09/08 名称一种合成吡啶与甲基吡啶的方法及装置 申请(专利权)沙隆达集团公司 地址湖北省荆州市北京东路93号 发明(设计)人殷宏;王正国;薛光才;艾秋红;马安兵;向维德;李新年;杨浩斌;刘孝平;廖艳;张诗忠 摘要 本发明涉及一种中间体的制备方法,具体地说是一种合成吡啶与甲基吡啶的方法及装置。它是以氨、甲醛、乙醛为原料,在催化剂的作用下,原料气经气体分布板后,首先进入流化床反应器,从流化床反应器出来的气体,经扩大段后不经旋风分离器直接进入固定床反应器中反应得到吡啶。本发明具有催化剂可连续补充,反应周期长,吡啶收率高的优点。 主权项 一种合成吡啶与甲基吡啶的方法,它是以氨、甲醛、乙醛为原料,在催化剂的作用下,原料气经气体分布板后,首先进入流化床反应器,从流化床反应器出来的气体,经扩大段后不经旋风分离器直接进入固定床反应器中反应得到吡啶。 详细内容参见六鉴网(https://www.sodocs.net/doc/df1408797.html,)发布《吡啶技术与市场调研报告》。

阿司匹林的制备流程

阿司匹林(Aspirin)又名乙酰水杨酸(Acetylsalicylic acid),化学名.(/乙酰氧基)苯甲酸,系白色结晶或结晶性粉末,熔点135-140℃,无臭或略带醋酸味,水中微溶,乙醇中易溶,氯仿或乙醚中溶解,遇湿气缓慢水解生成水杨酸,具弱酸性,最稳定ph值2.5。阿司匹林可由水杨酸(邻羟基苯甲酸)与乙酸酐经酰化制得。在生成阿斯匹林的同时,水杨酸分子之间发生缩合反应,生成少量的聚合物。副产物不溶于碳酸氢钠溶液,由此可提纯阿斯匹林。实验过程中,阿斯匹林产量少,并且不易结晶析出,常常须采用摩擦杯壁、加入晶种、浓缩溶液等办法才析出晶体,实验现象成功率低,同时需要较长的处理及静置时间。 阿司匹林的制备 实验室制备阿司匹林 本实验以浓硫酸为催化剂,使水杨酸与乙酸酐发生酰化反应,制取阿斯匹林。由于水杨酸中的羟基和羧基能形成分子内氢键,反应必须加热到150~160℃。不过,加入少量的浓硫酸或浓磷酸过氧酸等来破坏氢键,反应温度也可降到60~80℃,而且副产物也会有所减少。原理如下: 水杨酸在酸性条件下受热,还可发生缩合反应,生成少量聚合物: 酰化反应 在100 mL干燥的园底烧瓶中加入4 g水杨酸、10 mL乙酸酐和10滴浓硫酸,采用搅拌使水杨酸尽量溶解,然后在水浴上加热,水杨酸立即溶解。如不全溶解,则需补加浓硫酸和乙酰酐。保持锥形瓶内温度在70℃左右。安装回流装置水浴加热,控制温度在80~85℃,同时保持低速匀速搅拌, 20 min后停止加热。反应液稍微冷(50℃以下)却缓慢加入15 mL冰水用来水解过量的乙酸酐,冷却至室温,再将反应液倒入50mL冰水的锥形瓶,即有乙酰水杨酸析出,将锥形瓶置于冰水浴中冷却,使结晶完全析出。 产品的提纯 减压过滤:用滤液淋洗锥形瓶,直至所有晶体被收集到布氏漏斗,每次用少量冷水洗涤结晶3次,减压过滤,即得到粗产物。产品重结晶:将粗产物转移至烧杯,在搅拌下加入饱和碳酸氢钠溶液,直至无二氧化碳产生。减压过滤,用少量水冲洗漏斗,除去少量的白色聚合物,合并滤液,倒入预

