搜档网
当前位置:搜档网 › 铁道车辆系统动力学作业及试地的题目详解

铁道车辆系统动力学作业及试地的题目详解

铁道车辆系统动力学作业及试地的题目详解
铁道车辆系统动力学作业及试地的题目详解

作业题

1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。

2、车辆系统动力学目的在于解决下列主要问题:

①确定车辆在线路上安全运行的条件;

②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及

动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和

平稳地运行;

③确定动载荷的特征,为计算车辆动作用力提供依据。

3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。

4、动力学性能归根结底都是车辆运行过程中的振动性能。

5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。

(1)水平不平顺;

(2)轨距不平顺;

(3)高低不平顺;

(4)方向不平顺。

6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。

7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。

9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。

10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长」辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。

11、出现共振时的车辆运行速度称为共振临界速度

12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。

13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚 _ 性冲击

14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等_

15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。

16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇

枕质量

17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。

18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。

19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

20、车辆定距影响车体摇头振动,定距越大,固有频率越高—

21、车辆蛇行运行是由于带有锥度的整体轮对在钢轨上运行而产生的振动。

即使在完全平直的轨道上也会由轮对的蛇行运动诱发机车车辆各部的横向振动。

22、当车辆系统受到一个初始激扰后,分析车辆在不同的运行速度下各刚

体振动位移随时间的变化情况,如收敛,则车辆是运行是稳定的;如发散,则车辆处于失稳状态;如既不收敛,也不发散,处于一种临界状态;此时相对应的车辆运行速度称为车辆的蛇行运动临界速度。

23、一般把轮轨之间的接触面分为两个区域,其中轮轨表面材料之间无滑

动的区域称为粘着区,另一部分为轮轨弹性变形逐渐消失的区域称为滑动区。

24、轮轨之间出现蠕滑现象要有三个条件:

①轮轨均为弹性体,

②车轮和钢轨之间作用有一定数量的正压力,

③轮对要沿钢轨滚动。

缺少任一条件,就不会产生蠕滑。

25、轮对沿钢轨纵向滚动时的蠕滑现象,称为纵向蠕滑。

26、车轮在钢轨上滚动前进时,即使作用于车轮的横向力很小,车轮沿横

向力的方向也会产生不断的微量位移,横向位移量与车轮走行距离成正比。这种

现象称为横向蠕滑。

27、车辆倾覆的三种情况?:

1、曲线外倾覆:车辆在曲线上运行时,由于受风力、离心力和横向振动惯性力等的作用及其不利的组合时,使车辆向曲线外侧倾覆。这种情况一般发生在高速运

行时;

2、曲线内倾覆:当车辆缓慢地驶入曲线时,由于车体内倾,同时受侧向力

(风力、振动惯性力等)的作用下,使车辆向曲线内侧倾覆;

3、直线倾覆:当车辆在直线上运行时,由于受极大的侧向风力作用,或者再加上由于线路原因造成车辆严重的横向振动致使车辆倾覆。

28、防止车辆倾覆的安全措施

对于车辆结构来说,车辆倾覆主要取决于车辆弹簧悬挂装置的横向刚度和角刚度以及重心高度。在一定外力的作用下,车体横向偏移也越大;角刚度越小,车体倾角越大;重心越高,车体横向偏移也越大。因此,增大其横向刚度、角刚度及降低重心高度,对于防止车辆倾覆地效果较为显著。

为了既能改善车辆振动性能,又能防止车辆倾覆,通常采用增大弹簧角刚度的办法。也就是在不增大弹簧垂直刚度的前提下,尽量增大左右侧弹簧的横向间距来增大抵抗车体侧向转动的反力矩,从而减小车体的倾角。此外,可以采用抗侧滚减振器。

29、轮对脱轨方式?

爬轨:车轮爬上钢轨需要一定时间,这种脱轨方式称为爬轨,一般发生在低速通过小半径曲线时。

跳轨:在高速情况下,由于轮轨之间的冲击力造成车轮跳上钢轨,这种脱轨方式称跳轨。

掉轨:当轮轨之间的横向力过大,使轨距扩宽,使车轮落入轨道内侧而脱轨。特别是车辆在不良线路上高速运行和长大货物车通过曲线时,会有这种情况。

30、影响脱轨的原因及防止脱轨的安全措施

影响脱轨原因是轮轨间的横向力过大和垂向力减载。如果轮轨横向力大的一

侧又出现垂向力减少和车轮处于正冲角状态时,脱轨的可能性增大

1、线路状态:

(1)曲线超高;

(2)线路的顺坡、三角坑以及局部不平顺:

(3 )线路方向不平顺,曲线半径过小、道岔局部不平顺:

(4)S曲线:

2、车辆结构:

(1 )车辆定距、转向架轴距;

(2)心盘和旁承摩擦力矩过大、轴箱定位刚度过大;

(3)转向架第一系悬挂垂向刚度大;

(4)车辆重心位置高;

(5)车轴平行度、轮缘角及摩擦系数;

(6)转向架构架或车体扭曲。

3、运用情况:

(1)装载状况;

(2)长短车联挂;

(3 )通过曲线速度。

31、轮对的滚动称为:旋转。车体的横移和侧滚运动一般耦合为:上心 ____ 摆和下心滚摆;构架的横移一般以横摆的形式出现。

32、车辆动力学的参数主要包括:

(a)各部件质量、转动惯量和重心等参数;(b)各弹簧和减振器的

位置、刚度和阻尼值;

(c)车轮踏面和轨面形状和相对位置;

33、常规的车辆动力学性能主要包括:运行平稳性、运动稳定性和曲线通

过动力学性能。这几方面都比较成熟了,它们包含了我们最关系的安全性和舒适性的问题。当然,车辆动力学性能还有很多其他的方面,例如结构弹性振动、噪声、空气动力学等,这些都还处于研究阶段,不是常规动力学计算的任务。

34、平稳性主要是指客车上旅客的乘坐舒适度、货车上装运货物的完整性。

35、车辆运行稳定性主要包括:抗蛇行运动稳定性、防止脱轨的稳定性、车辆倾覆的稳定性。

36、车辆系统的蛇行运动是其本身的固有属性,是决定车辆能否高速运行的关键因素。

37、轮轨接触几何关系中与动力学有密切关系的主要参数有:

1、左右车轮的实际滚动圆半径

2、左右轮轨接触点处的车轮踏面半径;

3、左右轮轨接触点处的轨面半径;

4、左右接触点处的接触角;

5、轮对侧滚角;

6、轮对中心的垂向位移。

38、轮对有横移时,其横向复原力和横移量之比称为轮对等效重力刚度。

39、轮对有摇头时,其横向力对轮对产生的摇头力矩和摇头角之比称为轮 _ 对等效重力刚度。

40、在轮轨关系问题中,轮轨粘着系数和制动问题、轮轨接触表面磨耗和

滚动接触疲劳、脱轨等安全性能指标、轮轨噪声等,都是以轮轨滚动接触蠕滑理论为基础的。

41、蠕滑率?

