搜档网
当前位置:搜档网 › 高考数学压轴专题人教版备战高考《三角函数与解三角形》解析

高考数学压轴专题人教版备战高考《三角函数与解三角形》解析

高考数学压轴专题人教版备战高考《三角函数与解三角形》解析
高考数学压轴专题人教版备战高考《三角函数与解三角形》解析

高考数学《三角函数与解三角形》练习题

一、选择题

1.已知函数()sin (0)f x x x ωωω=+>的图象关于直线8

x π=对称,则ω的最小

值为( ) A .

13

B .

23

C .

43

D .83

【答案】C 【解析】 【分析】

利用辅助角公式将函数()y f x =的解析式化简为()2sin 3f x x πω??

=+

??

?

,根据题意得出()8

3

2

k k Z π

π

π

ωπ+

=

+∈,可得出关于ω的表达式,即可求出正数ω的最小值.

【详解】

()

sin 2sin 3f x x x x πωωω?

?=+=+ ??

?Q ,

由于该函数的图象关于直线8

x π=对称,则

()8

3

2

k k Z π

π

π

ωπ+

=

+∈,

得()4

83

k k Z ω=

+∈, 0ω>Q ,当0k =时,ω取得最小值4

3

.

故选:C. 【点睛】

本题考查利用正弦型函数的对称性求参数,解题时要将三角函数的解析式利用三角恒等变换思想化简,并通过对称性列出参数的表达式求解,考查计算能力,属于中等题.

2.△ABC 中,已知tanA =13

,tanB =1

2,则∠C 等于( )

A .30°

B .45°

C .60°

D .135°

【答案】D 【解析】 【分析】

利用三角形内角和为180o ,可得:tan tan()tan(+)C A B A B π=--=-,利用两角和公式和已知条件,即可得解. 【详解】 在△ABC 中,

11tan tan 32tan tan()tan(+)=-1111tan tan 132

A B C A B A B A B π+

+=--=-=-

=---?, 所以135C ?o .

故选:D. 【点睛】

本题考查了正切的两角和公式,考查了三角形内角和,考查了转化思想和计算能力,属于中档题.

3.

能使sin(2))y x x θθ=+++为奇函数,且在0,4??

????

π上是减函数的θ的一个值是( ) A .

5π3

B .

43

π C .

23

π D .

3

π

【答案】C 【解析】 【分析】

首先利用辅助角公式化简函数,然后根据函数的奇偶性和单调性求得θ的值. 【详解】

依题意π2sin 23y x θ?

?=++ ??

?,由于函数为奇函数,故πππ,π33k k θθ+==-,当

1,2k =时,2π3θ=

或5π3θ=,由此排除B,D 两个选项.当2π3

θ=时,()2sin 2π2sin 2y x x =+=-在0,4??

????π上是减函数,符合题意.当5π3θ=时,

()2sin 22π2sin 2y x x =+=,在0,4??

????

π上是增函数,不符合题意.

故选C. 【点睛】

本小题主要考查诱导公式的运用,考查三角函数的奇偶性和单调性,属于基础题.

4.在ABC ?中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则

a

b

=( ) A

.B .2

C

D .1

【答案】B 【解析】

【分析】

由正弦定理及题设可知,sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,又

A B C π++=,可得sin 2sin A B =,再由正弦定理,可得解

【详解】

由正弦定理:

2sin sin b c

R B C

==,又cos cos 2b C c B b += 得到sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=

在ABC ?中,A B C π++=

故sin()2sin A B π-=,即sin 2sin A B =

sin 2sin a A b B == 故选:B 【点睛】

本题考查了正弦定理在边角互化中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题

5.已知函数sin(),0

()cos(),0

x a x f x x b x +≤?=?

+>?的图像关于y 轴对称,则sin y x =的图像向左平移

( )个单位,可以得到cos()y x a b =++的图像( ). A .

4

π B .3

π C .

2

π D .π

【答案】D 【解析】 【分析】

根据条件确定,a b 关系,再化简()cos y x a b =++,最后根据诱导公式确定选项. 【详解】

因为函数()()(),0,0sin x a x f x cos x b x ?+≤?=?+>??的图像关于y 轴对称,所以

sin cos 22a b ππ????

-+=+ ? ?????