吡啶类化合物的应用举例

吡啶类化合物的应用举例 吡啶类化合物作为化学工业,特别是精细化工的重要原料,应用范围很广,涉及医药中间体、医药制品、农药、农药中间体、饲料和饲料原料及其它多项领域。以下举例几种比较常见的吡啶类化合物。 3-甲基吡啶 3-甲基吡啶是最重要、也是应用最为广泛的吡啶衍生物产品。3-甲基吡啶既是合成吡啶类香料的重要中间体,又是制备吡啶类农药的重要中间体,同时,也是合成抗糙皮病的维生素、烟酸、烟酰胺等的原料,亦可作溶剂、酒精变性剂、染料和树脂中间体,用来生产橡胶硫化促进剂、防水剂和胶片感光剂添加物等。 3 -甲基吡啶的合成方法在工业化合成法出现以前,3-甲基吡啶主要从煤焦油中获得。以煤焦油中的粗吡啶先脱渣得水吡啶,然后在填料塔内常压蒸馏,并用纯苯与水共沸蒸馏脱水,截取138℃~145℃馏分,可得纯度约95%的3 -甲基吡啶。由于焦化副产物中吡啶组分多、分离困难,产品产率不高,提取装置复杂,现已基本被合成法所替代。 以丙烯醛和氨为原料这是古老的制备3 -甲基吡啶的方法,早在1970 年John 等申请了专利,Helmut Beschke等采用由氧化铝、硝酸镁、氟化氢铵制备的催化剂,此催化剂中铝、镁、氟的原子比例是1000: 50:100,采用流化床反应器,反应过程中通入氮气作为稀释剂,对3 -甲基吡啶的催化选择性较高,收率达到48.5%,同时副产24.8%的吡啶。也有专利报道此方法合成3 -甲基吡啶收率可达66%。 乙醛与氨催化合成3-甲基吡啶时, 得到主要含3-甲基吡啶和4-甲基吡啶的混合物, 两者比例约为3:1.由于它们沸点接近, 性质相似, 用普通精馏法或其它分离方法如结晶、溶剂萃取等, 很难使二者得到经济有效的分离.采用对甲基苯磺酸为萃取剂可以明显提高萃取效率。 2 , 3一二氯吡啶: 2 , 3一二氯吡啶是重要的精细化工中间体泛应用于医药与农药研究领域"它是新型杀虫剂氯虫苯甲酞胺与H G w 86 的关键中间体. 2 , 3 , 6一三氯吡啶还原法3 是2 , 3一二氯吡啶较早的一种合成方法, 以3一氯吡啶为起始原料合成2 , 3一二氯吡啶的文献报道较多, 主要有两条路线: 以乙酞次氟酸为试剂, 3一氯吡啶生成具有N 一F 键的一对共振体, 然后脱去H F 、二氯甲烷氯化, 选择性的生成2 ,3一二氯吡啶, 收率80 % 。该法由于吡啶3 位活性不够强, 亲电取代不易进行, 原料3一氯吡啶价格较高, 不宜工业化开发。 以2一氯一3一氨基吡啶为起始原料合成2 , 3一二氯吡啶的方法其实是上面方法的一部分, 区别在于起始原料的不同"该合成法主要包括两步反应: 2-氯一3一氨基吡啶首先进行重氮化反应, 然后发生Sandmeyer 氯代反应得到2 , 3一二氯吡啶。反应试剂便宜易得, 适宜于工业化生产" 4一二甲氨基吡啶: 用吡啶催化轻基化合物与酸配的反应, 是一种温和而可靠的酞化反应, 但是, 对于空间位阻较大的醇类的反应, 则酞化难于进行, 产率较低。1967 年,Litvinenk。和Kirichenk。在间氯苯胺的苯甲酞化的动力学研究中发现, 用4一二甲氨基吡啶(简称DMAP ) 代替吡啶时, 反应速率大大增加。 D M A P 的酞化催化作用之所以胜于吡啶和三乙胺等, 这是因为D M A P 亲核性极强,并且在非极性溶剂中与亲核试剂形成浓度很高的N 一酞基一4 二甲氨基吡啶盐。同时, 此盐分