其实就是车轮相对钢轨在各方向的相对滑动率。分为3种:纵向蠕滑率、横向蠕滑率、自旋蠕滑率。

以下速度都是指轮轨接触斑处的速度。

纵向蠕滑率=(车轮实际前进速度-纯滚动前进速度”纯滚前进速度横向

蠕滑率二(车轮实际横向速度-纯滚动横向速度”纯滚前进速度自旋蠕滑

率二(车轮和轨面的相对旋转速度”纯滚前进速度

42、蠕滑力

是由两个相互接触的弹性体在其接触斑范围内的应变力不同所引起的。

43、常用的非线性数值仿真分析方法有:

①、给系统一个初始横移,看系统随车速变化,其运动状态收敛到平衡

位置的情况,找到临界速度;

②、让车辆在一段有激绕的轨道上运行,然后在理想平直轨道上运

行,随着车速的变化,其收敛到平衡位置的情况;

③、先找到一个较高的速度,保证车辆在这个速度下蛇行,然后将蛇

行时的车辆运动状态作为下次仿真的初始状态,降低车速,一直降低车速直到运动收敛;

④、在3的基础上,每次仍然加上一段不平顺激绕,然后再在理想平

直轨道上运行;

44、曲线通过和蛇行失稳都和车辆的横向运动关系密切,体现为摇头和横

移。

参考答案A卷

一、填空题

1、多自由度

2、振动性能

3、波长越长

4、初始位移初始速度

5、静挠度大小

6、停滞区

7、越长越大

8、共振临界速度

9、共振

10、刚性冲击

11、相等。

12、刚性体弹性体

二、名词解释

1、簧上质量

车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量

2、轮对等效重力刚度

轮对有横移时,其横向复原力和横移量之比

3、平稳性

主要是指客车上旅客的乘坐舒适度、货车上装运货物的完整性。

4、车辆的蛇行运动临界速度

当车辆系统受到一个初始激扰后,分析车辆在不同的运行速度下各刚体振动

位移随时间的变化情况,如收敛,则车辆是运行是稳定的;如发散,则车辆处于失稳状态;如既不收敛,也不发散,处于一种临界状态;此时相对应的车辆运行速度。

5、纵向蠕滑

轮对沿钢轨纵向滚动时的蠕滑现象。

三、简答题

1、车辆动力学的具体内容是什么?

答:车辆动力学的具体研究内容是车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。

2、线路不平顺主要表现在哪里:

答:主要表现在:(1)水平不平顺;

(2)轨距不平顺;

(3)高低不平顺;

(4)方向不平顺。

3、车辆蛇行运行产生的原因?

答:是由于带有锥度的整体轮对在钢轨上运行而产生的振动。即使在完全平直的轨道上也会由轮对的蛇行运动诱发机车车辆各部的横向振动。

4、轮轨之间出现蠕滑现象要有哪三个条件?

答:主要表现在下列三个条件:

(1 )、轮轨均为弹性体,

(2)、车轮和钢轨之间作用有一定数量的正压力,

(3 )、轮对要沿钢轨滚动。

缺少任一条件,就不会产生蠕滑。

四、简述题

1、简述防止车辆倾覆的安全措施。

答:对于车辆结构来说,车辆倾覆主要取决于车辆弹簧悬挂装置的横向刚度和角刚度以及重心高度。在一定外力的作用下,车体横向偏移也越大;角刚度越小,车体倾角越大;重心越高,车体横向偏移也越大。因此,增大其横向刚度、角刚度及降低重心高度,对于防止车辆倾覆地效果较为显著。

为了既能改善车辆振动性能,又能防止车辆倾覆,通常采用增大弹簧角刚度的办法。也就是在不增大弹簧垂直刚度的前提下,尽量增大左右侧弹簧的横向间距来增大抵抗车体侧向转动的反力矩,从而减小车体的倾角。此外,可以采用抗侧滚减振器。

2、简述常规的车辆动力学性能及参数。

答:常规的车辆动力学性能主要包括:运行平稳性、运动稳定性和曲线通过动力学性能。这几方面都比较成熟了,它们包含了我们最关系的安全性和舒适性的问题。当然,车辆动力学性能还有很多其他的方面,例如结构弹性振动、噪声、空气动力学等,这些都还处于研究阶段,不是常规动力学计算的任务。

车辆动力学的参数主要包括:

(a)各部件质量、转动惯量和重心等参数;

(b)各弹簧和减振器的位置、刚度和阻尼值;

(c)车轮踏面和轨面形状和相对位置;

参考答案B卷

一、填空题

1、横向运动

2、蛇行运动

3、越高。

4、耦合起来。

5、弱耦合

6、冈『性体弹性体。

7、相等。

8、冈『性冲击。

9、共振。

10

越长越大

11

静挠度大小

12

波长越长

13

多自由度

二_、名词解释

1、共振临界速度出现共振时的车辆运行速度

2、簧下质量

车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。

3、蠕滑力

是由两个相互接触的弹性体在其接触斑范围内的应变力不同所引起的力。

4、等效重力刚度

轮对有横移时,其横向复原力和横移量之比称为轮对等效重力刚度。

5、粘着区

一般把轮轨之间的接触面分为两个区域,其中轮轨表面材料之间无滑动的区域称为粘着区。

三、简答题

1、车辆动力学目的在于解决哪些主要问题?

答:主要解决下列问题:

(1)、确定车辆在线路上安全运行的条件;

(2、、研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行;

(3)、确定动载荷的特征,为计算车辆动作用力提供依据。

2、什么是车辆的蛇行运动临界速度?

答:当车辆系统受到一个初始激扰后,分析车辆在不同的运行速度下各刚体

振动位移随时间的变化情况,如收敛,则车辆是运行是稳定的;如发散,则车辆处于失稳状态;如既不收敛,也不发散,处于一种临界状态;此时相对应的车辆

运行速度称为车辆的蛇行运动临界速度。

3、车辆倾覆的三种情况?

答:三种情况主要表现在如下:

(1 )、曲线外倾覆:车辆在曲线上运行时,由于受风力、离心力和横向振动惯性力等的作用及其不利的组合时,使车辆向曲线外侧倾覆。这种情况一般发生在高速运行时;

(2)、曲线内倾覆:当车辆缓慢地驶入曲线时,由于车体内倾,同时受侧向力(风力、振动惯性力等)的作用下,使车辆向曲线内侧倾覆;

(3)、直线倾覆:当车辆在直线上运行时,由于受极大的侧向风力作用,或者再加上由于线路原因造成车辆严重的横向振动致使车辆倾覆。

4、轮对脱轨方式?

答“爬轨:车轮爬上钢轨需要一定时间,这种脱轨方式称为爬轨,一般发生在低速通过小半径曲线时。

跳轨:在高速情况下,由于轮轨之间的冲击力造成车轮跳上钢轨,这种脱轨方式称跳轨。

掉轨:当轮轨之间的横向力过大,使轨距扩宽,使车轮落入轨道内侧而脱轨。特别是车辆在不良线路上高速运行和长大货物车通过曲线时,会有这种情况。

四、简述题

1、轮轨接触几何关系中与动力学有密切关系的主要参数有哪些?

答:主要参数有如下:

(1 )、左右车轮的实际滚动圆半径

(2)、左右轮轨接触点处的车轮踏面半径;

(3)、左右轮轨接触点处的轨面半径;

(4)、左右接触点处的接触角;

(5 )、轮对侧滚角;

(6)、轮对中心的垂向位移。

2、影响列车脱轨的原因有哪些?