,()()sin cos a b ππ-+=+,即sin cos sin cos b a a b ,==,因此π

2π()2

a b k k Z +=

+∈, 从而()()cos sin y x a b sinx x π=++=-=+,选D. 【点睛】

本题考查偶函数性质、诱导公式、三角函数图象变换,考查基本分析识别能力,属中档题.

6.已知函数()2sin()0,,2f x x πω?ω?π??

??=+>∈ ??????

?的部分图象如图所示,其中()01f =,

5

||2

MN =

,则点M 的横坐标为( )

A .

12

B .25

-

C .1-

D .23

-

【答案】C 【解析】 【分析】 由(0)1f =求出56

π?=,由5||23MN π

ω=?=,再根据()2f x =可得答案.

【详解】

由函数()2sin()0,,2f x x πω?ω?π??

??=+>∈ ??????

?的部分图象,

可得(0)2sin 1f ?==,56

π?∴=

, 2

2512||2243MN ππωω??

==+?= ?

??, ∴函数5()2sin 3

6f x x π

π??=+ ???

令52sin 236x π

π??

+

= ???

, 得

52,03

62

x k k π

ππ

π+

=+=得1x =-. 故选:C. 【点睛】

本题主要考查三角函数的图象与性质,考查了数形结合思想的应用,解题的关键是利用勾股定理列方程求出3

π

ω=

,属于中档题.

7.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲

忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.

由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表: 黄赤交角 2341?'

2357?'

2413?'

2428?'

2444?'

正切值 0.439 0.444 0.450 0.455 0.461 年代

公元元年

公元前2000年

公元前4000年

公元前6000年

公元前8000年

根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( ) A .公元前2000年到公元元年 B .公元前4000年到公元前2000年 C .公元前6000年到公元前4000年 D .早于公元前6000年

【答案】D 【解析】 【分析】

先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项. 【详解】

解:由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β, 则αβ-即为冬至日光与春秋分日光的夹角,即黄赤交角, 将图3近似画出如下平面几何图形:

则16tan 1.610α=

=,169.4tan 0.6610

β-==, tan tan 1.60.66

tan()0.4571tan tan 1 1.60.66

αβαβαβ---=

=≈++?g .

0.4550.4570.461<

∴估计该骨笛的大致年代早于公元前6000年.

故选:D . 【点睛】

本题考查利用三角函数解决实际问题的能力,运用了两角和与差的正切公式,考查了转化思想,数学建模思想,以及数学运算能力,属中档题.

8.在ABC ?中,060,A BC D ∠==是边AB 上的一点,CD CBD =

?的面积为

1,

则BD 的长为( )

A .32

B .4

C .2

D .1

【答案】C 【解析】 1

sin 1sin

2BCD BCD ∠=∴∠=

2

242

BD BD ∴=-=∴=,选C

9.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知

sin sin (sin cos )0B A C C +-=

,a =2,c ,则C =

A .

π12

B .

π6

C .

π4

D .

π3

【答案】B 【解析】 【分析】 【详解】

试题分析:根据诱导公式和两角和的正弦公式以及正弦定理计算即可 详解:sinB=sin (A+C )=sinAcosC+cosAsinC , ∵sinB+sinA (sinC ﹣cosC )=0,

∴sinAcosC+cosAsinC+sinAsinC ﹣sinAcosC=0, ∴cosAsinC+sinAsinC=0, ∵sinC ≠0, ∴cosA=﹣sinA , ∴tanA=﹣1,

π

2<A <π, ∴A= 3π4

由正弦定理可得

c sin sin a

C A

=, ∵a=2,

∴sinC=sin c A a

=12=22

, ∵a >c , ∴C=

π6, 故选B .

点睛:本题主要考查正弦定理及余弦定理的应用,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.

10.若函数()y f x =同时满足下列三个性质:①最小正周期为π;②图象关于直线

3

x π

=

对称;③在区间,63ππ??

-

????

上单调递增,则()y f x =的解析式可以是( ) A .sin 26y x π??

=- ??

?

B .sin 26x y π??=-

??? C .cos 26y x π??

=- ??

?

D .cos 23y x π??

=+

??

?

【答案】A 【解析】 【分析】

利用性质①可排除B ,利用性质②可排除C ,利用性质③可排除D ,通过验证选项A 同时满足三个性质. 【详解】

逐一验证,由函数()f x 的最小正周期为π,而B 中函数最小正周期为241

2

π

π

=,故排除B ;

又cos 2cos 03

62π

ππ??

?

-

== ??

?,所以cos 26y x π??=- ??

