搜档网
当前位置:搜档网 › 基于剑桥模型的砂土剪胀模型

基于剑桥模型的砂土剪胀模型

基于剑桥模型的砂土剪胀模型
基于剑桥模型的砂土剪胀模型

剑桥模型

1.剑桥模型(Cam-clay Model ) 剑桥模型是由英国剑桥大学Roscoe 等于1963年提出的,这个模型基于正常固结土和超固结土试样的排水和不排水三轴实验基础上,提出了土体临界状态的概念,并在实验基础上,再引入加工硬化原理和能量方程,提出剑桥模型。这个模型从试验和理论上较好的阐明了土体弹塑性变形特征,尤其考虑了土的塑性体积变形,因而一般认为,剑桥模型的问世,标志着土本构理论发展的新阶段的开始。 (1) 剑桥模型。剑桥模型基于传统塑性位势理论,采用单屈服面和关联流动法则屈服面形式也不是基于大量的实验而提出的假设,而是依据能量理论提出的。 依据能量方程,外力做功dW 一部分转化为弹性能e dW ,另一部分转化为耗散能(或称塑性能)p dW ,因而有 dW =e dW +p dW (1-154) e dW =e e V qd d p γε+' (1-155) p p V p qd d p dW γε+'= (1-156) 剑桥模型中,由各向等压固结实验中回弹曲线确定弹性体积变形 p p d e k d e V ' ' += 1ε (1-157) 式中,k 为膨胀指数,即 p In e '-回弹曲线的斜率。 同时,假设弹性剪切变形为零,即 0=e d γ (1-158) 则弹性能 p d e k p p d k dW e '+=''= 1υ (1-159) 剑桥模型中还建立如下的能量方程,即塑性能等于由于摩擦产生的能量耗散,则有 p p p V d p qd d p γνγε'=+'- (1-160) 式中第一项改用负号,是因为p V d ε取以压为正。代入式(1-161) ?? ? ??==ij p ij p d s d d λεεθθσ (1-161) 并考虑式(1-158),则有 γγγνd p M d p M d p dW p p p '='='= (1-162) 式中,M 为q p '-'平面上的破坏线的斜率,即

清华大学高等土力学复习题完整版

清华大学高等土力学复 习题 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

高等土力学 第一章土的物质构成及分类 1蒙脱石和伊利石晶胞结构相同,但蒙脱石具有较大的胀缩性,为什么? 2用土的结构说明为什么软粘土具有较大流变特性,原生黄土具湿陷性? 3试述非饱和土中水的迁移特征及控制迁移速率的主要因素? 4非饱和土中水的运移规律与饱和土中水的渗透规律有什么不同? 试述非饱和土和饱和土中孔隙水迁移规律的异同点? 5X射线衍射法是怎样分析粘土矿物成份的? 6粘土表面电荷来源有哪几方面利用粘粒表面带电性解释吸着水(结合水)形成机理 7非饱和土中土水势以哪种为主如何测定非饱和土的土水势大小 8非饱和土中的土水势主要由哪个几个部分组成非饱和土中水的迁移速率主要与哪几种因素有关 9请用粘性土的结构解释粘性土具有可塑性而砂土没有可塑性的机理。 10试简明解说土水势的各分量? 11土的结构有哪些基本类型各有何特征 12分散土的主要特征是什么为什么有些粘性土具有分散性 13粘性土主要有哪些性质,它们是如何影响土的力学性质的? 14为什么粘土颗粒具有可塑性、凝聚性等性质,而砂土颗粒却没有这些性质? 15非饱和粘性土和饱和的同种粘性土(初始孔隙比相同)在相同的法向应力作用下压缩,达到稳定的压缩量和需要的时间哪个大,哪个小,为什么? 16粘土的典型结构有哪几种,它们与沉积环境有什么联系,工程性质方面各有何特点? 17粘性土的结构与砂土的结构有什么不同? 18为什么粘性土在外力作用下具有较大流变特性? 19粘土矿物颗粒形状为什么大都为片状或针状,试以蒙脱石的晶体结构为例解释之。 第二章土的本构关系及土工有限元分析 1中主应力对土体强度和变形有什么影响?分别在普通三轴仪上和平面应变仪上做试验,保持σ 3 为常量,增加σ 1-σ 3 所得应力应变关系曲线有何不同所得强度指标是否相同 2屈服面和硬化规律有何关系? 3弹塑性柔度矩阵[C]中的元素应有哪三点特征? 4剑桥弹塑性模型应用了哪些假定欲得到模型参数应做哪些试验 5广义的“硬化”概念是什么什么叫硬化参数 6什么是流动规则什么叫塑性势流动规则有哪两种假定 7弹塑性模型中,为什么要假定某种型式的流动法则,它在确定塑性应变中有何作用?8根据相适应的流动规则,屈服面和塑性应变增量的方向有何特征? 9试解释为什么球应力影响塑性剪应变?