答:影响脱轨原因是轮轨间的横向力过大和垂向力减载。如果轮轨横向力大的一侧又出现垂向力减少和车轮处于正冲角状态时,脱轨的可能性增大

(1 )、线路状态:

①曲线超高;

②线路的顺坡、三角坑以及局部不平顺:

③线路方向不平顺,曲线半径过小、道岔局部不平顺:

④S曲线:

(2 )、车辆结构:

①车辆定距、转向架轴距;

②心盘和旁承摩擦力矩过大、轴箱定位刚度过大;

③转向架第一系悬挂垂向刚度大;

④车辆重心位置高;

⑤车轴平行度、轮缘角及摩擦系数;

⑥转向架构架或车体扭曲。

(3 )、运用情况:

①装载状况;

②长短车联挂;

③通过曲线速度

“机械动力学”课程教学大纲

“机械动力学”课程教学大纲 英文名称:Mechanical Dynamics 课程编号:MACH3441 学时:32 (理论学时:32 实验学时:课外学时:2实验) 学分:2 适用对象:机械设计、机械制造及自动化、机械电子工程、流体机械、电机、电器、材料工程等本科生高年级。 先修课程:高等数学、普通物理学、理论力学、材料力学、线性代数使用教材及参考书: [1] 石端伟主编. 机械动力学. 北京:中国电力出版社,2007. [2] 张策主编. 机械动力学.北京:高等教育出版社, 2008. [3] 倪振华主编. 振动力学. 西安交通大学出版社,1988. 一、课程性质和目的 性质:专业课 目的: 1.了解机械动力学的研究内容、发展历史以及最新研究进展。 2.培养机械系统动力学分析的基本能力。 3.了解机械系统动力学分析相关的CAE软件。 4.了解机械系统动态测试有关技术。 5.培养查阅和运用相关科技文献进行动力学分析的初步能力。 6.培养创新思维以及解决工程实际问题的能力。 7.培养科学、严谨的工作作风。

二、课程内容简介 随着现代机械装备朝着高精度、高效、大功率的方向发展,其动态性能指标的优劣越来越受到广泛关注和高度重视。机械动力学已日益成为现代机械设计与制造工程领域不可或缺的基础知识。本课程主要介绍机械系统动力分析的基本理论、分析方法、测试与控制技术以及典型机械系统动力学分析方法。通过课程的学习,培养学生能够在机械系统动力分析方面具有明确的基本概念、必要的专业基础知识、一定的机械系统动力分析能力与计算能力。 三、教学基本要求 1.了解相关机械系统动力学分析的新理论、新方法及发展趋向。 2. 掌握有关机械系统动力学分析的基本概念、基本理论与方法。 3. 了解典型机械系统动力学分析流程,具有进行工程实际问题分析的初步能力。 4. 建立正确的机械系统动力分析的思维方式,理论联系实际,具备一定的科研创新精神; 5. 课后需要查阅文献,并开展讨论,完成作业。 四、教学内容及安排 第一章:绪论 1.熟悉研究机械动力学的意义。 2.熟悉机械动力学的主要研究内容。 教学安排及教学方式

车辆系统动力学解析

汽车系统动力学的发展现状 仲鲁泉 2014020326 摘要:汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有汽车在垂直和横向两个方面的动力学内容。介绍车辆动力学建模的基础理论、轮胎力学及汽车空气动力学基础之外,重点介绍了受汽车发动机、传动系统、制动系统影响的驱动动力学和制动动力学,以及行驶动力学和操纵动力学内容。本文主要讲述的是通过对轮胎和悬架的系统动力学研究,来探究汽车系统动力学的发展现状。 关键词:轮胎;悬架;系统动力学;现状 0 前言 汽车系统动力学是讨论动态系统的数学模型和响应的学科。它是把汽车看做一个动态系统,对其进行研究,讨论数学模型和响应。是研究汽车的力与其汽车运动之间的相互关系,找出汽车的主要性能的内在联系,提出汽车设计参数选取的原则和依据。 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。

汽车系统动力学习题答案分析解析

1.汽车系统动力学发展趋势 随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容,随着多体动力学的发展及计算机技术的发展,使汽车系统动力学成为汽车CAE技术的重要组成部分,并逐渐朝着与电子和液压控制、有限元分析技术集成的方向发展,主要有三个大的发展方向: (1)车辆主动控制 车辆控制系统的构成都将包括三大组成部分,即控制算法、传感器技术和执行机构的开发。而控制系统的关键,控制律则需要控制理论与车辆动力学的紧密结合。 (2)多体系统动力学 多体系统动力学的基本方法是,首先对一个由不同质量和几何尺寸组成的系统施加一些不同类型的连接元件,从而建立起一个具有合适自由度的模型;然后,软件包会自动产生相应的时域非线性方程,并在给定的系统输入下进行求解。汽车是一个非常庞大的非线性系统,其动力学的分析研究需要依靠多体动力学的辅助。 (3)“人—车—路”闭环系统和主观与客观的评价 采用人—车闭环系统是未来汽车系统动力学研究的趋势。作为驾驶者,人既起着控制器的作用,又是汽车系统品质的最终评价者。假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就

不存在了。因此,在人—车闭环系统中的驾驶员模型研究,也是今后汽车系统动力学研究的难题和挑战之一。除驾驶员模型的不确定因素外,就车辆本身的一些动力学问题也未必能完全通过建模来解决。目前,人们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,而车辆的最终用户是人。因此,对车辆系统动力学研究者而言,今后一个重要的研究领域可能会是对主观评价与客观评价关系的认识 2.目前汽车系统动力学的研究现状 汽车系统动力学研究内容范围很广,包括车辆纵向运动及其子系统的动力学响应,还有车辆垂向和横向动力学内容。及行驶动力学和操纵动力学。行驶动力学研究路面不平激励,悬架和轮胎垂向力引起的车身跳动和俯仰运动;操纵动力学研究车辆的操纵稳定性,主要是轮胎侧向力有关,引起的车辆侧滑、横摆、和侧倾运动。汽车系统动力学的研究可以分为三个阶段: 阶段一(20世纪30年代) ①对车辆动态性能的经验性的观察 ②开始注意到车轮摆振的问题 ③认识到车辆舒适性是车辆性能的一个重要方面 阶段二(30年代—50年代) ①了解了简单的轮胎力学,给出了轮胎侧偏角的定义 ②定义不足转向和过度转向 ③建立了简单的两自由度操纵动力学方程

铁道车辆系统动力学作业及试地的题目详解

作业题 1、车辆动力学的具体内容是研究车辆及其主要零部件在各种运用情况下,特别是在高速运行时的位移、加速度和由此而产生的动作用力。 2、车辆系统动力学目的在于解决下列主要问题: ①确定车辆在线路上安全运行的条件; ②研究车辆悬挂装置和牵引缓冲装置的结构、参数和性能对振动及 动载荷传递的影响,并为这些装置提供设计依据,以保证车辆高速、安全和平稳地运行; ③确定动载荷的特征,为计算车辆动作用力提供依据。 3、铁路车辆在线路上运行时,构成一个极其复杂的具有多自由度的振动系统。 4、动力学性能归根结底都是车辆运行过程中的振动性能。 5、线路不平顺不是一个确定量,它因时因地而有不同值,它的变化规律是随机的,具有统计规律,因而称为随机不平顺。 (1)水平不平顺; (2)轨距不平顺; (3)高低不平顺; (4)方向不平顺。 6、车轮半径越大、踏面斜度越小,蛇行运动的波长越长,即蛇行运动越平缓。 7、自由振动的振幅,振幅大小取决于车辆振动的初始条件:初始位移和初始速度(振动频率)。