?的图象不关于直线3x π=对称,故排除C ; 若63x ππ-

≤≤,则023x ππ≤+≤,故函数cos 23y x π?

?=+ ??

?在,63ππ??-????上单调递减,

故排除D ; 令22

6

2

x π

π

π

-

≤-

,得63x ππ-

≤≤,所以函数sin 26y x π?

?=- ??

?在,63ππ??-????上单调递

增.由周期公式可得22T π

π=

=,当3x π=时,sin(2)sin 1362

πππ?-==, 所以函数sin 26y x π?

?=- ??

?同时满足三个性质.

故选A . 【点睛】

本题考查了三角函数的周期性,对称性,单调性,属于中档题.

11.在OAB ?

中,已知OB =u u u v 1AB u u u v

=,45AOB ∠=?,点P 满足(),OP OA OB λμλμ=+∈R u u u v u u u v u u u v ,其中λ,μ满足23λμ+=,则OP u u u v

的最小值为( )

A

B

C

D

【答案】A 【解析】 【分析】

根据OB =u u u r

,1AB =uu u r ,45AOB ∠=?,由正弦定理可得OAB ?为等腰直角三角形,进而求得

点A 坐标.结合平面向量的数乘运算与坐标加法运算,用λ,μ表示出OP u u u r

.再由23λμ+=,

将OP u u u r 化为关于λ的二次表达式,由二次函数性质即可求得OP u u u r

的最小值.

【详解】

在OAB ?中,

已知OB =u u u r

,1AB =uu u r ,45AOB ∠=?

由正弦定理可得sin sin AB OB

AOB OAB

=

∠∠u u u r u u u r

sin OAB =

∠,解得sin 1OAB ∠=

即2

OAB π∠=

所以OAB ?为等腰直角三角形

以O 为原点,OB 所在直线为x 轴,以OB 的垂线为y 轴建立平面直角坐标系如下图所示:

则点A 坐标为22,22? ??

所以2222OA ?= ??u u u r ,)

2,0OB =u u u

r

因为(),OP OA OB λμλμ=+∈R u u u r u u u r u u u r

则)

222,022OP λμ

? =+ ??

u u u r 222,22λμλ??

? ???

= 则2

2

22222OP λμλ??=++??

? ? ? ?

????

u u u r 2222λλμμ=++

因为23λμ+=,则32μλ=- 代入上式可得

()()2

2322232λλλλ+-+-218518λλ-=+2

99555λ?

?=-+ ??

?所以当95λ=时, min 935

5OP ==

u u u r 故选:A 【点睛】

本题考查了平面向量基本定理的应用,正弦定理判断三角形形状,平面向量的坐标运算,属于中档题.

12.函数()2

2sin 3cos 2f x x x =+-,2,36x ππ??

∈-

????

的值域为( ) A .40,3

??????

B .41,3

??????

C .51,4

??????

D .50,4

??????

【答案】A 【解析】 【分析】

化简得到()2

3sin 2sin 1f x x x =-++,设sin t x =,利用二次函数性质得到答案. 【详解】

根据2

2

sin cos 1x x +=,得()2

3sin 2sin 1f x x x =-++,2,36x ππ??∈-????

, 令sin t x =,由2,36x ππ??

∈-

????,得1sin 1,2x ??∈-????

, 故[]0,1t ∈,有2

321y t t =-++,[]0,1t ∈,二次函数对称轴为13

t =

, 当1

3t =

时,最大值43

y =;当1t =时,最小值0y =, 综上,函数()f x 的值域为40,3??

????

. 故选:A . 【点睛】

本题考查了三角函数值域,换元可以简化运算,是解题的关键.

13.函数()()()cos 20f x x ??π=+<<在区间,66ππ??

-????单调递减,在区间,06π??- ???

上有零点,则?的取值范围是( ) A .,62ππ??

?

???

B .25,36ππ??

??

?

? C .2,23ππ??

??

? D .,

32ππ??

????

【答案】C 【解析】

分析:结合余弦函数的单调减区间,求出零点,再结合零点范围列出不等式 详解:当[,]66x ππ

∈-,2[,]33

x ππ

???+∈-++,

又∵(0,)?π∈,则[,][0,]33ππ??π-++?,即03

3π?π?π?

-≥????+≤??

,233ππ?≤≤,

由cos(2)0x ?+=得2,2

x k k Z π

?π+=+∈,242

k x ππ?