土体内球形空穴扩张及挤土桩沉桩机理研究

土体内球形空穴扩张及挤土桩沉桩机理研究本文主要研究土体内球形空穴扩张问题,静压挤土桩沉桩机理以及它们在工程中的应用。在前人工作的基础上,根据土塑性力学的基本原理,假定土体为均质、各向同性的理想弹塑性体,考虑到土体具有不同于其他材料的剪胀特性,引入了土性参数剪胀角,采用摩尔-库仑屈服函数和不相适应的流动法则首次获得了考虑土体剪胀性的球形扩张问题的解析解,包括球形空穴扩张后周围塑性区范围的大小、空穴扩张总体积变化、总塑性体积变化、总弹性体积变化、塑性区内平均体积应变、塑性体积变化和弹性体积变化,空穴扩张到任一直径时的极限内压力及其周围土体中的应力和位移分布。 分析了土性参数、流动法则及排水条件变化对解的影响,并得出了一些规律性的结论。对挤土桩沉桩机理的研究方面,假定桩身沉入时桩尖处各点均按球形空穴扩张,创造性地提出利用源-源的影像法和Boussinesq解解决用无限体内球形扩张的解答来模拟半无限体中沉桩的问题,同时还考虑了沉桩时桩侧摩阻的影响,获得了挤土桩沉桩后在周围土体内产生的应力场、位移场、孔隙水压力场和土体强度变化规律的分析方法,并和其它方法进行了比较。 研究了土性参数和桩参数变化对应力场和位移场的影响。分析了六个工程实例,分别计算了静力压桩压桩力、静力触探端阻力、单桩和群桩贯入后产生周围土体的水平位移、强度变化规律,理论计算结果与实测值基本一致,说明本文方法的合理性和可靠性,并得出了一系列具有工程实用价值的结论。 在工程应用方面,根据上述理论,本文提出直接利用土性基本参数求得沉桩压力的方法,可有效地选择沉桩或桩基设备并较准确地预估桩基承载力。在此基础上本文进一步推得了用球形空穴扩张时塑性区半径的大小来确定桩基进

土的本构模型综述

土的本构模型综述 1 土本构模型的研究内容 土体是天然地质材料的历史产物。土是一种复杂的多孔材料,在受到外部荷载作用后,其变形具有非线性、流变性、各向异性、剪胀性等特点。为了更好地描述土体的真实力学—变形特性,建立其应力应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即为土体的本构关系。自Roscoe等1958~1963年创建剑桥模型以来,各国学者相继提出了数百个土的本构模型,包括不考虑时间因素的线弹性模型、非线弹性模型、弹塑性模型和考虑时间因素的流变模型等。本文将结合土本构模型的研究进程,综合分析已建立的经典本构模型,指出各种模型的优缺点和适用性,并对土本构模型的未来研究趋势进行展望。 2 土的本构模型的研究进程 早期的土力学中的变形计算主要是基于线弹性理论的。在线弹性模型中,只需两个材料常数即可描述其应力应变关系,即E和v或K和G或λ和μ。其中邓肯张双曲线模型是研究最多、应用最广的非线弹性模型。20世纪50年代末~60年代初,土塑性力学的发展为土的本构模型的研究开辟了一条新的途径。Drucker等(1957年)提出在Mohr-Coulomb锥形屈服面上再加一组帽形屈服面,Roscoe等(1958年~1963年)建立了第一个土的本构模型——剑桥模型,标志着土的本构模型研究新阶段的开始。70年代到80年代,计算机技术的迅速发展推动了非线性力学理论、数值计算方法和土工试验的发展,为在岩土工程中进行非线性、非弹性数值分析提供了可能性,各国学者提出了上百种土的本构模型,包括考虑多重屈服面的弹塑性本构模型和考虑土的变形及内部应力调整的时间效应的粘弹塑性模型。此外,其他本构模型如土的结构性模型、内时本构模型等也是从不同角度描述土本构关系,有的学者则借用神经网络强大的自组织、自学习功能来反演土的本构关系。

中密实砂土的三剪统一剪胀性本构模型及ABAQUS的二次开发

目录 一、学位论文独创性声明 二、学位论文版权使用授权书 摘要........................................................................................................................ I ABSTRACT .......................................................................................................... II 第1章绪论 (1) 1.1研究背景及意义 (1) 1.2研究现状 (2) 1.2.1国外学者对于剪胀性的研究现状 (2) 1.2.2国内学者对于剪胀性的最新研究 (5) 1.2.3 三剪统一强度理论研究现状 (8) 1.2.4 二次开发的研究现状 (9) 1.3本文研究的主要内容 (10) 1.4 本文的创新点 (10) 第2章三剪统一强度理论简介 (12) 2.1概述 (12) 2.2三剪统一强度理论的简介与解析 (12) 2.3 本章小结 (14) 第3章中密实砂土的三剪统一剪胀模型 (15) 3.1概述 (15) 3.2基于剑桥模型的剪胀性砂土本构模型 (15) 3.2.1修正剑桥模型简介 (15) 3.2.2对修正剑桥模型关于剪胀性的修正 (16) 3.2.3状态参量的引入 (16) 3.3对砂土的剪胀性剑桥模型的进一步修正 (18) 3.3.1 三剪统一强度准则表达式转换 (18) 3.3.2 对于破坏应力比进行修正 (20) 3.3.3 修正塑性势函数 (21) 3.3.4 修正屈服函数 (21) 3.3.5 修正硬化参量 (22) 3.4 本章小结 (23) 第4章砂土的三剪统一弹塑性本构关系 (24) 4.1概述 (24) 4.2砂土的三剪统一弹塑性本构模型 (24)