阿司匹林合成论文

阿司匹林的合成 殷XX 化工学院应用化学(精细化工方向)(1)班(学号:xxxxxx) 摘要:阿司匹林诞生以后,用来治疗感冒发热、风湿关节疼痛,十分有效,因此很快就成为广泛应用的药。为了对阿司匹林有更进一步的了解,本文用硫酸、磷酸作为催化剂,以水杨酸和乙酸酐为原料合成乙酰水杨酸,探讨催化剂对乙酰水杨酸合成产率有什么样的影响,并进一步重结晶、抽滤等基本操作,进而了解乙酰水杨酸的应用价值。 关键词:阿司匹林、催化剂、硫酸、磷酸、合成 1.引言: 1.1阿司匹林的简介 中文名称:阿斯匹林(解热镇痛药)阿司匹林(退热药) 中文俗名:醋柳酸、巴米尔、力爽、塞宁、东青等 英文名称:Aspirin 化学普通命名法:乙酰水杨酸,acetylsalicylic acid 化学系统命名法:2-(乙酰氧基)苯甲酸 分子量:138.12 结构式: 密度: 1.35g/cm3 性质: 白色针状或结晶性粉末,无臭、略有酸味。在干燥空气中稳定,遇潮会缓缓水解为水杨酸和醋酸。微溶于水,溶于乙醇、乙醚、氯仿;在沸水中分解, 在氢氧化钠和碳酸钠溶液中溶解并分解。 1.2 阿司匹林的用途 阿司匹林是使用最多、使用时间最长的解热、镇痛和消炎药物,能抑制体温调节中枢的前列腺素合成酶,使前列腺素的合成、释放减少,从而恢复体温中枢的正常反应性,使外周

血管扩张并排汗,从而使体温恢复正常。适用于解热、减轻中度疼痛,如关节痛、神经痛、肌肉痛、头痛、偏头痛、痛经、牙痛、咽喉痛、感冒及流感症状。 同时,阿司匹林也可以抑制血小板聚集,用于预防和治疗缺血性心脏病、心绞痛、心肺梗塞、脑血栓形成,应用于血管形成术及旁路移植术也有效。 1.3 合成方法 通常阿司匹林用乙酸酐作酰化剂将水杨酸酰化而得,而选用的催化剂不同,对其合成产品的后处理、质量、产率、成本有着重要的影响。其反应是如下:

除草剂的作用机理

除草剂的作用机理 2003-03-15 16:08:00 来源: 除草剂被植物根、芽吸收后,作用于特定位点,干扰植物的生理、生化代谢反应,导致植物生长受抑制或死亡。除草剂对植物的影响分初生作用和次生作用。初生作用是指除草剂对植物生理生化反应的最早影响,即在除草剂处理初期对靶标酶或蛋白质的直接作用。由于初生作用而导致的连锁反应,进一步影响到植物的其它生理生化代谢,被称着次生作用。 (一)抑制光合作用 光合作用包括光反应和暗反应。在光反应中,通过电子传递链将光能转化成化学能储藏在ATP;在暗反应中,利用光反应获得的能量,通过Calvin-Benson途径(C3植物)或 Hatch-Slack-KortschaK途径(C4植物)将CO2还原成碳水化合物。除草剂主要通过以下途径来抑制光合作用:抑制光合电子传递链、分流光合电子传递链的电子、抑制光合磷酸化、抑制色素的合成和抑制水光解。 1.抑制光合电子传递链 约有30%的除草剂是光合电子传递抑制剂,如三氮苯类、取代脲类、尿嘧啶类、双氨基甲酸酯类、酰胺类、二苯醚类、二硝基苯胺类。作用位点在光合系统II和光合系统I之间,即QA和PQ之间的电子传递体B蛋白,除草剂与该蛋白结合后,改变它的结构,抑制电子从QA 传递到PQ,使得光合系统处于过度的激发态,能量溢出到氧或其它邻近的分子,发生光氧化作用,最终导致毒害。 2.分流光合电子传递链的电子 联吡啶类除草剂百草枯和敌草快等是光合电子传递链分流剂。它们作用于光合系统I,截获电子传递链中的电子,而被还原,阻止铁氧化还原蛋白的还原即其后的反应。这类除草剂杀死植物并不是直接由于截获光合系统I的电子造成的,而是由于还原态的百草枯和敌草快自动氧化过程中产生过氧根阴离子导致生物膜中未饱和脂肪酸产生过氧化作用,破坏生物膜的半透性,造成细胞的死亡。 3.抑制光合磷酸化 到目前为止,还没有商品化的除草剂的初生作用是直接抑制光合磷酸化的。但有些电子传递抑制剂如二苯醚类、联吡啶类和敌稗等,在高浓度下也能抑制光合磷酸化,使得ATP合成停止。光合磷酸化抑制剂,也叫解偶联剂。 4.抑制色素生物合成 在类囊体膜上,有大量的叶绿素和类胡萝卜素。这两类色素紧密相连,前者收集光能,后者则保护前者免受氧化作用的破坏。抑制这两类色素中任何一种的合成,将导致植物出现白化现象。有多种除草剂如吡氟酰草胺、氟啶草酮、苯草酮、苄胺灵、广灭灵抑制类胡萝卜素生