=

+-, ∴06

4

2

π

π

?

-

<

-

<,解得

52

6

π

π?<<

综上

22

3

π

π?<≤

. 故选C.

点睛:余弦函数的单调减区间:[2,2]k k ππ+π,增区间:[2,22]k k ππππ++,零点:

2

x k π

π=+,对称轴:x k π=,对称中心:,2)0(k π

π+,k Z ∈.

14.ABC V 中,角A 、B 、C 的对边分别为a ,b ,c ,且

tanC cos cos c B A =,若c =4a =,则b 的值为( )

A .6

B .2

C .5

D

【答案】A 【解析】 【分析】

由正弦定理,两角和的正弦公式化简已知等式可得sin tan C C C =,结合

sin 0C ≠,可求得tan C =()0,C π∈,可求C ,从而根据余弦定理

24120b b --=,解方程可求b 的值.

【详解】

解:∵tan cos cos c C B A =, ∴由正弦定理可得:

)()

sin tan sin cos sin cos C C A B B A A B C =+=+=,

∵sin 0C ≠,

∴可得tan C = ∵()0,C π∈, ∴3

C π

=

∵c =4a =,

∴由余弦定理2222cos c a b ab C =+-,可得2

1

2816242

b b =+-???

,可得24120b b --=,

∴解得6b =,(负值舍去). 故选:A . 【点睛】

本题考查正弦定理、余弦定理的综合应用,其中着重考查了正弦定理的边角互化、余弦定理的解三角形,难度一般.利用边角互化求解角度值时,注意三角形内角对应的角度范围.

15.已知向量m =r

(1,cosθ),(sin ,2)n θ=-r

,且m r ⊥n r

,则sin 2θ+6cos 2θ的值为( )

A .

12

B .2

C .

D .﹣2

【答案】B 【解析】 【分析】

根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2

θ222

26sin cos cos sin cos θθθθθ

+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】

因为向量m =r (1,cosθ),n =r

(sinθ,﹣2),

所以sin 2cos m n θθ?=-u r r

因为m r ⊥n r ,

所以sin 2cos 0θθ-=,即tanθ=2,

所以sin 2θ+6cos 2

θ2222

2626226

141

sin cos cos tan sin cos tan θθθθθθθ++?+====+++ 2. 故选:B. 【点睛】

本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.

16.在ABC △中,若a =3,c =7,∠C =60°,则边长b 为 A .5 B .8 C .5或-8 D .-5或8

【答案】B 【解析】

由余弦定理c 2=a 2+b 2-2ab cos C ,得24993b b =+-,即()()850b b -+=, 因为b >0,所以b =8.故选B .

17.设函数()()sin f x x x x R =∈,则下列结论中错误的是( ) A .()f x 的一个周期为2π B .()f x 的最大值为2 C .()f x 在区间2,63ππ??

??

?上单调递减 D .3f x π??

+

??

?

的一个零点为6

x π

=

【答案】D 【解析】 【分析】

先利用两角和的正弦公式化简函数()f x ,再由奇偶性的定义判断A ;由三角函数的有界性判断B ;利用正弦函数的单调性判断C ;将6

x π

=

代入

3f x π??

+ ??

?

判断D .

【详解】

()

sin f x x x = 23sin x π?

?=+ ???,

()f x 周期22,1

T A π

π=

=正确; ()f x 的最大值为2,B 正确,

25,

,,63

326

x x πππππ????

∈∴+∈ ?

?????

Q , ()f x ∴在2,63ππ??

???

上递减,C 正确;

6

x π

=时,1032f x f ππ????+==≠ ? ??

???

, 6x π

=

不是3f x π??

+

??

?

的零点,D 不正确. 故选D. 【点睛】

本题通过对多个命题真假的判断,综合考查两角和的正弦公式以及三角函数的单调性、三角函数的周期性、三角函数的最值与零点,意在考查对基础知识掌握的熟练程度,属于中档题.

18.将函数sin(2)4

y x π

=-

的图象向左平移

4

π

个单位,所得图象对应的函数在区间(,)m m -上无极值点,则m 的最大值为( )

A .

8

π B .

4

π C .38

π D .

2

π 【答案】A 【解析】 【分析】

由三角函数的图象变换,求得函数sin 24y x π??

=+

??

?

,求得增区间3,,88k k k Z ππππ??

-++∈????