高等土力学课程-CamClay

基于修正剑桥模型模拟理想三轴不排水试验 ——两种积分算法的对比分析(CZQ-SpringGod ) 1、修正剑桥模型 在塑性功中考虑体积塑性应变的影响,根据屈服面一致性原则,假定屈服函数对硬化参数的偏导为0,就获得了以理想三轴不排水试验为基础的修正剑桥模型屈服函数: 2 2 (,)()0c q f p q p p p M =+-= (1) 其中3kk p σ=,ij ij ij s p σδ=-,212ij ij J s s = ,q =M 为临界线斜率,c p 为前期固结压力。 硬化/软化法则: p c v c dp v d p ελκ =- (2) 式中p v ε为体积塑性应变,v 为比体积,λ为正常固结线斜率,κ为回弹线斜率。 由于不排水屈服面推导过程是基于硬化参数c p 偏导为0,也就是说不排水试验中硬化参数同体积塑性应变无关,屈服面不变化,而若引入硬化法则就同屈服面推导过程中的假定矛盾,因此计算时将模型处理为理想塑性模型。 2、显式和隐式两种积分格式 考虑应变增量ε?驱动下,第n 增量步到第n+1增量步之间的应力积分格式。显式积分格式的推导参考文献[1],其中弹塑性矩阵中的塑性硬化模量H=0。 隐式积分格式推导如下: 11()n n n p v v p p K εε++=+?-? (3) 1 11(2)n p n n v c p p ε+++?=Λ?- (4) 12()n n p ij ij ij ij s s G e e +=+?-? (5) 112 3n ij p n ij s e M ++?=Λ (6) 111112(,)()0n n n n n c q f q p p p p M +++++=+-= (7) 在这一组方程中没有硬化规律方程表明为理想塑性,并将式(3)-(7)合并化简得到:

软土本构模型综述

《软土地基》课程论文 学院建工学院 姓名王洋 学号

软土本构模型综述 1 引言 土体具有复杂的变形特征,如剪胀性、各向异性、受应力路径影响等。土体变形的这种复杂性是在复杂受力状态下表现出来的。复杂应力状态存在 6 个应力分量,也有 6 个应变分量。其间的关系是一种多因素物理量与多因素物理量之间的关系,不能由试验直接建立。须在简化条件的试验基础上,做某些假定及合乎规律的推理,从而提出某种计算方法,把应力应变关系推广到复杂应力状态。这种计算方法叫本构模型。 1.1 土的本构模型 发展到现在,土的本构模型数目众多,大致可以分为以下几大类: ( 1) 非线性模型; ( 2) 弹塑性模型; ( 3) 粘弹塑性模型; ( 4) 结构性模型。 对于软土而言,比较适用的一般为弹塑性模型。弹塑性模型是把总的变形分成弹性变形和塑性变形两部分,用虎克定律计算弹性变形部分,用塑性理论来解塑性变形部分。 1.2 变形假定 对于塑性变形,要作三方面的假定: ( 1) 破坏准则和屈服准则; ( 2) 硬化准则; ( 3) 流动法则。 不同的弹塑性模型,这三个假定的具体形式也不同。最常用的弹塑性模型为剑桥模型及其扩展模型。 2 剑桥模型与修正剑桥模型 1958 年,Roscoe 等发现了散粒体材料在孔隙比-平均有效应力-剪应力的三维空间里存在状态面的事实,1963 年,提出了著名的剑桥模型,1968 年,

形成了以状态面理论为基础的剑桥模型的完整理论体系。 Roscoe 等人将“帽子”屈服准则、正交流动准则和加工硬化规律系统地应用于Cam 模型之中,并提出了临界状态线、状态边界面、弹性墙等一系列物理概念,构成了第一个比较完整的土塑性模型。剑桥模型又被称为临界状态模型,是一个非常经典的弹塑性模型,它是第一个全面考虑重塑正常固结或弱超固结粘土的压硬性和剪胀性的模型,标志着土的本构理论发展新阶段的开始。 1968 年,Roscoe 等人在剑桥模型的基础上提出了修正剑桥模型,将原来的屈服面在p',q 平面上修正为椭圆,并认为在状态边界面内土体变形是完全弹性的。在状态边界面内,增加的剪应力虽不产生塑性体积变形,但可产生塑性剪切变形。修正剑桥模型是一种“帽子”型模型,在许多情况下能更好地反映土的变形特性。修正剑桥模型至今仍在工程中广泛应用,是因为它具有很多优点: 形式简单,模型参数少,参数确定方法简单( 只需常规三轴试验即可) ,参数有明确的物理意义,能够很好的反映重塑正常固结或弱超固结粘土的压硬性和剪缩性,因此修正剑桥模型是土力学中比较成熟而且应用广泛的弹塑性本构模型。同时,修正剑桥模型也有一定的局限性: 屈服面只是塑性体积应变的等值面,只采用塑性体积应变作硬化参量,因而没有充分考虑剪切变形; 只能反映土体剪缩,不能反映土体剪胀; 没有考虑土的结构性这一根本内在因素的影响; 假定的弹性墙内加载仍会产生塑性变形等。修正剑桥模型对实际情况进行了一系列假定: ①屈服只与应力球量p 和应力偏量q 两个应力分量有关,与第三应力不变量无关; ②采用塑性体应变硬化规律,以为硬化参数; ③假定塑性变形符合相关联的流动法则,即g( σ) = f( σ) ; ④假定变形消耗的功,即塑性功为: 剑桥模型是当前在土力学领域内应用最广的模型之一,其主要特点有: 基本概念明确; 较好地适宜于正常固结粘土和弱超固结粘土; 仅有3个参数,都可以通过常规三轴试验求出,在岩土工程实际工作中便于推广; 考虑了岩土材料静水压力屈服特性、剪缩性和压硬性。王清等分析了修正剑桥模型的应力应变关系,以其为基础引进了接触单元和杆单元,运用修正合格模型,用有限元程序模拟了