8、转向架设计中,往往把车辆悬挂的静挠度大小作为一项重要技术指标。 9、具有变摩擦减振器的车辆,当振动停止时车体的停止位置不是一个点,而是一个停滞区。 10、在无阻尼的情况下共振时振幅随着时间增加,共振时间越长,车辆的振幅也越来越大,一直到弹簧全压缩和产生刚性冲击。 11、出现共振时的车辆运行速度称为共振临界速度 12、在车辆设计时一定要尽可能避免激振频率与自振频率接近,避免出现共振。 13、弹簧簧条之间要留较大的间距以避免在振动过程中簧条接触而出现刚性冲击 14、两线完全重叠时,摩擦阻力功与激振力功在任何振幅条件下均相等。 15、在机车车辆动力学研究中,把车体、转向架构架(侧架)、轮对等基本部件近似地视为刚性体,只有在研究车辆各部件的结构弹性振动时,才把他们视为弹性体。 16、簧上质量:车辆支持在弹性元件上的零部件,车体(包括载重)及摇枕质量 17、簧下质量:车辆中与钢轨直接刚性接触的质量,如轮对、轴箱装置和侧架,客车转向架构架,一般是簧上质量。 18、一般车辆(结构对称)的垂向振动与横向振动之间是弱耦合,因此车辆的垂向和横向两类振动可以分别研究。 19、若车体质心处于纵垂对称面上,但不处于车体的横垂对称面上,则车体的浮沉振动将和车体的点头振动耦合起来。

matlab机电系统仿真大作业

一曲柄滑块机构运动学仿真 1、设计任务描述 通过分析求解曲柄滑块机构动力学方程,编写matlab程序并建立Simulink 模型,由已知的连杆长度和曲柄输入角速度或角加速度求解滑块位移与时间的关系,滑块速度和时间的关系,连杆转角和时间的关系以及滑块位移和滑块速度与加速度之间的关系,从而实现运动学仿真目的。 2、系统结构简图与矢量模型 下图所示是只有一个自由度的曲柄滑块机构,连杆与长度已知。 图2-1 曲柄滑块机构简图 设每一连杆(包括固定杆件)均由一位移矢量表示,下图给出了该机构各个杆件之间的矢量关系 图2-2 曲柄滑块机构的矢量环

3.匀角速度输入时系统仿真 3.1 系统动力学方程 系统为匀角速度输入的时候,其输入为输出为;。 (1) 曲柄滑块机构闭环位移矢量方程为: (2)曲柄滑块机构的位置方程 (3)曲柄滑块机构的运动学方程 通过对位置方程进行求导,可得 由于系统的输出是与,为了便于建立A*x=B形式的矩阵,使x=[], 将运动学方程两边进行整理,得到 将上述方程的v1与w3提取出来,即可建立运动学方程的矩阵形式 3.2 M函数编写与Simulink仿真模型建立 3.2.1 滑块速度与时间的变化情况以及滑块位移与时间的变化情况 仿真的基本思路:已知输入w2与,由运动学方程求出w3和v1,再通过积分,即可求出与r1。 (1)编写Matlab函数求解运动学方程 将该机构的运动学方程的矩阵形式用M函数compv(u)来表示。 设r2=15mm,r3=55mm,r1(0)=70mm,。 其中各个零时刻的初始值可以在Simulink模型的积分器初始值里设置

M函数如下: function[x]=compv(u) %u(1)=w2 %u(2)=sita2 %u(3)=sita3 r2=15; r3=55; a=[r3*sin(u(3)) 1;-r3*cos(u(3)) 0]; b=[-r2*u(1)*sin(u(2));r2*u(1)*cos(u(2))]; x=inv(a)*b; (2)建立Simulink模型 M函数创建完毕后,根据之前的运动学方程建立Simulink模型,如下图: 图3-1 Simulink模型 同时不要忘记设置r1初始值70,如下图: 图3-2 r1初始值设置

机车系统动力学问题

问题: 1、 引起车辆振动的原因有很多,有些确定的,也有些随机的,请详细说明与车辆结构有关的激振因素有哪些? 答:引起车辆振动的原因主要可以从两方面考虑,一是与轨道有关的激振因素(详见《车辆工程》第三版P214-P216):(1)钢轨接头处的轮轨冲击,(2)轨道的垂向变形,(3)轨道的局部不平顺,(4)轨道的随机不平顺; 二是与车辆结构有关的激振因素。 车辆本身结构的特点会引起车辆振动,主要原因有以下几种。 (一)车轮偏心。车轮在制造或维修中,由于工艺或机床设备等原因,车轴中心和实际车轮中心之间可能存在一定的偏心,当车轮沿轨道运行时,车轮中心相对瞬时转动中心会出现上下和前后的运动。这些变化会激起车辆的上下振动和前后振动。设车轮中心与车轴中心之间的偏心为e ,则车轮转动时,车轴中心的上下运动量z t 为:z t =esin(t t r vt e t θθω+=+0 sin()),v-车辆运行速度;r 0-车轮名义半径;t-自某初始位置经历的时间;ω-车轮转动角速度;θt -初相角。 (二)车轮不均重。如果车轮的质量不均匀,车轮的质心与几何中心不一致,当车轮转动时车轮上会出现转动的不平衡力。设车轮的质量中心与几何中心 之偏差为e w ,则车轮转动时的不平衡力为:)sin()(0 20t w w w r vt e r v M F θ+=,式中,M w -每一车轮的质量,其他符号同上式。 车轮偏心和不均重,都会引起轮轨之间的动作用,车辆运行速度越高,则会引起的轮轨相互作用力越大。 (三)车轮踏面擦伤。车轮踏面存在擦伤时,车轮滚过擦伤处,轮轨间发生冲击,钢轨受到一个向下的冲量,而车轮受到一个向上的冲量。如果车轮擦伤长度与车轮中心所夹的圆心角为0θ,则车轮滚过踏面擦伤处的向上的冲量为:0θv M v M w w =?。车轮踏面擦伤后轮轨之间的冲击也是周期性的,其周期为:v r T 02π=。

机械动力学大作业

单自由度杆机构的Adams动力学仿真 摘要:文章分析了单自由度的铰链机构的动力学问题,已知原动件曲柄的转矩,绘制输出件摆杆的运动曲线。首先在Adams软件中构造连杆,添加三个连杆,使其成一定角度,相互连接。再在两杆之间添加转动副,并且头尾连杆与地相连。并在曲柄处加转矩,最后进行仿真,并绘出相应图表。 关键词:铰链机构;Adams仿真 1、机构模型的建立 根据题目要求,选择一个铰链四杆机构——曲柄摇杆机构为模型,其结构简图如图1所示。其中,曲柄1为原动件。 图1曲柄摇杆机构简图 在Adams软件中,建立该曲柄摇杆机构的模型如图2所示。 图2 Adams中的曲柄摇杆机构模型