,令0k =,可得函数的单调递增区间为3,88ππ??-????,进而根据函数sin 24y x π?

?

=+ ??

?

在区间(),m m -上无极值点,即可求解. 【详解】

由题意,将函数sin 24y x π??=- ??

?的图象向左平移4π个单位,

可得函数sin 2sin 2444y x x πππ??

???

?=+-=+ ? ????

?????

, 令222,2

4

2

k x k k Z π

π

π

ππ-

+≤+

+∈,解得3,88

k x k k Z ππ

ππ-

+≤≤+∈ 即函数sin 24y x π?

?

=+

??

?

的单调递增区间为3,,88k k k Z ππππ??

-

++∈????

令0k =,可得函数的单调递增区间为3,88ππ??

-

????

, 又由函数sin 24y x π??

=+ ??

?

在区间(),m m -上无极值点,则m 的最大值为

8

π

,故选A. 【点睛】

本题主要考查了三角函数的图象变换,以及三角函数的性质的应用,其中解答中熟练应用三角函数的图象变换得到函数的解析式,再根据三角函数的性质,求得其单调递增区间是解答的关键,着重考查了运算与求解能力,属于中档试题.

19.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π??

=+ ??

?

;④tan 24y x π??

=- ??

?

中,最小正周期为π的所有函数为( ) A .①②③ B .①③④

C .②④

D .①③

【答案】A 【解析】

逐一考查所给的函数:

cos 2cos2y x x == ,该函数为偶函数,周期22

T π

π=

= ; 将函数cos y x = 图象x 轴下方的图象向上翻折即可得到cos y x = 的图象,该函数的周期为

1

22

ππ?= ; 函数cos 26y x π??=+ ??

?的最小正周期为22T π

π== ; 函数tan 24y x π?

?

=-

??

?

的最小正周期为2

2

T π

π

=

=

综上可得最小正周期为π的所有函数为①②③. 本题选择A 选项.

点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y =A sin(ωx +φ),y =A cos(ωx +φ),y =A tan(ωx +φ)”的形式,再利用周期公式即可.

20.函数()4sin (0)3f x x πωω??

=+

> ??

?

的最小正周期是3π,则其图象向左平移6π

个单位长度后得到的函数的一条对称轴是( ) A .4

x π

=

B .3

x π

=

C .56

x π=

D .1912

x π

=

【答案】D 【解析】 【分析】

由三角函数的周期可得23

π

ω=

,由函数图像的变换可得, 平移后得到函数解析式为2

44sin 39y x π??=+ ???

,再求其对称轴方程即可. 【详解】

解:函数()4sin (0)3f x x πωω?

?

=+

> ??

?

的最小正周期是3π,则函数2

()4sin 3

3f x x π??=+ ???,经过平移后得到函数解析式为

22

44sin 4sin 36339y x x πππ??????=++=+ ? ?

???

?????,由24()392x k k πππ+=+∈Z , 得3()212x k k ππ=+

∈Z ,当1k =时,1912x π

=. 故选D. 【点睛】

本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高考数学中的放缩技巧

高考数学中的放缩技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求 ∑=-n k k 1 2 142 的值; (2)求证: 3 51 1 2 < ∑=n k k . 解析:(1)因为121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为??? ??+--=-=- <1211212144 4 11 1 222n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1)1(1 ≥--<+n n n n n (15) 11 1) 11)((1122222 222<++++= ++ +--= -+-+j i j i j i j i j i j i j i

高考数学选择题之压轴题

高考数学压轴选择题 _________班______号姓名_________________ 一、2007年以来广东高考数学压轴选择题的基本情况 1、(2007广东8)设S 是至少含有两个元素的集合,在S 上定义了一个二元运算“*”(即对任意的a b S ∈,,对于有序元素对(a b ,),在S 中有唯一确定的元素*a b 与之对应).若 对任意的a b S ∈,,有()**a b a b =,则对任意的a b S ∈,,下列等式中不恒成立的是( ) A .()**a b a a = B .[()]()****a b a a b a = C .()**b b b b = D .()[()]****a b b a b b = 2、(2008广东8)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( ) A . 1142+a b B .2133+a b C .11 24 +a b D .1 233 + a b 3、(2009广东8)已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A .在1t 时刻,甲车在乙车前面 B .1t 时刻后,甲车在乙车后面 C .在0t 时刻,两车的位置相同 D .0t 时刻后,乙车在甲车前面 4、(2010广东8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定。每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁。在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒。如果要实现所有不同的闪烁,那么需要的时间至少是 ( ) A .1205秒 B .1200秒 C .1195秒 D .1190秒 5、(2011广东) 8.,,,,.,,.,,,,,,,.:( ) A. T,V B.T,V C. T,V S Z a b S ab S S T V Z T V Z a b c T abc T x y z V xyz V ?∈∈=?∈∈?∈∈设是整数集的非空子集如果有则称关于数的乘法是封闭的若是的两个不相交的非空子集且有有则下列结论恒成立的是中至少有一个关于乘法是封闭中至多有一个关于乘法是封闭中有且只有一个关于乘法是封闭 D.T,V 中每一个关于乘法是封闭