用修正剑桥模型研究超固结土的变形特性

基金项目 作者简介 浙江东阳人博士 教授 主要从事岩土本构理论及其应用研究 用修正剑桥模型研究超固结土的变形特性 徐连民祁德庆 高云开 三峡大学三峡库区地质灾害教育部重点实验室湖北 宜昌同济大学土木工程学院 上海摘要 在原有的塑性体积应变状态量外对修正剑桥模型的屈服函数引入描述超固结黏土变形和强度特性的状态量 通过对各种不同超固结比的三轴压缩和伸长剪切试验结果的验证表明本文改进的三维修正剑桥模型能合理地反映不同超固结比黏土在三轴压缩和伸长条件下的变形及强度特性同时本文预测结果和中井子负荷面模型的预测结果基本 关键词 等发现了散粒体材料在孔隙比平均有效应力 提出了著名的剑桥模型 其一是用光滑的椭圆型屈服函数代替原始剑桥模型 一阶导数不连续的屈服函数 文献用松冈 中井准则 本文进一步尝试用最新三维修正剑桥模型 再通过这个状态量的演化来反映 经过这样扩展后的三维修正剑桥模型不仅可以模拟正常固结 的藤森黏土在平均有效应力一定条件下的三轴压缩和伸长试验结果验证三维修正剑桥模型在各种应力路径下对超固结黏土的变形和强度预测能力 修正剑桥模型 修正剑桥模型也是建立在状态面理论基础上的其所用强度理论为扩张 研究结果将应力空间中的松冈使变换后的松冈中井准则 准则一样的形状准则和修正的剑桥 文献

图 松冈 为第一应力不变量 其中 和 分别为 应力空间中的屈服函数可以表示为 式中 为 为塑性体积应变是该模型 的一个状态量 下面根据子负荷面的研究成果 修正剑桥模型中追加一个反映超固结土变形特性的状 态量 式中 状态量 式中 和 式中 为超固结比的函数 塑性应变速率可以表 示为   式中 为弹性常数 当 应变增量为

考研高等土力学复习

一(b)、《高等土力学》研究的主要内容。 二、与上部结构工程相比,岩土工程的研究和计算分析有什么特点? 三、归纳和分析土的特性。 四、简述土的结构性与成因,比较原状土与重塑土结构性强弱,并说明原因? 五/0、叙述土工试验的目的和意义。 五/1、静三轴试验基本原理(即确定土抗剪强度参数的方法)与优点简介 五/2、叙述土体原位测试(既岩土工程现场试验)的主要用途,并介绍3种原位测试方法 五/3、粘土和砂土的各向异性是由于什么原因引起的?什么是诱发各向异性? 五/4、介绍确定土抗剪强度参数的两种不同方法(包括设备名称),并分析其优缺点? 五/5、什么叫材料的本构关系?在土的本构关系中,土的强度和应力-应变有什么联系? 五/6、什么是加工硬化?什么是加工软化?请绘出他们的典型的应力应变关系曲线。 五/7、渗透破坏的主要类型?渗透变形的主要防治方法? 五/8、沉降计算中通常区分几种沉降分量?它们的机理是什么?按什么原理对它们进行计算? 六、阐述土工参数不确定性的主要来源和产生原因? 七、岩土工程模型试验要尽可能遵守的原则? 八、何谓土的剪胀特性?产生剪胀的原因? 九、影响饱和无粘性土液化的主要因素有哪些?举出4种判断液化的方法。 十、刚性直剪试验的缺点并提出解决建议? 十一、列举一个土工试验在工程应用中的实例,并用土力学理论解释之。 十二、叙述土工试验的目的和意义和岩土工程模型试验要尽可能遵守的原则? 十三、土的本构模型主要可分为哪几类?邓肯-张本构模型的本质?并写出邓肯-张本构模型应力应变表达式,并在应力应变座标轴中表示。 十四、广义地讲,什么是土的本构关系?与其他金属材料比,它有什么变形特征? 十五、在土的弹塑性本构关系中,屈服准则、硬化定理、流动法则起什么作用? 十六、剑桥模型的试验基础及基本假定是什么?说明该模型各参数的意义及确定方法。 十七、给出应变硬化条件下,加载条件。为什么该条件在应变软化条件下不能使用 十八、土的本构模型主要可分为哪几类?何为非关联流动法则?写出基于非关联流动法则的弹塑性本构关系。