吡啶的合成方法

吡啶的合成方法 合成 用两分子β-酮酸酯,一分子醛基及氨作原料经多分子环化成吡啶 例如 One-Pot Synthesis of 1,4-Dihydropyridines via a Phenylboronic Acid Catalyzed Hantzsch Three-Component Reaction Efficient Synthesis of Hantzsch Esters and Polyhydroquinoline Derivatives in Aqueous Micelles A. Kumar, R. A. Maurya, Synlett, 2008, 883-885. A. Debache, R. Boulcina, A. Belfaitah, S. Rhouati, B. Carboni, Synlett, 2008, 509-512. Yb(OTf)3 catalyzed an efficient, operationally simple and environmentally benign Hantzsch reaction via a four-component coupling reaction of aldehydes, dimedone, ethyl acetoacetate and ammonium acetate at ambient temperature to yield polyhydroquinoline derivatives in excellent yield. . Wang, J. Sheng, L. Zhang, . Han, . Fan, H. Tian, . Qian, Tetrahedron, 2005, 61, 1539-1543.

阿司匹林的合成工艺改进之理论知识(二)

阿司匹林的合成工艺改进之理论知识(二) *阿司匹林合成催化剂 催化剂种类 催化剂 收率 催化剂优缺点 AlCl3 72.6% BiCl3 68.3% 消除了环境污染,产品质量较好,但收率中等 三氯稀土 85.5% 其优点在于反应催化剂重复利用3 次,产率不变,但 较贵的价格是其缺点。 活性二氧化 锡固体酸 81.6% 活性二氧化锡性质稳定,操作安全,所得产品容易分 离,回收的二氧化锡除去少量杂质可重复使用。 对甲苯磺酸 94.4% 为固体有机酸,经济易得,污染少,收率高,操作方 便,具有较好的工业化前景。 酸性无机盐 NaH2PO4 76% 酸性无机盐 NaHSO4 87% 酸性无机盐较温和,用量少,不腐蚀设备,反应过程 以固相存在,反应完毕经热过滤即可与产品分离,符合绿 色化学要求。 酸性催化剂 酸性活化膨 润土 90.4% 收率高,催化剂可反复使用,成本低,不污染环境, 是一种绿色催化剂。但酸性膨润土需要一个制备过程。 氢氧化钾 90% 产品中过敏性物质含量减少且产品收率高。 无水碳酸钠 71% 减小了对设备的腐蚀和对环境的污染。 吡啶 80.2% 催化效果优良,收率高,适合工业化生产,但较易吸 水形成共沸物,使反应温度较难控制,且反应中产生难闻 的气味。 醋酸钠 81.9% 碱性催化剂 苯甲酸钠 82.8% 催化活性高,反应安全,后处理简单,是一类较好的 环境友好催化剂。 其它催化剂 维生素C 87% 反应速度快,操作简单,催化剂无需回收,反应条件 温和,不腐蚀仪器设备,对环境无污染。 *固体有机化合物的提纯精制方法 (1)重结晶技术 晶体产品所含有的少量杂质、 或由合成法制得的晶体产品所含有的少量反应副产物和未 作用的原料等可借适当的溶剂进行重结晶来除去。 重结晶的原理是利用晶体化合物在溶剂中 的溶解度一般是随温度升高而增大,因此利用溶剂对被提纯物质及杂质的溶解度不同,将被 提纯物质溶解在热的溶剂中达到饱和,那么冷却时由于溶解度的降低,溶液变成过饱和而使 被提纯物质从溶液中析出结晶, 让杂质全部或大部分仍留在溶液中(或杂质在热溶液中不溶 而趁热过滤除去),从而达到提纯的目的。 一般重结晶只适用于提纯杂质含量在 5%以下的晶体化合物,所以从反应粗产物直接重 结晶是不适宜的, 必须先采用其它方法进行初步提纯,例如萃取, 水蒸汽蒸馏,减压蒸馏等, 然后再进行重结晶提纯。

阿司匹林制备中催化剂的比较研究(综述)