曲柄摇杆机构各连杆的惯性参数参考表1。杆件的材料均选择钢材(密度ρ=7.801×10-6 kg?mm-3,杨氏模量E=2.07×105 N?mm-2,泊松比μ=0.29)。 表1 传动导杆机构各部件惯性参数 2、利用Adams软件添加约束和力矩 杆1和地之间有转动副,杆1和杆2、杆2和杆3之间有转动副,杆3和地之间有转动副。杆1为原动件,在杆1上添加转矩。转矩大小为30。 图3约束与转矩 3、进行仿真 点击仿真按钮,开始仿真,选择仿真时间为2s,可以观察到该机构各个时间的运动状态如图4和图5所示。

(a)T=0时刻(b)T=1时刻 图4仿真过程中机构模型的运动状态 (a)T=1.2时刻(b)T=2时刻 图5仿真过程中机构模型的运动状态 结论 当原动件曲柄的转矩取为30时,点击“后处理”,可以绘制出输出件摆杆的位移曲线、角速度曲线、加速度曲线分别如图10、图11和图12所示。 图10输出件摆杆的位移曲线

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

车辆动力学练习题及参考答案(可编辑修改word版)

车辆动力学练习题 一、单项选择题 1.轨道车辆通常由()、驱动部、走行部、制动部与连接部等组成。 A.车体B.转向架 C.轮对D.电动机 2.EDS 型磁悬浮的悬浮高度一般为()mm,因而对轨道精度和维护要求相对不高。 A.10 B.30 C.100 D.50 3.铁道车辆的()是指车辆每一根轮轴能够承受的允许静载。 A.轴重B.额定载重C.轮对重D.车体重 4.车轮必须具有(),以引导车轮沿道岔形成的线路方向运行,并产生变道时所需的横向导向力。 A.轮缘B.踏面 C.缓冲装置D.车轴 5.铁路轨道可以分为()轨道和曲线轨道。 A.缓和曲线B.坡度 C.直线D.圆曲线 6.人对频率在()Hz 以下的横向振动最敏感。 A.1B.2 C.5 D.10 7.轨道车辆的轮对由左右轮子和车轴固接组成,左右轮对滚动角速度一致,则称为()轮对。 A.弹性B.普通 C.刚性D.磁悬浮 8.轮轨蠕滑是指具有弹性的钢质车轮在弹性的钢轨上以一定速度滚动时,在车轮与钢轨的()间产生 相对微小滑动。 A.上方B.下方C.侧面D.接触面 9.稳定性的含义包含静态平衡稳定性和()稳定性两大类。 A.动态B.准静态 C.安全D.非平衡 10.目前国内外最常用的轨道不平顺数值模拟方法主要有()、三角级数法和白噪声滤波法等。 A.二次滤波法B.五次滤波法 C.四次滤波法D.三次滤波法 11.轨道交通车辆使用的轮胎一般是高压充气轮胎,轮胎内压力高达()kPa。 A.200~300 B.400~500 C.600~700 D.800~900 12.创造了581k m/h的世界轨道交通列车的最高速度记录的是()超导磁浮。 A.中国B.美国 C.日本D.德国 13.铁路轨道按轨枕使用材料可分为()轨道和混凝土轨枕轨道 A.铁枕B.木枕C.铜枕D.不锈钢

液压伺服 大作业

硕士学位课程考试试卷 考试科目:电液伺服控制 考生姓名:刘双龙 考生学号:20140713189 学院:机械工程学院专业:机械工程 考生成绩: 任课老师(签名) 考试日期:2014年1月20日午时至时

考试主题:电液伺服(比例)系统 考试题目: 1、为什么把液压控制阀称为液压放大元件? 2、什么叫阀的工作点?零位工作点的条件是什么? 3、电液伺服阀由哪几部分组成?各部分的作用是什么? 4、什么是液压固有频率?在阀控缸系统中液压固有频率与活塞位 置有关吗?为什么? 5、为什么电液伺服系统一般都要加校正装置? 6、结合自己研究领域,写一篇液压伺服系统建模、分析的论文, 字数不少于2000字。 注:要求独立完成,不允许抄袭。 交作业时间: 最迟2015年第一个学期的第一周交到7教136,交纸质档。

三自由度平台液压伺服系统建模 摘要: 我的专业是机械工程,主要方向是机械设计,所以本文选择了与我专业方向有关的一个机构进行建模。本文开始对机构进行了说明(采用已有的机构,并非自己设计),然后对其进行运动学分析,从而的到上平台和下平台的速度及加速度,和雅可比矩阵及液压缸速度。然后对驱动机构进行电液伺服系统建模。其中 一:自由度运动平台系统简介 本文所研究的三自由度运动平台类似与六自由度平台是由一个上平台(动平台)、地基(下平台)、三个支杆、三个线性作动器以及若干关节连接而成的。上平台装有负载,完成既定的位置、速度、加速度运动要求,进而实现刑于道路状况的复现。其结构示意图如图1.1所示。 图 1三自由度运动平台的结构图 该平台的结构如下:上平台与地面之间以三个支杆(strut)来约束并起支撑作用,并以三个液压缸作为驱动部件进行驱动。每个液压缸两端为关节轴承,中间为一个移动副和一个转动副连接;每根支杆两端也是采用关节轴承分别与地面和上平台相连中间一个转动副。通过计算可知每个支杆所在的支路都具有5个自由度,每个支路对上平台提供一个约束;每个液压作动器所在的支路都具有6个自由度,对于上平台没有约束。通过每个分支对上平台的约束很容易计算得出其自由度为3。因此,通过三套液压作动器的驱动,上平台能够实现对于给定运动的跟踪复现。 简单直观的对运动进行分析可得到:由于三根支杆的限制作用,上平台平动受到限制:而转动自由度相对更为自由,运动范围更大。当两竖直作动器差动动

车辆系统动力学第二次作业

第二次作业 柏满飞 1. 设计要求 1.1 汽车参数 1.2 性能要求 2. 牵引电动机量值的设计 2.1参考一些相关资料,可以取如下电动机参数: 2.2电机额定功率值 汽车轮胎半径:0.2794r m = 则齿轮传动的传动比:,max max =3.2930m g n r i V π= 则车辆转动惯量系数:2 121 1.07 g i δ δδ=++=, 式中10.04δ=,20.0025δ= 则电机的额定功率值:()2 2221 77.45235 t f b r f a D f f a M P V V Mgf V C A V kW t δρ= ++ += 取整可以选额定功率值:80t P kW =

2.3电机外特性曲线 由以上参数得该电机的外特性曲线如图2.1所示。 图 2.1 电机外特性曲线 3. 加速性能的检验 基于牵引电机的转矩-转速特性、齿轮传动比以及车辆的参数,可以计算车辆的加速性能即加速时间和距离与车速之间的对应关系。 计算0100/km h -加速时间: 100 2 10.211 2 a p g r a D f M t dV s T i MGf C A V r δ ηρ==--? 满足性能要求。 4. 爬坡能力的检验 应用电机的转矩-转速特性、齿轮传动比,以及车辆的参数,并由行驶过程中汽车驱动力和阻力关系式: p g t T i F r η= ()21 cos sin 2r r a D f F Mg f C A V ααρ=++ 由此可计算得出牵引力和阻力与车速之间的关系,如图4.1所示。从而可计算出车辆的爬坡能力。