excel计算剑桥模型柔性加载

p′q p 0′λκμM V K=p′V/κG= 3(1-2μ)K/2(1+μ)δp′ δq=3δp′ f=q2-M2[p′(p 0′-p′)]δεp e = δp′/K δεq e =δq/3G η=q/p′A=(λ-κ)/(Vp′(M2+η2))δεp p =A*[ (M2-η2)δP′+2ηAδq]δεq p =2Aηδp′+4Aη2δq/(M2-η2)δp 0′=Vp 0′δεp p /(λ-κ) δεp δεq εp εq 10001800.02480.0060.3 1.475 2.037533958 1567351500105151800.02480.0060.3 1.475 2.03753565616457515-169080.000140.000300.000140.000300.000140.00030110301800.02480.0060.3 1.475 2.03753735417240515-158520.000130.000290.000130.000290.000270.00059115451800.02480.0060.3 1.475 2.03753905218024515-142380.000130.000280.000130.000280.000400.00087120601800.02480.0060.3 1.475 2.03754075018808515-120650.000120.000270.000120.000270.000520.00114125751800.02480.0060.3 1.475 2.03754244819591515-93320.000120.000260.000120.000260.000640.00139130901800.02480.0060.3 1.475 2.03754414620375515-60420.000110.000250.000110.000250.000760.001641351051800.02480.0060.3 1.475 2.03754584421159515-21920.000110.000240.000110.000240.000860.001871401201800.02480.0060.3 1.475 2.0375475422194251522170.000110.000230.85710.000020.000160.00089 3.183110.000270.001110.001130.002991451351830.02480.0060.3 1.475 2.0375492402272651561800.000100.000220.93100.000020.000140.00103 2.717540.000240.001250.001370.004231501501860.02480.0060.3 1.475 2.03755093823510515107840.000100.00021 1.00000.000020.000110.00118 2.294260.000210.001390.001580.005631551651880.02480.0060.3 1.475 2.03755263524293515160310.000090.00021 1.06450.000020.000090.00136 1.912790.000190.001570.001770.007201601801900.02480.0060.3 1.475 2.03755433325077515219200.000090.00020 1.12500.000020.000080.00159 1.571190.000170.001790.001940.008991651951920.02480.0060.3 1.475 2.03755603125861515284480.000090.00019 1.18180.000020.000060.00187 1.266690.000150.002060.002090.011051702101930.02480.0060.3 1.475 2.03755772926644515356130.000090.00019 1.23530.000010.000050.002250.996180.000130.002440.002230.013481752251940.02480.0060.3 1.475 2.03755942727428515434130.000080.00018 1.28570.000010.000040.002790.756450.000120.002970.002350.016461802401950.02480.0060.3 1.475 2.03756112528212515518440.000080.00018 1.33330.000010.000030.003650.544400.000110.003830.002450.020281852551950.02480.0060.3 1.475 2.03756282328995515609020.000080.00017 1.37840.000010.000020.005230.357090.000100.005400.002550.025691902701960.02480.0060.3 1.475 2.03756452129779515705850.000080.00017 1.42110.000010.000010.009140.191820.000090.009310.002640.03500195 285 196 0.0248 0.006 0.3 1.475 2.0375 66219 30563 5 15 80889 0.00008 0.00016 1.46150.000010.000000.035740.04614 0.000080.03590 0.00271 0.07090 050 100 150200250 300 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 q εq q-εq 0.0005 0.001 0.0015 0.002 0.0025 0.003 00.010.020.030.040.050.060.070.08 εp εq εp-εq

6.三轴压缩试验(砂土)

六、三轴压缩实验 (一)实验目的 三轴压缩实验是测定土的抗剪强度的一种方法。堤坝填方、路堑、岸坡等是否稳定,挡土墙和建筑物地基是否能承受一定的荷载,都与土的抗剪强度有密切的关系。 (二)实验原理 土的抗剪强度是土体抵抗破坏的极限能力,即土体在各向主应力的作用下,在某一应力面上的剪应力(τ)与法向应力(σ)之比达到某一比值,土体就将沿该面发生剪切破坏。常规的三轴压缩实验是取4个圆柱体试样,分别在其四周施加不同的周围压力(即小主应力)σ3,随后逐渐增加轴向压力(即大主应力)σ1直至破坏为止。根据破坏时的大主应力与小主应力分别绘制莫尔圆,莫尔圆的切线就是剪应力与法向应力的关系曲线。三轴压缩实验适用于测定粘性土和砂性土的总抗剪强度参数和有效抗剪强度参数,可分为不固结不排水实验(UU );固结不排水实验(CU )和固结排水实验(CD )。本演示实验进行干砂的固结不排水实验。 (三)实验设备 1.三轴仪:包括轴向加压系统、压力室、周围压力系统、孔隙压力测量系统和试样变形量测系统等。(如附图1所示) 2.其它:击样器、承膜筒等。 (四)实验步骤 1.试样制备:将橡皮膜下端套在压力室的底座上,放置好成样模具,使橡皮膜紧贴模具内侧;称取一定质量的干砂(烘干冷却),使砂分批通过漏斗落入橡皮膜内,如需制备较密实的砂样,用木锤轻击土样至所需密度。 2.试样安装:装上土样帽,给试样施加一定的负压力,拆除成样模具;使传压活塞与土样帽接触。 3.固结实验:进行两个试样的实验,分别施加100、400Kpa 的周围压力,数据采集系统自动采集试样的体积变形数据。 4.剪切实验:采用应变控制方式进行剪切实验,剪切应变速率取每分钟0.1%~0.5%,实验过程数据采集系统自动采集轴向力和体积变形数据,直至轴向应变为10%时为止。 8.实验结束:停机并卸除周围压力,然后拆除试样,描述试样破坏时形状。 (五)实验注意事项 实验前,橡皮膜要检查是否有漏洞。 (六)计算与绘图 1.试样面积剪切时校正值: 01 1a A A ε=- 式中: ε1—轴向应变(%) 2. 绘制每个实验的轴向应变-偏应力关系曲线,及轴向应变-体应变关系曲线。 3.绘制应力圆及强度包线 以法向应力σ为横坐标,剪应力τ为纵坐标。在横坐标上以(σ1f +σ3f )/2为圆心,(σ1f -σ3f )/2为半径,绘制破坏应力圆,并确定砂土的内摩擦角'φ。 (七)讨论