高考数学_压轴题_放缩法技巧全总结(最强大)

放缩技巧 (高考数学备考资料) 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑ =-n k k 1 2142的值; (2)求证:3 511 2 <∑=n k k . 解析:(1)因为 121121)12)(12(21 422+--=+-= -n n n n n ,所以12212111 4212 +=+-=-∑=n n n k n k (2)因为 ??? ??+--=-=- <1211212144 4 11 1222 n n n n n ,所以35321121121513121112=+-?>-?>?-=?=+ (14) ! )2(1!)1(1)!2()!1(!2+- +=+++++k k k k k k (15) )2(1) 1(1 ≥--<+n n n n n (15) 112 22 2+-+-+j i j i j i

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

高考数学压轴题专练

题型突破练——压轴题专练 压轴题专练(一) 建议用时:40分钟 1.[2015·山西质监]已知椭圆E 的两焦点分别为(-1,0),(1,0), 且经过点? ?? ???1,22. (1)求椭圆E 的方程; (2)过P (-2,0)的直线l 交E 于A ,B 两点,且PB →=3PA →,设A ,B 两点关于x 轴的对称点分别是C ,D ,求四边形ACDB 的外接圆的方程. 解 (1)由题意知c =1,2a -2 2 = 22 +? ?? ?? ?222 ,∴a =2,b =a 2-c 2=1,椭圆E 的方程为x 2 2 +y 2=1. (2)设l :x =my -2,代入椭圆方程得(m 2+2)y 2-4my +2=0, 由Δ=8m 2-16>0得m 2>2. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4m m 2+2,①y 1y 2=2 m 2+2.② 由PB →=3PA →,得y 2=3y 1.③

由①②③解得m 2=4,符合m 2>2. 不妨取m =2,则线段AB 的垂直平分线的方程为y =-2x -2 3 ,则 所求圆的圆心为? ?? ?? -13,0.又B (0,1), ∴圆的半径r =10 3 . ∴圆的方程为? ????x +132+y 2 =109. 2.已知函数f (x )=(ax 2+bx +c )e x 在[0,1]上单调递减且满足 f (0)=1,f (1)=0. (1)求实数a 的取值范围; (2)设g (x )=f (x )-f ′(x ),求g (x )在[0,1]上的最大值和最小值. 解 (1)由f (0)=1,f (1)=0得c =1,a +b =-1, 则f (x )=[ax 2-(a +1)x +1]e x , f ′(x )=[ax 2+(a -1)x -a ]e x . 依题意知,对任意的x ∈[0,1],有f ′(x )≤0. 当a >0时,因为二次函数y =ax 2+(a -1)x -a 的图象开口向上,而f ′(0)=-a <0,所以f ′(1)=(a -1)e ≤0,即0<a ≤1;当a =0时,对任意的x ∈[0,1],f ′(x )=-x e x ≤0,符合条件;当a <0时,f ′(0)=-a >0,不符合条件. 故实数a 的取值范围是[0,1]. (2)因为g (x )=(-2ax +1+a )e x ,g ′(x )=(-2ax +1-a )e x , ①当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e. ②当a =1时,对任意的x ∈[0,1]有g ′(x )=-2x e x ≤0,g (x )在x =0处取得最大值g (0)=2,在x =1处取得最小值g (1)=0.