车辆系统动力学仿真大作业(带程序)

Assignment Vehicle system dynamics simulation 学院:机电学院 专业:机械工程及自动化 姓名: 指导教师:

The model we are going to analys: The FBD of the suspension system is shown as follow:

According to the New's second Law, we can get the equation: 2 )()(221211mg z z c z z k z m --+-=???? 221212)()(z k mg z z c z z k z m w +-----=? ??? 0)()()()(222111222111=-++--+-++--+? ? ? ? ? ? ? ?w w w w z L z k z L z k z L z c z L z c z m χχχχ 0)()()()(2222111122221111=-++----++---? ? ? ? ? ? ? ?w w w w z L z L k z L z L k z L z L c z L z L c J χχχχχ d w w w w Q z L z k z L z c z m ,111111111)()(-=------? ? ? ? ?χχ d w w w w Q z L z k z L z c z m ,222222222)()(-=-+--+-? ????χχ When there is no excitation we can get the equation: 2)()(221211mg z z c z z k z m --+-=???? 2 21212)()(z k mg z z c z z k z m w +-----=? ??? Then we substitude the data into the equation, we write a procedure to simulate the system: Date: ???? ?? ??? ??==?==?===MN/m 0.10k m 25.1s/m kN 0.20MN/m 0.1m kg 3020kg 2100kg 3250w 2l c k I m m by w b

车辆系统动力学复习题 (2)

《车辆系统动力学》 (此复习题覆盖大部分试题。考试范围以课堂讲授内容为准。) 一、概念题 1. 约束和约束方程(19) 力学系统在运动时会受到某些几何和运动学特性的限制,这些构成限制条件的物体称为约束。 用数学方程表示的约束关系称为约束方程。 2. 完整约束和非完整约束(19) 如果系统约束方程仅是系统位形和时间的解析方程,则这种约束称为完整约束; 如果约束方程不仅包括系统的位形,还包括广义坐标对时间的倒数或者广义坐标的微分,而且不能通过积分使之转化为包括位形和时间的完整约束方程,则这种约束就称为非完整约束。 3. 轮胎侧偏角(31) 车轮回转平面与车轮中心运动方向的夹角。 4. 轮胎径向变形(31) 定义为无负载时的轮胎半径rt 与负载时的轮胎半径rtf 之差。 5. 轮胎的滚动阻力系数(40) 相应载荷下的滚动阻力与轮胎垂直载荷的比值。 6. 轮胎驱动力系数(50) 轮胎驱动力系数定义为驱动力与法向力的比值 7. 边界层(70) 当流体绕物体流动时,在物体壁面附近受流体粘性影响显著的薄层称为边界层。 8. 压力系数(74) 假设车身某点压力p 、速度v ,来流压力p ∞、速度v ∞,定义压力系数 2 1??? ? ??-==∞∞∞ v v q p-p C p 9. 风洞的堵塞比(77) 车辆迎风面积和风洞送风横断面面积的关系(堵塞比) 10. 雷诺数(79) 雷诺数定义为气流速度v 、流体特性长度L 的乘积与流体运动粘度ν的比值。Re=vL/ν 11. 空气阻力系数(82-83) q /A F Aq F C D D D == Fd 为空气阻力,A 为参考面积,通常采用汽车迎风面积,q 为动压力 12. 旋转质量换算系数(88) 12 d v i i +=r m Θδ 其中 ) (Ti c e 2 g 20dr 20w i ΘΘΘi i Θi ΘΘ++++=为等效转动惯量。mv 是整车整 备质量,rd 为驱动轮的滚动半径。 13. 后备驱动力(92) 车辆行驶时实际需要的驱动力FDem 与车辆所能提供的最大驱动力Fx 的差值。 14. 驱动附着率和制动附着率(101-102,105) 驱动附着率f 定义为纵向驱动力与法向力的比值 制动附着率:制动力力与法向力的比值 15. 驱动效率(103) 定义:驱动轴静载与整车重量的比值 W F /zs =τ

多刚体动力学大作业(MAPLE)

MAPLE理论力学 学号:201431206024 专业:车辆工程 姓名:张垚 导师:李银山

题目一: 如图,由轮1,杆AB 和冲头B 组成的系统。A ,B 两处为铰链连接。OA=R,AB=l,如忽略摩擦和物体自重,当OA 在水平位置,冲压力为F 时,系统处于平衡状态。 求:(1)作用在轮1上的力偶矩M 的大小 (2)轴承O 处的约束力 (3)连接AB受的力 (4)冲头给导轨的侧压力。 解: 对冲头B进行受力分析如图2:F,FB FN 对连杆AB进行受力分析如图3:FB ,FA > restart: #清零 > sin(phi):=R/l; #几何条件 > cos(phi):=sqrt(l^2-R^2)/l; > eq1:=F[N]-F[B]*sin(phi)=0; #冲头, x F ∑=0 > eq2:=F-F[B]*cos(phi)=0; #冲头, y F ∑=0 > solve({eq1,eq2},{F[N],F[B]}); #解方程 > F[B]:=F/(l^2-R^2)^(1/2)*l;#连杆的作用力的大小 > F[A]:=F[B]; #连杆AB ,二力杆 := ()sin φR l := ()cos φ - l 2R 2 l := eq1 = - F N F B R l 0 := eq2 = - F F B - l 2R 2 l 0{}, = F B F l - l 2 R 2 = F N F R - l 2 R 2 := F B F l - l 2 R 2 := F A F l - l 2 R 2 图1 图2 图3

> eq3:=F[A]*cos(phi)*R-M; #轮杆0=A M > eq4:=F[Ox]+F[A]*sin(phi)=0; #轮杆1 0=∑ x F > eq5:=F[Oy]+F[A]*cos(phi)=0; #轮杆1 0=∑ y F > solve({eq3,eq4,eq5},{M,F[Ox],F[Oy]});#解方程 答:(1)作用在轮1上的力偶矩M=FR; (2)轴承O处的约束力 (3)连杆AB受力 (4)侧压力 题目二: 如图4,图示曲线规尺的杆长OA=AB=200mm,而CD=DE=AC=AE=50mm 。如OA 杆以等角速度 s rad 5π ω= 绕O 轴转动,并且当运动开始时,角?=0?。 (1)求尺上D 点的运动方程。 (2)求D 点轨迹,并绘图。 > restart: #清零 > OA:=l: #OA 长度 > AB:=l: #AB 长度 > CD:=l/4: #CD 长度 > DE:=l/4: #DE 长度 > AC:=l/4: #AC 长度 > AE:=l/4: #AE 长度 > phi:=omega*t: #瞬时夹角 > x:=OA*cos(phi): #D 点的横坐标 := eq3 - F R M := eq4 = + F Ox F R - l 2 R 2 0 := eq5 = + F Oy F 0{},, = M F R = F Oy -F = F Ox - F R - l 2 R 2 = F Ox - F R - l 2 R 2 = F Oy -F := F B F l - l 2 R 2 = F N F R - l 2 R 2 图4