土力学考题

考题2 一.解释名词或回答问题:(每题4分,共40分) 1.在土的弹塑性模型中, 屈服面和破坏面有何不同和有何联系?. 2‘绘出剑桥模型(Cam-Clay)的物态边界面,并标出临界状态线。 3.解释砂土的临界孔隙比e cr , 一种砂土的e cr 与哪一因素有关? 4.何谓饱和粘土的真强度指标c e 、和φe ?其中哪一个是基本不变的? 5.在实际的一维固结的过程中,三个总主应力之和(σ1+σ2+σ3)=Θ是否为常数?在太沙基的一维固结理论中,是否需要在整个一维固结过程中假设Θ为常数? 6.两相邻的粘土层的土的参数和固结系数不同(分别为 k 1 、 k 2、 m v1、 m v2)如何近似将其按均质土进行一维固结计算? v v w k C m γ= 7.解释何谓非饱和土的基质吸力。 8.在高于和低于土的最优含水量情况下击实到同样干密度的击实粘土,哪一种的渗透系数大些? 9.如何表示土在周期荷载下的动强度?对一种饱和砂土,其在周期荷载下的动强度与哪些因素有关? 10. 饱和砂土的振动液化与哪些土性条件有关? 二.有人用Duncan-Chang 模型与比奥固结理论耦合的有限元程序来分析基坑开挖的应力变形问题。为了反映这种应力路径,用原状的地基土试样进行三轴减压的不排水压缩试验(即σ1=常数,σ3逐渐减少,直到破坏)来确定Duncan-Chang 模型的参数。试验结果表明(σ1-σ3)--ε1之间呈良好的双曲线关系,问是否可以用这组双曲线直接确定模型的切线模量Et 的参数?写出(σ1-σ3)--ε1曲线之切线斜率的数学表达式。(15分) 三.一种砂土的真三轴试验破坏时的结果如下: σ3=300kPa,(σ1-σ3)f =1100kPa, b=(σ2-σ3)/(σ1-σ3)=0.5 试用摩尔-库仑理论、广义Tresca 理论(σ1-σ3=KI 1), 广义Misess 理论 (√J 2=KI 1),Lade-Duncan 理论(I 13/I 3=K f )来计算(或试算)σ3=300kPa 的常规三轴试验情况下(b=0)的(σ1-σ3)f =? 并根据用不同模型计算得到的破坏时的σ1与σ3计算土的内摩擦角φ(15分)。 四.试用水流的连续性原理,达西定律和土骨架的应力与体应变的线弹性关系,推导太沙基-伦多立克的拟三维固结微分方程: 23v u C u t ??=? 其中 33(12) v w kE C γν' = '-

10分钟认识剑桥模型

10分钟认识剑桥模型 王川 第一节:认识“临界状态” 首先,大家一定接受以下两张图(无数实验已经证明过): 图1 摩尔库伦强度理论 图2 土的压实曲线(e为孔隙比,p’为有效应力)那么,如果把τ换成偏应力q(其中q=σ1-σ3),把σ换成平均主应力p(其中p=(σ1+2σ3)/3,p’表示其有效应力),就得到三轴实验中的p-q曲线: 图3 p-q曲线 土样的体积由固体颗粒和空隙组成,由于固体颗粒不可压缩,故土样体积的变化完全取决于空隙的变化,即土样体积v和孔隙率e描述的物理意义等价。那么,将图2中e替换为v,就得到v-logp曲线:

图4 v-logp曲线 与图1和图2一样,图3和图4同样经历了无数实验的验证,属于“事实”。 基于图3和图4的定量分析以及实验观察,可以得出一个结论,这个结论就是临界状态(critical state):无论土样的初始状态和经历的应力路径如何,在剪切的最终阶段,只有剪应变在持续增加,而土样所受的有效应力和体积趋于不变。临界状态由图3和图4同时确定,因此图3和图4中的曲线也叫临界状态线CSL (Critical State Line)。 将临界状态现象翻译成数学语言: (1)体积不变对应于,为p’引起的体积的改变; (2)剪应变在变对应于,为q引起的剪应变; (3)有效应力不变等价于q与p’的比值为常量。若令在一般情况下,有(被叫做应力比),则可以定义临界状态下的应力比:(被叫做临界状态应力比)。从图3中能看出,M为常量,即“有效应力不变”。 ◆第二节:剑桥模型假设 (1)所有的剪应变都不可恢复,即(为弹性剪应变),( 为塑性剪应变)。 (2)假定塑性变性能增量可表示为:(这一假设看不懂没关系,继续往后看)。 (3)相关联流动法则:(与塑性力学中关联流动一致)。 ◆第三节:剑桥模型推导 从能量角度推导屈服函数:

李广信版高等土力学课后习题测验答案第二三四章

第二章 习题与思考题 17、在邓肯-张的非线性双曲线模型中,参数a 、b 、i E 、t E 、13-ult σσ()以及f R 各 代表什么意思? 答:参数i E 代表三轴试验中的起始变形模量,a 代表i E 的倒数;ult )(31σσ-代表双曲 线的渐近线对应的极限偏差应力,b 代表ult )(31σσ-的倒数;t E 为切线变形模量;f R 为破 坏比。 18、饱和粘土的常规三轴固结不排水实验的应力应变关系可以用双曲线模拟,是 否可以用这种实验确定邓肯-张模型的参数?这时泊松比ν为多少?这种模型用 于什么情况的土工数值分析? 答:可以,这时ν=0.49,,用以确定总应力分析时候的邓肯-张模型的参数。 19、是否可以用饱和粘土的常规三轴固结不排水试验来直接确定用有效应力表示 的邓肯-张模型的参数?对于有效应力,上述的131()/d d σσε-是否就是土的切线 模量t E ?用有效应力的广义胡克定律来推导131()/d d σσε-的表达式。 答:不能用饱和粘土的常规三轴固结不排水试验来直接确定用有效应力表示 的邓肯-张模型的参数;在有效应力分析时,邓肯-张模型中的131()/d d σσε-不 再是土的切线模量,而需做以下修正: 131()/=1-(1-2) t t E d d A σσευ- 具体推导如下: ' ' ' 11231231231231=[-(d +d )]1=[(-du)-(d +d -2du)]1=[(-du)-(d +d )-2du)]1=[-(d +d )-(1-2)du)]d d E d E d E d E εσυσσσυσσσυσσυσυσσυ 又由于23=d =0d σσ;且B=1.0时,13=(-)u A σσ?,则:13=(-)du Ad σσ,代入 上式,可得:

土力学名人

Charles Augustin de Coulomb (1736 - 1806) 1736 年 6 月 14 日 生于法国 Angoul , 1806 年 8 月 23 日 卒于法国巴黎。 Coulomb 对土木工程(结构、水力学、岩土工程)以及自然科学和物理学(包括力学、电学和磁学)等都有重要的贡献,如物理学中著名的库仑定律就是他提出的。 1774 年当选为法国科学院院士。 在巴黎期间, Coulomb 为许多建筑的设计和施工提供了帮助,而工程中遇到的问题促使了他对土的研究。 1773 年, Coulomb 向法兰西科学院提交了论文“最大最小原理在某些与建筑有关的静力学问题中的应用”,文中研究了土的抗剪强度,并提出了土的抗剪强度准则(即库仑定律),还对挡土结构上的土压力的确定进行了系统研究,首次提出了主动土压力和被动土压力的概念及其计算方法(即库仑土压理论)。该文在 3 年后的 1776 年由科学院刊出,被认为是古典土力学的基础,他因此也称为“土力学之始祖”。

Henry Philibert Gaspxard Darcy (1803-1858) Henry Darcy 1803 年 6 月 10 日 出生于法国第戎( Dijon )。 Darcy 少年时期正值国内政局动荡,因此其学业也不很稳定。 1821 年, 18 岁的 Darcy 进入巴黎工艺学校( Polytechnic School )学习, 2 年后入巴黎路桥学校( School of Bridges and Roads ),该校属法国帝国路桥工兵团,法国许多世界级的科学家如皮托 (Pitot) 、圣文南( Saint-Venant )、科里奥利 ( Coriolis )、纳维叶( Navier )等都出自该校,其中一些还在该校任教。 Darcy 的一项杰出成就是第戎供水系统的建造。 19 世纪上半叶,大多数城市都没有供水和排水系统,供水依靠马车从城市附近的河流、井、泉运送。 1839 ~ 1840 年, Darcy 设计和主持建造了第戎镇的供水系统,它甚至比巴黎的供水系统早了 20 年。为了感谢 Darcy 对家乡的贡献,人们将该镇的中心广场以他的名字命名。 Darcy 拒绝了镇上欲付给他的高额补偿,他最终得到的好处是他本人及亲属可免费用水。 1856 年, Darcy 在经过大量的试验后,于第戎发表了他对孔隙介质中水流的研究成果,即著名的 Darcy 定律。

完整的土工实验报告书

土工测试 实验报告书 1.分级连续加载条件下的粘性土蠕变试验 2.三轴压缩实验测土的抗剪强度参数 3.Duncan-Chang模型参数的确定 4.通过标准固结试验测固结系数 5.剑桥模型的推导

1分级连续加载条件下的粘性土蠕变试验 实验目的: 通过测定试样在分级连续加载条件下固结引起的变形随时间的变化,分析试样得蠕变特性及相应的模型。 实验器材:(试样采用非饱和的细粒土) 固结容器:由刚性底座、护环、环刀、上环、透水板、加压上盖和密封圈组成。(1)环刀:直径61.8mm,高度20mm,一端有刀刃,应具有一定刚度,内壁应保持较高的光洁度,宜涂一薄层硅脂和聚四氟乙烯。 (2)透水板:由氧化铝或不受腐蚀的金属材料制成。渗透系数应大于试样的渗透系数。试样上部透水板直径宜小于环刀内径0.2~0.5mm,厚度5mm。 (3)变形量测设备:量表,单位为0.1mm。 (4)加荷设备:砝码、杠杆加压设备。 实验步骤: 1.制备土样将土块加水饱和,尽量搅拌至各处含水率均匀,备用。用电子秤秤环刀的 重量。 2.取土样用环刀切取已准备好的土样,用工具沿环刀高度切平土面,去掉多余的土、 用水浸湿,将滤纸盖在土样的两边,再次称量重量。 3.安装土样将环刀和土样一起放入固结盒,在土样上下各放置一块透水石,盖上加压 盖,安装到加载装置上。 4.调平将加压杠杆调平,装好量表,调至零点。 5.分级加载分为4个荷载等级加载:60KPa,120KPa,180KPa,240KPa,分别为并在每 级荷载下记录0s,15s,2min15s,4min,6min15s,9min,12min15s,16min2 20min15s时的量表读数。 6.实验结束清理仪器,整理数据。 数据整理及实验分析: 室内分级加载固结蠕变实验结果如表1及图1所示: 表1 各级荷载下土的应变(mm)