挑战高考数学压轴题库之圆锥曲线与方程

一、圆锥曲线中的定值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率 为m,证明2m-k为定值. y2 b2= 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,说明理由. y2 b2= 过F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证 y2=1(a>0)的右焦点为F,点A,B分别在 C的两条渐近线AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程;

|NF| 定值,并求此定值. 二、圆锥曲线中的最值问题 y2 b2= (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. ★★已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (Ⅰ)求C的方程; (Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E, (ⅰ)证明直线AE过定点,并求出定点坐标; (ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由. y2 b2=1(a>b>0)的左、右焦 y2 b2=1的左、右焦点分 (Ⅰ)求C1、C2的方程; (Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为A B的中点,当直线OM与C2交于P,Q两点时,求四边形AP B Q面积的最小值.

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

从高考数学试题看高考备考复习

从高考数学试题看高考备考复习 一、试题整体分析 考试中心明确要求:数学要考查关健能力,强调数学应用,助推素质教育。 1聚集主干内容,突出关键能力; 2理论联系实际,强调数学应用; 3.考查数学思维,关注创新意识; 4.增强文化浸润,体现育人导向; 5.探索内容改革,助推素质教育。 2019年全国Ⅱ卷高考数学试题,很好的印证和释了上述主旨。全国卷以教育部发的“2019年高考考试大纲”为依据。试卷在结构、试题难度方面和往年相比有一定的调整,有利于不同水平的学生发挥,有较好的信度和区分度,有利于高校选拔人才。试卷重视对考生数学素养和探究意识的考查,注意体现新课改之后新增知识的考査要求,注重学科间的内在联系和知识的综合运用,对能力的考査强调探究性,应用性,多视点、多角度、多层次地考査了考生学习数学所具备的素养和潜力。这种命题的思路既有利于正确引导高中数学教学的方向,揭示数学概念的本质,注重通性通法,倡导用数学的思维进行教学,引导学生掌握用数学的思维解决数学问题,感受数学的思维过程,又有利于破解僵化的应试教育和题海战术。 二、试题特点

1.立足基础知识,考查主干知识。今年试题仍然延续了全国高考数学卷立足基础知识,考查主干知识的风格,理科在大題部分题目顺序上有较大改变,但是概率、立体几何和数列的难度和考察方向与往年区別不大。 数学文科试题在立足稳定的基础上进行创新,稳定是指内容上的稳定、难度上的稳定,比如第1,2,5,6,10,13,18,21题渉及代数知识,具体内容包含集合与逻辑、函数的概念与性质、指数函数、对数函数、导数的几何意义及其应用、数列、不等式与线性规划等;第7,16,17是立体几何方面的题目,具体包含空间线面关系、空间几何体,空间几何体的体积等;第4,14,19考概率统计;第3,9,12是涉及解析几何的试题,具体内容包括双曲线、圆、椭圆、抛物线、平面向量等,第22,23分别是坐标系与参数方程,以及不等式选讲的选做题。 数学理科试卷立足基础知识,考查主干内容,突出通性通法,坚持多角度、多层次的考查数学能力,推理论证能力、空间想象能力、探索能力、分析和解决间题的能力。如理科卷的第1,2,3,4,6,12,14,19,20题涉及代数知识,具体包含集合与逻辑,函数概念与性质、幂函数、指数与对数函数、导数及其应用、数列、复数、不等式等;第9,10,15题是关于三角函数知识的题目,具体包括三角函数的图象与性质、三角求值,解三角形等;第8,16,17题是关于立体几何的题目,具体包括空间线面关系,空几何体的关系、空间角;第4,5,13,18题涉及统计概率;第3,8,11,

2018年高考数学压轴题小题

2018年高考数学压轴题小题 一.选择题(共6小题) 1.(2018?新课标Ⅱ)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=() A.﹣50 B.0 C.2 D.50 2.(2018?新课标Ⅱ)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为() A.B.C.D. 3.(2018?上海)设D是函数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是() A. B.C.D.0 4.(2018?浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4?+3=0,则|﹣|的最小值是() A.﹣1 B.+1 C.2 D.2﹣

5.(2018?浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则() A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1 6.(2018?浙江)函数y=2|x|sin2x的图象可能是() A.B.C. D. 7.(2018?江苏)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.

8.(2018?江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为. 9.(2018?天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是. 10.(2018?北京)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两 条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为. 11.(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为. 12.(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.