铁道车辆平稳性分析

铁道车辆平稳性分析 1.车辆平稳性评价指标 1.1 sperling平稳性指标 欧洲铁路联盟以及前社会主义国家铁路合作组织均采用平稳性指数来评定车辆的运行品质。等人在大量单一频率振动的实验基础上提出影响车辆平稳性的两个重要因素。其中一个重要因素是位移对时间的三次导数,亦即(加速度变化率)。若上式两边均乘以车体质 量,并将之积改写为,则。由此可见,在一定意义上代表力F的变化率的增减变化引起冲动的感觉。 如果车体的简谐振动为,则,其幅值为: 影响平稳性指数的另一个因素是振动时的动能大小,车体振动时的最大动能为: 所以: sperling在确定平稳性指数时,把反映冲动的和反映振动动能的乘积作为衡量标准来评定车辆运行平稳性。 车辆运行平稳性指数的经验公式为: 式中——振幅(cm); f——振动频率(Hz); a——加速度,其值为:; ——与振动频率有关的加权系数。 对于垂向振动和横向振动是不同的,具体情况见错误!未找到引用源。。 表1振动频率与加权系数关系 对于垂向振动的加权系数对于横向振动的加权系 f的取值范围(Hz)公式f的取值范围(Hz)公式 0.5~5.9 0.5~5.5

5.9~20 5.4~2.6 大于20 1 大于26 1 以上的平稳性指数只适用一种频率一个振幅的单一振动,但实际上车辆在线路上运行时的振动是随机的,即振动频率和振幅都是随时间变化的。因此在整理车辆平稳性指数时,通常把实测的车辆振动加速度按频率分解,进行频谱分析,求出每段频率范围的振幅值,然后对每一频段计算各自的平稳性指数,然后再求出全部频率段总的平稳性指数: Sperling平稳性指标等级一般分为5级,sperling乘坐舒适度指标一般分为4级。但在两级之间可按要求进一步细化。根据W值来评定平稳性等级表见错误!未找到引用源。 表2车辆运行平稳性及舒适度指标与等级 W值运行品质W值乘坐舒适度(对振动的感觉) 1 很好 1 刚能感觉 2 好 2 明显感觉 3 满意 2.5 更明显但无不快 4 可以运行 3 强烈,不正常,但还能忍受3.25 很不正常 4.5 运行不合格 3.5 极不正常,可厌,烦恼,不能长时忍 受 5 危险 4 极可厌,长时忍受有害 我国也主要用平稳性指标来评定车辆运行性能,但对等级做了简化,见错误!未找到引用源。。 表3车辆运行平稳性指标与等级 平稳性等级评定 平稳性指标 客车机车货车 1 优<2.5 <2.75 <3.5 2 良好 2.5~2.75 2.75~3.10 3.5~4.0 3 合格 2.75~3.0 3.10~3.45 4.0~4.25 对sperling评价方法的分析: 1.该评价方法仅按照某一个方向的平稳性指标等级来判断车辆的性能是不全面的,需要同时考虑垂向与横向振动对人体的生理及心理的相互影响,因为有时根据垂向振动确定的平稳性指标等级与根据横向振动确定的平稳性指标等级存在较大的差异。 2.该评价方法不够灵敏。由于人体对不同振动频率的反应不同,当对应某一频率范围的平稳性指标值很大值大于,在该窄带中的振动已超出了人体能够承受的限度,但在其它频带中值都很小,由于该方向总的平稳性指标是不同振动频率的平稳性指标求和,因而可能该方向总的砰值并不大,从而认为该车辆的平稳性能符合要求是不正确的。

车辆系统动力学-复习提纲

1. 简要给出完整约束与非完整约束的概念2-23,24,25, 1)、约束与约束方程 一般的力学系统在运动时都会受到某些几何或运动学特性的限制,这些构成限制条件的具体物体称为约束,用数学方程所表示的约束关系称为约束方程。 2)、完整约束与非完整约束 如果约束方程只是系统位形及时间的解析方程,则这种约束称为完整约束。 完整约束方程的一般形式为: 式中,qi为描述系统位形的广义坐标(i=1,2,…,n);n为广义坐标个数;m为完整约束方程个数;t为时间。 如果约束方程是不可积分的微分方程,这种约束就称为非完整约束。 一阶非完整约束方程的一般形式为:

式中,qi为描述系统位形的广义坐(i = 1, 2, …,n);为广义坐标对时间的一阶与数;n为广义坐标个数;m为系统中非完整约束方程个数;t为时间。 2. 解释滑动率的概念3-7,8 1.滑动率S 车轮滑动率表示车轮相对于纯滚动(或纯滑动)状态的偏离程度,是影响轮胎产生纵向力的一个重要因素。 为了使其总为正值,可将驱动和被驱动两种情况分开考虑。驱动工况时称为滑转率;被驱动(包括制动,常以下标b以示区别)时称为滑移率,二者统称为车轮的滑动率。

参照图3-2,若车轮的滚动半径为rd,轮心前进速度(等于车辆行驶速度)为uw,车轮角速度为ω,则车轮滑动率s定义如下: 车轮的滑动率数值在0~1之间变化。当车轮作纯滚动时,即uw=rd ω,此时s=0;当被驱动轮处于纯滑动状态时,s=1。 3. 轮胎模型中表达的输入量和输出量有哪些?3-22,23 轮胎模型描述了轮胎六分力与车轮运动参数之间的数学关系,即轮胎在特定工作条件下的输入和输出之间的关系,如图3-7所示。 根据车辆动力学研究内容的不同,轮胎模型可分为:

车辆系统动力学试题及答案

西南交通大学研究生2009-2010学年第( 2 )学期考试试卷 课程代码 M01206 课程名称 车辆系统动力学 考试时间 120 分钟 阅卷教师签字: 答题时注意:各题注明题号,写在答题纸上(包括填空题) 一. 填空题(每空2分,共40分) 1.Sperling 以 频率与幅值的函数 ,而ISO 以 频率与加速度的函数 评定车辆的平稳性指标。 2.在轮轨间_蠕滑力的_作用下,车辆运行到某一临界速度时会产生失稳的_自激振动_即蛇行运动。 3.车辆运行时,在转向架个别车轮严重减重情况下可能导致车辆 脱轨 ,而车辆一侧全部车轮严重 减重情况下可能导致车辆 倾覆 。 4.在车体的六个自由度中,横向运动是指车体的横移、 侧滚 和 摇头 。 5.在卡尔克线性蠕滑理论中,横向蠕滑力与 横向 蠕滑率和 自旋 蠕滑率呈相关。 6.设具有锥形踏面的轮对的轮重为W ,近似计算轮对重力刚度还需要轮对的 接触角λ 和 名义滚动圆距离之半b 两个参数。 7.转向架轮对与构架之间的 横向定位刚度 和 纵向定位刚度 两个参数对车辆蛇行运动稳定性影 响较大。 8. 纯滚线距圆曲线中心线的距离与车轮 的_曲率_成反比、与曲线的_曲率_成正比。 9.径向转向架克服了一般转向架 抗蛇行运动 和 曲线通过 对转向架参数要求的矛盾。 10.如果两辆同型车以某一相对速度冲击时其最大纵向力为F ,则一辆该型车以相同速度与装有相同缓冲器 的止冲墩冲击时的最大纵向力为_21/2F _,与不装缓冲器的止冲墩冲击时的最大纵向力为_2F_。 院 系 学 号 姓 名 密封装订线 密封装订线 密封装订线