高等土力学

高等土力学课程论文

砂土剪切力学特性的影响因素 前言 砂土是地基土中比较常见的一种土质类型。当上部荷载作用于砂土上时,砂土产生的抵抗其上部荷载的极限抗剪承载力称为砂土的抗剪强度。此时,当砂土内某点由外力引起的剪应力达到砂土的抗剪强度时,砂土就会沿着剪应力作用的方向产生相对滑动,该点便发生剪切破坏。实际工程中,砂土大多是由于受剪而发生破坏,剪切破坏是砂土破坏的一个非常重要的特点。因此,分析砂土剪切力学特性的影响因素,研究砂土抗剪强度的变化规律,可以有效地解决土质边坡稳定性问题,降低工程事故发生的概率,减少工程事故造成的直接、间接危害,保障人民生命财产的安全,对于指导工程施工和建筑物地基基础设计等都具有重要的意义。 本文综合论述了应力路径、颗粒形状、级配、密实度以及不同排水条件等因素对砂土剪切力学特性的影响,分子和总结了在上述各项因素作用下砂土抗剪强度的变化规律和研究现状。 1.砂土抗剪强度理论 土体发生破坏时,将沿着其内部某一剪切面产生相对滑动,该剪切破坏面上的剪应力的极限值就是土的抗剪强度。基于上述原理,法国科学家库伦于 1773 年根据砂土的直接剪切试验,得出了砂土的抗剪强度表达式,即: τf= σtanφ 式中各符号含义如下: τf—砂土的抗剪强度,单位:k Pa σ—剪切破坏面上的法向总应力,单位:k Pa φ—砂土的内摩擦角,单位:° φ取决于土的性质,与土中应力无关。对于同一种砂土,在相同的试验条件下,φ为常数,但是当试验方法不同时,φ的值则有比较大的差异。 2.应力路径的影响 研究不同应力路径条件下的砂土应力应变关系,揭示应力路径对土体力学特性的影响具有重要的学术和实用价值。在确保试样的初始状态、排水条件、加荷速率、实验仪器均一致的前体下,针对不同应力路径条件下的饱和砂土剪胀剪缩特性、有效内摩擦角等剪切特性进行对比分析。 不同应力路径对砂土的应力一应变关系有较大的影响,不同应力路径试验的应力一应变关系曲线可具有完全不同的线型,这些应力路径的应力一应变关系不能完全归一化。因此要想用统一的数学模型来拟合他们就比较困难。而在实际工

剑桥模型推导讲课稿

比容的定义: 1t s v v v v v e v v += ==+ (1) '=-)ln 正常固结线(方程: NCL v N p λ (2) '=-)ln 临界状态线(方程: CSL v p Γλ (3) )ln SL swell v v p κκ'-=-回弹线( line 方程: (4) 注意: 在lnp ’-v 平面上,回弹线SL 尽管穿过了CSL 线,但并不意味等压卸载过程中应力点曾达到CSL 线上,因为此坐标系中CSL 为空间CSL 曲线的投影,而SL 始终在lnp ’-v 平面上,并不能达到空间的CSL 线上的应力状态。 q v 图1 土的物态全界面

无拉力墙 归一化后土的物态全界面 在上图2-34中AR 为卸载回弹线(其方程如式(4)),过其作的竖直曲面,此曲面位于物态全界面(Roscoe 面、 Hvorslev 面及无拉力墙构成)以下的阴影部分,即为一弹性墙,此弹性墙交物态边界面Roscoe 面于AF ,在AR 线上荷载变化时,无塑性体积变化,亦即在弹性墙上,塑性体应变p v 保持为常数。如果选择塑性体应变为硬化参数,那么等塑性体应变面就是屈服面,等塑性体应变线AF 就是屈服轨迹。AF 在p ’-q ’平面上的投影A ’F ’为屈服面在p ’-q ’平面上的屈服轨迹。在图2-35中回弹曲线与比容轴截距代表其塑性比容0p v ,在同一弹性墙上, R

或同一屈服线上,弹性墙的塑性比容0const p p v v ==,也就是说其塑性体应变p v ε为常数。 剑桥模型基于传统塑性位势理论,采用单屈服面和相关联流动法则。屈服面形式(方程) A ’F ’不是基于试验而提出的,上面已根据物理意义在几何上表示出屈服面A ’F ’ ,但还无法用数学表达式表示,剑桥模型是依据能量理论得出的其屈服面方程,实质上是一种假设。 依据能量方程,外力(荷载)做功dW 一部分转化为变形体的弹性变形能e dW (可储存在变形体内,外力或荷载卸除时,可完全释放出来),另一部分转化为耗散能(或称塑性变形能,外力或荷载卸除时,不能再释放出来)p dW ,因而有 e p dW dW dW =+ (5) 两种变形能可表示如下: e e e v s dW p d q d εε''=+ (6) p p p v s dW p d q d εε''=+ (7) 关于弹塑性变形能,Roscoe 作了如下的假设: (1) 假定一切剪切应变都是不可恢复的, 亦即无弹性剪应变, 只有不可恢复的塑性剪应变(总 剪应变等于塑性剪应变) 0e s d ε= (8) p s s d d εε= (9) (2)假定弹性体应变可从各向等压固结试验中所得的回弹曲线求取,即由式(4)可得 e dp dv p κ ' =-' (10) 11e e v dv dp d e e p κε' =-=' ++ (11) 1e e v dW p d dp e κ ε''== + (12) 故: 1p e v v v v dp d d d d e p κεεεε' =-=- ' + (13) (3)假定全部耗散能(塑性变形能)等于由摩擦产生的能量耗散, 即: p p p s s dW p d Mp d μεε''== (14) 式中 μ为内摩擦系数, 其值等于p ’-q ’平面上临界状态线CSL 的斜率M

相关主题