高考理科数学刷题练习压轴题(一)

压轴题(一) 12.设P 为双曲线x 2a 2-y 2 b 2=1右支上一点,F 1,F 2分别为该双曲线的左、右焦点, c ,e 分别表示该双曲线的半焦距和离心率.若PF 1→·PF 2→ =0,直线PF 2交y 轴于点A ,则△AF 1P 的内切圆的半径为( ) A .a B .b C .c D .e 答案 A 解析 因为PF 1→·PF 2→ =0,所以△AF 1P 是直角三角形.设△AF 1P 的内切圆的半径是r ,则2r =|PF 1|+|P A |-|AF 1|=|PF 1|+|PA |-|AF 2|=|PF 1|-(|AF 2|-|P A |)=|PF 1|-|PF 2|=2a .所以r =a . 16.(2019·湘赣十四校联考二)已知函数f (x )=sin x +2cos x 的图象向右平移φ个单位长度得到g (x )=2sin x +cos x 的图象,若x =φ为h (x )=sin x +a cos x 的一条对称轴,则a =________. 答案 43 解析 由题意,得f (x )=5sin(x +α),其中sin α=255,cos α=5 5.g (x )=5sin(x +β),其中sin β=55,cos β=255, ∴α-φ=β+2k π,即φ=α-β-2k π, ∴sin φ=sin(α-β)=sin αcos β-cos αsin β=3 5, cos φ=cos(α-β)=cos αcos β+sin αsin β=4 5, 又x =φ是h (x )=sin x +a cos x 的一条对称轴, ∴h (φ)=sin φ+a cos φ=35+4 5a =±1+a 2, 即a =43. 20.已知函数f (x )=1 2(x 2+2a ln x ).

2014挑战高考物理压轴题碰撞与动量守恒定律

2014挑战高考物理压轴题 碰撞与动量守恒定律 一、单项选择题 1.质量为m 的物体以速度v 竖直上抛,不计空气阻力,经过一段时间后又经过抛出点,设向上为正,则这段时间内动量的改变量为( ) A .0 B .mv C .2 mv D .-2 mv 2.在光滑的水平面上,质量m 1=2 kg 的球以速度v 1=5 m/s 和静止的质量为m 2=1 kg 的球发生正碰,碰后m 2的速度v 2′=4 m/s ,则碰后m 1 ( ) A .以3 m/s 速度反弹 B .以3 m/s 速度继续向前运动 C .以1 m/s 速度继续向前运动 D .立即停下 3. 在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌, 右图为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s 的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s 的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为( ) A .0.1 m/s B .-0.1 m/s C .0.7 m/s D .-0.7 m/s 4.一个静止的、质量为M 的不稳定原子核,当它射出质量为m 、速度为v 的粒子后,设射出粒子的方向为正,则原子核剩余部分的速度u 等于( ) A .-v B .- m M -m v C .-m m -M v D .-m M v 二、双项选择题 5.下列属于反冲运动的是( ) A .汽车的运动 B .直升飞机的运动 C .火箭发射过程的运动 D .反击式水轮机的运动 6.如图所示,光滑地面上放置一质量为M 的长木板,一个质 量为m (m

高考数学压轴题大全

2019年高考数学压轴题大全高考数学压轴题大全 1.(本小题满分14分) 如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C 的两条切线PA、PB,且与抛物线C分别相切于A、B两点. (1)求△APB的重心G的轨迹方程. (2)证明PFA=PFB. 解:(1)设切点A、B坐标分别为, 切线AP的方程为: 切线BP的方程为: 解得P点的坐标为: 所以△APB的重心G的坐标为, 所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:(2)方法1:因为 由于P点在抛物线外,则 同理有 AFP=PFB. 方法2:①当所以P点坐标为,则P点到直线AF的距离为: 即 所以P点到直线BF的距离为: 所以d1=d2,即得AFP=PFB. ②当时,直线AF的方程:

直线BF的方程: 所以P点到直线AF的距离为: ,同理可得到P点到直线BF的距离,因此由d1=d2,可得到AFP=PFB. 2.(本小题满分12分) 设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB 的垂直平分线与椭圆相交于C、D两点. (Ⅰ)确定的取值范围,并求直线AB的方程; (Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图) 本小题主要考查直线、圆和椭圆等平面解析几何的基础知识以及推理运算能力和综合解决问题的能力. (Ⅰ)解法1:依题意,可设直线AB的方程为,整理得① 设是方程①的两个不同的根, 且由N(1,3)是线段AB的中点,得 解得k=-1,代入②得,的取值范围是(12,+). 于是,直线AB的方程为 解法2:设则有 依题意, ∵N(1,3)是AB的中点, 又由N(1,3)在椭圆内, 的取值范围是(12,+).

相关主题