阿司匹林制备中催化剂的比较研究 【摘要】阿司匹林是一种常用的药物, 从催化剂和合成技术方面对阿司匹林生产工艺的改进作了简要综述。评价了各种工艺的优缺点, 认为对甲苯磺酸、硫酸氢钠、苯甲酸钠和维生素C等可望成为较好的能取代液体浓硫酸并对环境友好的固体酸催化剂。 【关键词】阿司匹林; 催化剂; 绿色合成; 酯化 阿司匹林也叫乙酰水杨酸,是一种历史悠久的解热镇痛药,诞生于1899年3月6日。用于治感冒、发热、头痛、牙痛、关节痛、风湿病,还能抑制血小板聚集,用于预防和治疗缺血性心脏病、心绞痛、心肺梗塞、脑血栓形成,也可提高植物的出芽率[1],应用于血管形成术及旁路移植术也有效。临床上用于预防心脑血管疾病的发作。阿司匹林(Aspirin)是临床应用近百年的解热镇痛药,经典制备方法是用乙酸酐或乙酰氯在硫酸催化下对水杨酸酰化制得[2]。其生产工艺的突破、优选高效价廉的催化剂以及采用先进合成技术是关键。 1 催化剂改进研究 阿司匹林的合成原理是在催化剂作用下, 以醋酐为酰化剂, 与水杨酸羟基酰化成酯。传统的合成阿司匹林的催化剂为浓硫酸, 它存在如下缺点:1)收率较低(65%~ 70% ), 腐蚀设备, 有排酸污染。2)操作条件要求严格。浓硫酸具有强氧化性, 反应要严格控制其加入速度和搅拌速度, 否则会导致反应物碳化。3) 粗产品干燥时, 由于硫酸分离不完全而导致部分产品氧化, 引起产品成色不好。4)产品不能加热干燥, 否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸已成为人们研究的新课题。综合文献分析可知, 改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 1. 1 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基,即完成乙酰水杨酸的合成。催化剂酸性越强,氢质子流动性越好,越易于催化酯基的生成,但在乙酰水杨酸的合成中,催化剂酸性太强,也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础,人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究,取得了可喜成果。酸性催化剂包括路易斯酸、固体酸、有机酸、酸性无机盐、酸性膨润土等。 1.1.1膨润土是以蒙脱石为主要矿物成分的非金属矿产资源,具备二维通道和大孔分子筛的性质,用酸处理后所得的酸性膨润土催化酯化反应最大优点是收率高,催化剂经热过滤与产品分离后,再经干燥、净化、活化处理,可反复使用,成本低,不污染环境,是一种绿色催化剂。该方法消除了环境污染,产品质量但收率中等[3]。 1.1.2对甲苯磺酸为固体有机酸,经济易得、污染少、收率高、操作方便,具有较好的工业化前景。对甲苯磺酸具有催化活性高,选择性好,操作方便,污染少等显著优点。 1.1.3活性二氧化锡性质稳定,操作安全,所得产品容易分离,回收的二氧化锡除去少量杂质可重复使用[4]。 1.1.4 NaHSO4催化通过正交实验,其催化合成乙酰水杨酸的产率与浓硫酸相当。用硫酸氢钾催化合成乙酰水杨酸,具有催化剂在反应过程保持固态,反应完毕经热过滤即可与产品分离、不溶于反应体系、易回收等特点,克服了浓硫酸对设备的强腐蚀性、对环境的污染等缺点,符合绿色化学的发展方向,具有工业应用的前景[5]。 1.2碱性化合物 碱性化合物为催化剂基于碱性化合物能与水杨酸反应、能破坏水杨酸分子内氢键、活化水杨