共2页 第1页 5.什么是稳定的极限环? 极限环附近的内部和外部都收敛于该极限环,则称该极限环为稳定的极限环。 6.轨道不平顺有几种?各自对车辆的哪些振动起主要作用? 方向、轨距、高低(垂向)、水平不平顺。方向不平顺引起车辆的侧滚和左右摇摆。轨距不平顺对轮轨磨耗、车辆运行稳定性和安全性有一定影响。高低不平顺引起车辆的垂向振动。水平不平顺则引起车辆的横向滚摆耦合振动。 三.问答题 (每题15分,共30分) 1.已知:轮轨接触点处车轮滚动圆半径r ,踏面曲率半径R w ,轨面曲率半径R t , 法向载荷N ,轮轨材料的弹性模量E 和泊松比o 。试写出Hertz 理论求解接触椭圆 长短半径a 、b 的步骤。P43-P44 根据车轮滚动圆半径、踏面在接触点处的曲率半径、钢轨在接触点处的曲率半径得到A+B 、B-A ,算得cos β,查表得到系数m 、n ,然后分别根据钢轨和车轮的弹性模量E 和泊松比σ,求得接触常数k ,得出轮轨法向力N ,然后带人公式求得a 、b 。 2. 在车辆曲线通过研究中,有方程式 ()W f r y f w O W μψλ212 1 2 222 * 11=??? ?????+???? ?? 二.简答题 (每题5分,共30分) 1.与传统机械动力学相比,轨道车辆动力学有何特点? 2.轮轨接触几何关系的计算有哪两种方法,各有何优缺点? 解析和数值方法。数值方法可以用计算机,算法简单,效率高,但存在一定误差;解析方法是利用轮轨接触几何关系建立解析几何的方式求解,比较准确,但是计算繁琐,方法难于理解。 3.在车辆系统中,“非线性”主要指哪几种关系? 轮轨接触几何非线性、轮轨蠕滑关系非线性、车辆悬挂系统非线性 4.怎样根据特征方程的特征根以判定车辆蛇行运动稳定性?。 根据求出的特征根实部的正负判断车辆蛇行运动的稳定性,当所有的特征根实部均为负时,车辆系统蛇行运动稳定,存在特征根为零或者负时,车辆系统的蛇行运动不稳定。

车辆动力学相关的软件及特点

SIMPACK车辆动力学习仿真系统 SIMPACK软件是德国INTEC Gmbh公司(于2009年正式更名为SIMPACK AG)开发的针对机械/机电系统运动学/动力学仿真分析的多体动力学分析软件包。它以多体系统计算动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件。SIMPACK软件的主要应用领域包括:汽车工业、铁路、航空/航天、国防工业、船舶、通用机械、发动机、生物运动与仿生等。 SIMPACK是机械系统运动学/动力学仿真分析软件。SIMPACK软件可以分析如:系统振动特性、受力、加速度,描述并预测复杂多体系统的运动学/动力学性能等。 SIMPACK的基本原理就是通过搭建CAD风格的模型(包括铰、力元素等)来建立机械系统的动力学方程,并通过先进的解算器来获取系统的动力学响应。 SIMPACK软件可以用来仿真任何虚拟的机械/机电系统,从仅仅只有几个自由度的简单系统到诸如一个庞大的火车。SIMPACK软件可以应用在我们产品设计、研发或优化的任何阶段。 SIMPACK软件独具有的全代码输出功能可以将我们的模型输出成Fortran或C代码,从而可以实现与任意仿真软件的联合。 车辆动力学仿真carsim CarSim是专门针对车辆动力学的仿真软件,CarSim模型在计算机上运行的速度比实时快3-6倍,可以仿真车辆对驾驶员,路面及空气动力学输入的响应,主要用来预测和仿真汽车整车的操纵稳定性、制动性、平顺性、动力性和经济性,同时被广泛地应用于现代汽车控制系统的开发。CarSim可以方便灵活的定义试验环境和试验过程,详细的定义整车各系统的特性参数和特性文件。 CarSim软件的主要功能如下: 适用于以下车型的建模仿真:轿车、轻型货车、轻型多用途运输车及SUV; 可分析车辆的动力性、燃油经济性、操纵稳定性、制动性及平顺性; 可以通过软件如MATLAB,Excel等进行绘图和分析; 可以图形曲线及三维动画形式观察仿真的结果;包括图形化数据管理界面,车辆模型求解器,绘图工具,三维动画回放工具,功率谱分析模块;程序稳定可靠; CarSim软件可以扩展为CarSim RT, CarSim RT 是实时车辆模型,提供与一些硬件实时系统的接口,可联合进行HIL仿真;

重庆大学机器人大作业

IRB 7600大功率机器人运动仿真

摘要 (2) 1引言 (3) 2机器人发展概述 (3) 2.1机器人的三大定律产生 (3) 2.2工业机器人的发展和特点 (3) 2.3工业机器人现状与前景 (5) 3 ABB机器人和大功率机器人的发展概述 (5) 3.1 ABB公司的发展 (6) 3.2 ABB工业机器人的现状 (6) 3.3简述IRB 7600机器人特点 (6) 3.4IRB 7600机器人的主要参数和应用 (7) 4. 基于ADAMS的IRB 7600大功率机器人运动学仿真 (8) 4.1 IRB 7600大功率机器人的运动学分析 (8) 4.1.1分析IRB 7600大功率机器人得到简图,建立方程 (9) 4.1.2 IRB 7600大功率机器人正向运动学解 (11) 4.2ADAMS中的的运动仿真 (12) 4.2.1在ADAMS中建立IRB 7600机器人的模型 (12) 4.2.2运动的施加 (14) 4.2.4运动结果分析 (16) 总结 (19) 参考文献 (20)

摘要 现代机器人技术飞速发展,其中工业机器人的应用也越来越广泛,成为高科技中极为重要的组成部分。本文主要针对ABB机器中的IRB 7600大功率机器人,对其运动进行仿真探究,学习机器人的一般运动方法。 ABB大功率机器人系列开辟了全新的应用领域,该机器人有多种版本,最大承重能力高达650kg。IRB 7600适合用于各行业重载场合,大转矩、大惯性、刚性结构以及卓越的加速性能等优良特性使这款市场主导产品声誉日隆。用于装配、清洁/喷涂、切割/去毛刺、研磨/抛光、机械管理、物料搬运、货盘堆跺、扳弯机管理、点焊,应用前景广。通过对IRB 7600的模型建立,基于ADAMS的点焊机器人运动学仿真,得到了机器人的仿真运动曲线和模型图。对模型和曲线分析,初步的了解到大功率机器人的运动和工作方式。 关键字:IRB 7600、ABB、ADAMS、仿真

相关主题