吡啶材料介绍

吡啶及其衍生物是目前杂环类化合物中开发应用范围最多的品种之一,是重要的精细化工原料,主要广泛应用在农药、医药、染料、日用化工、香料、饲料添加剂、橡胶助剂等领域。近几年全世界发展低毒农药迅速,吡啶及其衍生物在高效低毒杀虫剂、除草剂、杀菌剂等方面应用量迅速扩大,在医药和饲料业也有大量需求。 吡啶系列产品主要包括纯吡啶和合成产生的低碳烷基取代物3-甲基吡啶、2-甲基吡啶和4-甲基吡啶,主要用做下述三类衍生物的生产原料:百草枯、杀草快和敌草快等除草剂、烟酸、烟酰胺、农药中间体三氯代吡啶。 纯吡啶是重要的溶剂,可用于制造维生素、中枢神经兴奋剂、抗菌素以及一些高效农药和还原染料,其主要应用有: 1)医药:为氟哌酸,维生素A、D2、D3,头孢4号、心脑血管用药、抗动脉硬化剂等40余种常用药的合成原料。 2)农药:用作高效除草剂百草枯、杀草快、敌草快、吡氟禾草灵,高效杀虫剂氯氟脲(定虫隆,兼有杀虫和不育功能,对人体无害)的合成原料。 3)染料:合成可溶性还原紫14R等10个品种及活性翠蓝KN-G、阳离子艳黄10GFF等。 3-甲基吡啶既是合成吡啶类香料的重要中间体,又是制备吡啶类农药的重要中间体,也可用来生产合成吡氟禾草灵(稳杀得)的关键中间体2-氯-5-三氟甲基吡啶。稳杀得是用来防治稗科杂草的选择性芽后除草剂,适用于大豆、棉花、油菜等大田作物。美国、日本等国已将它提升为除草剂的骨干品种;3-甲基吡啶还可作溶剂、酒精变性剂、染料和树脂中间体,用来生产橡胶硫化促进剂、防水剂和胶片感光剂添加物等。 在医药行业中, 3-甲基吡啶用于合成烟酸、烟酰胺、兰索拉唑、维生素B、尼可拉明和强心药等。兰索拉唑主要用于食管炎和十二指肠溃疡的短期治疗,与奥美拉唑相比,兰索拉唑具有更好的疗效、较少的副作用和更强的稳定性。 我国幅员辽阔,拥有耕地面积近15亿亩,播种面积为23.4亿亩次,根据我国农业发展和农药行业现状,“十二五”期间我国农药行业发展的指导思想是:深入贯彻落实科学发展观,适应国内外形势新变化,以加快转变农药工业发展方式为主线,以满足国内农业生产需要为主要任务,着力提高农药科技创新能力,调整产品结构,提升质量和档次,优化产业布局,加快农药企业兼并重组,推动产业集聚和升级,切实保护生态环境,保障食品安全,促进农药行业长期平稳健康发展。

二氢吡啶类药物

一、掌握二氢吡啶类药物的基本结构及主要理化性质;结构、性质与分析方法间的 关系,铈量法测定该类药物含量的原理、方法及注意事项。 二、熟悉二氢吡啶类药物的化学鉴别反应及有关物质检查的方法。 三、了解本类药物的其他鉴别试验及含量测定方法,及体内分析中样品的处理方法。 结构 ?苯基-1,4-二氢吡啶的母核 ?1,4-二氢吡啶环和NH基是必需基团,若二氢吡啶环氧化或还原,就会失去活性; ?2,6位多为低级烷基,至少一侧为低级烷基时有利于增加活性; ?3,5位酯基为必要基团,酯基中烷氧基不同时活性不同; 4位为苯环取代,苯环邻位或间位有吸电子基团时活性增强; 典型药物 1硝苯地平Nifedipine 2.尼群地平Nitrendipine

3.苯磺酸氨氯地平Amlodipine Besylate 4.非洛地平Felodipine 4. 5.拉西地平Lacidipine

6.伊拉地平Isradipine 7.尼伐地平Nilvadipine 8.盐酸尼卡地平Nicardipine Hydrochloride 二、主要理化性质

1.二氢吡啶环的还原性 二氢吡啶类药物分子中有二氢吡啶环,具有还原性。 可用氧化还原反应鉴别或氧化还原滴定法进行含量测定。 2.硝基的氧化性 苯环上大多有硝基,硝基具有氧化性,可被还原为芳伯氨基,进一步用重氮化-偶合反应鉴别。 3.二氢吡啶环氨基质子的解离性 与碱作用时,二氢吡啶环1,4-位氢均可发生解离,形成p-π共轭而发生颜色变化,利用该类反应可鉴别本类药物 4.稳定性 光不稳定性:二氢吡啶类化合物遇光极不稳定,易发生光化学歧化作用,因此二氢吡啶类药物的分析应该避光操作,同时应检查引入的特殊杂质。 5.旋光性v 二氢吡啶环的C4位多为手性碳原子,具有旋光性,但是临床药物大多为消旋体。 6.吸收光谱特性 含苯环,在紫外光区有吸收, 具特征红外吸收IR

除草剂

第二章除草剂 概述 第一节除草剂分类(1) 除草剂按作用方式分类 ?1.选择性除草剂除草剂在植物间有选择性,能够杀死某些植物,而对另外一些植物安全。如快杀稗对水稻安全,可杀稗草;使它隆对麦类安全,可杀猪殃殃等阔叶杂草。 ?2.灭生性除草剂该类除草剂在不同植物间没有选择性,即对所有植物均有毒害或有抑制作用。如农达(草甘磷)、克芜踪(百草枯)等。 一、除草剂分类(2) 按除草剂在植物体内的输导性能分类 ?内吸性除草剂除草剂被植物根、茎、叶吸收后,能够在植物体内传导到其它部位。如快杀稗、使它隆、千金、农达等 ?触杀性除草剂除草剂接触植物后不能在体内传导,只在药剂接触部位起作用。 如克芜踪、虎威、杂草焚等,这类除草剂喷雾时雾化要好,喷洒更要严密、周到。 一、除草剂分类(3) 除草剂按喷洒的目标分类 土壤处理剂除草剂喷洒到土壤表面,封闭土面,能被植物的幼芽、芽鞘、根系吸收,杀死未出土r的萌发的杂草或幼草。如用莠去津、乙草胺、异丙隆等封闭土面。 一般施药要求土壤湿度要大;地面平整、无土块;喷洒要均匀周到,封闭严密。 茎叶处理剂能被除植物的茎叶吸收的除草剂喷洒到杂草茎叶上起杀草作用的除草剂。如使它隆、千金、快杀稗等 一、除草剂分类(4) 除草剂按化学结构分类 ?除草剂可以按其结构划分为不同类别,以便于比较不同类别的除草剂的作用特性。如三嗪类、酰胺类、磺酰脲类等。 常用除草剂的类别(1) ?苯氧羧酸类 2,4-D 2甲4氯 ?苯甲酸类百草敌 ?三氮苯(三嗪类)类莠去津草净津 ?酰胺类乙草胺异丙草胺 ?取代脲类绿麦隆异丙隆 ?氨基甲酸酯类杀草丹禾大壮 ?芳氧苯氧基丙酸酯类精喹禾灵盖草能 ?磺酰脲类苄磺隆苯磺隆 ?咪唑啉酮类普施特灭草喹 常见除草剂类别(2) 环己烯酮类拿捕净收乐通

吡啶类化合物的现状与发展

吡啶类化合物的现状与发展 ?时间:2008-12-19 14:09:00 ?来源:中国化工信息网 吡啶(Pyridine)是苯环上含有一个氮原子取代后所形成的六元杂环化合物,通常将吡啶及其衍生物统称为吡啶碱类,主要包括吡啶、2-甲基吡啶(2-MP)、3-甲基吡啶(3-MP)、4-甲基吡啶(4-MP)和2-甲基-5-乙基吡啶(MEP)。 吡啶类化合物主要用于生产除草剂百草枯(Paraquat)和敌草快(Diquat)、烟酸(Nicotinic acid)/烟酰胺(Niacinamide)及医药和农药的中间体,应用非常广泛,深加工前景相当广阔。 1、吡啶类化合物的生产方法 在吡啶类化合物中,最早被发现的是2-甲基吡啶(2-MP),1946年英国Anderson自煤焦油中分离得到,1951年Anderson从骨油中分离得到吡啶并作了鉴定,但煤焦油分离吡啶量有限,产量少,组分复杂,随着世界能源结构发生以油代煤的变化,这种分离提取方法已不适应大批量工业化生产,逐步淘汰,而由化学合成法取代。工业方法生产吡啶类化合物主要对催化剂进行不断改进,产率已由20世纪50年代的40-50%提高到了80%左右。此外,又出现了以酮、醇、烯烃、炔烃等为原料催化合成吡啶类化合物的方法,但工艺尚不成熟且产率较低。当今,世界上95%的吡啶类化合物仍然是以醛和氨作为原料,经催化合成而得。 1.1化学合成法 化学合成法是目前世界上应用最为广泛的工艺路线,绝大多数合成路线得到的是吡啶类混合物,很难得到单一产物。合成反应的最终产物随着反应条件、实验技术和催化剂的变化而变化。以羰基化合物和氨为原料的合成反应,通常采用固定床或流化床的多相催化法生产。此合成路线的反应原料价廉易得,仅需改变反应原料或原料比就能在同一装置中生产出各种吡啶化合物,有较好的经济效益和社会效益,此路线为国外工业生产采用,见表1。 表1 不同反应物所生成的吡啶化合物

相关主题