搜档网
当前位置:搜档网 › 风机叶片制造技术——真空灌注成型技术

风机叶片制造技术——真空灌注成型技术

风机叶片制造技术——真空灌注成型技术
风机叶片制造技术——真空灌注成型技术

风机叶片制造技术——真空灌注成型技术

风电技术专题 2010-01-05 08:33 阅读53 评论1

字号:大中小

1 世界风力发电现状

随着国际原油价格持续高涨及京都议定书的实施,产业化条件最为成熟的风力发电成为欧美等发达国家推动可再生能源发展的首选项目。风能不仅充沛和廉价,而且也是目前最有开发利用前景的一种可再生能源。20世纪80年代风电的成本为40美分/kW·h,现在降为3~5美分/kW·h,随着技术设备的改善,成本还可在目前的基础上再降低30~50%。正因为此,全世界风力发电每年以30%左右的速度增长。

世界上很多国家尤其是发达国家,已充分认识到风电在调整能源结构、缓解环境污染等方面的重要性,对风电的开发给予了高度重视,装机规模持续高速增长。2006年累计风电装机最多的10个国家占世界风电装机的85%,与2005年相比,德国、美国和西班牙保持了前3名的地位,中国则从第八名升到第六名。中国新增装机容量(不包含台湾省装机)为1.347GW,处于亚洲第二,2006年风力发电市场较2005年成长超过3倍,累计装机容量达2.604GW,排行全球第六大市场。其市场驱动力主要源自2006

年1月1日生效的“可再生能源法”。

单机容量是风电机组技术水平的标志。全球兆瓦级机组的市场份额明显增大,1997年及以前还不到10%,2001年则超过50%,2002年达到62.1%,2003年达到71.4%。2003年安装的风电机组平均单机容量达到1.2MW。2006年安装的机组增均单机容量约为1.5MW,而10年前只有500kW。我国风电机组单机容量也从600kW逐步走向兆瓦级转变。更大型、性能更好的机组也已经开发出来,并投入生产试运行。由于更多国家致力于风能的开发利用,预计这种世界范围的快速增长将持续下去。除了风电大国丹麦、德国、西班牙和美国外,很多其它国家包括英国、法国、巴西和中国也制定了雄心勃勃的风电发展计

划。

2 风机叶片

2.1 风机叶片材料

风机叶片材料的强度和刚度是决定风力发电机组性能优劣的关键。目前,风机叶片所用材料已由木质、帆布等发展为金属(铝合金)、玻璃纤维增强复合材料、碳纤维增强复合材料等。玻璃钢叶片材料因为重量轻、比强度高、可设计性强、价格比较便宜等因素,成为大中型风机叶片材料的首选。然而,随着风机叶片朝着超大型化和轻量化的方向发展,玻璃钢复合材料开始达到其使用性能的极限,碳纤维维复合材料(CFRP)逐渐开始应用到超大型风机叶片中。

具体而言,由于应用场合的不同,风机叶片材料的选择也会有所不同。一般较小型的叶片(如22 m以下)选用量大价廉的E-玻纤增强塑料(GFRP),树脂基体以不饱和聚酯为主,也可选用乙烯酯或环氧树脂;而较大型的叶片(如42m以上)一般采用CFRP或CF与GF混杂的复合材料,树脂基体以环氧树脂为为主。目前商品化的大型风力机叶片大多采用玻璃纤维复合材料(GRP)。长度大于40m叶片可以采用碳/玻混杂复合材料,但由于碳纤维的价格较高,未能推广应用。

2.2 风机叶片设计

风机叶片结构设计的目的是要通过空气动力学分析,充分利用复合材料的性能,使大型叶片以最小的质量获得最大的扫风面积,从而使叶片具有更高的捕捉风的能力。随着风力发电机额定功率的增大,风机叶片的质量和费用随着长度的增加也迅速增加,如何通过新的结构设计方案和提高材料的性能来降低

叶片的质量至关重要。

在玻璃钢叶片的结构形式中,叶片剖面及根端构造的设计最为重要。选择叶剖面及根端形式,要考虑玻璃钢叶片的结构性能、材料性能及成型工艺。风机叶片要承受较高的载荷,通常要考虑50~60m/s 的极限风载。为提高叶片的强度和刚度,防止局部失稳,玻璃钢叶片大都采用主梁加气动外型的结构形式。主梁承担大部分弯曲载荷,而外壳除满足气动性能外,也承担部分弯曲载荷。主梁常用D型、0型、矩形

和双拼槽钢等形式。

随着叶片尺寸的不断增加,其生产和制造过程中产生了一些在以往中小型中片生产中未曾碰到过的新问题,大型模具问题便是其一。大型复合材料叶片的外形尺寸与其制造模具有着极其密切的关系。为保证复合材料叶片设计外形和尺寸精度,叶片长度越长,成型时对模具刚度和强度的要求就越高,模具的重量和成本也会大幅度提高。为减轻模具重量,降低模具成本,大型复合材料叶片的制造模具基本是用复

合材料模具,这意味着叶片可以做得更长。

3 叶片的成型工艺

现在的叶片成型工艺一般是先在各专用模具上分别成型叶片蒙皮、主梁及其他部件,然后在主模具上把两个蒙皮、主梁及其它部件胶接组装在一起,合模加压固化后制成整体叶片。具体成型工艺又大致可分为七种:①手糊;②真空灌注成型;③树脂传递模塑(RTM);④树脂浸渍工艺(SCRMIP);⑤纤维缠绕工艺(FW)⑥木纤维环氧饱和工艺(WEST);⑦模压。上述工艺中,①、④、⑤和⑥是开模成型

工艺,而②、③和⑦是闭模模塑工艺。

传统的叶片生产一般采用开模工艺,生产过程中会有大量的苯乙烯等挥发性有毒气体产生,给操作者和环境带来危害。另一方面,随着叶片尺寸的增加,为保证发电机运行平稳和塔架安全,必须保证叶片重量轻且质量分布均匀,这就促使叶片生产工艺由开模向闭模发展。采用闭模工艺,如现在常用的真空灌注成型工艺,不但可大幅降低成型过程中苯乙烯的挥发,且更易精确控制树脂含量,从而保证复合材料

叶片质量分布的均匀性,可提高叶片的质量稳定性。

下面详细介绍一下真空灌注成型工艺。真空灌注成型工艺是将纤维增强材料直接铺放在模具上,在纤维增强材料上铺设一层剥离层,剥离层通常是一层很薄的低孔隙率、低渗透率的纤维织物,剥离层上铺放高渗透介质,然后用真空薄膜包覆及密封。树脂灌注体系如图1所示,模具用薄膜包覆密封,真空泵抽气至负压状态。各铺层如图1所示,脱模布为一层易剥离的低孔隙率的纤维织物,导流布为高渗透率的介质,导流管分布在导流布的上面。树脂通过进胶管进入整个体系,通过导流管引导树脂流动的主方向,导流布使树脂分布到铺层的每个角落,固化后剥离脱模布,从而得到密实度高,含胶量低的铺层结构。

由于整个工装系统是密闭的,在真空灌注成型中有机挥发物非常少,改善了劳动条件,减少了操作者与有害物质的接触,满足了人们对环保的要求,改善了工作环境,工艺操作简单。同时从制品性能上来说,真空辅助可充分消除气泡,降低制品空隙率,能有效控制产品的含胶量,生产受人为因素影响小,产品的质量稳定性高,重现性能好,制品的表观质量好,铺层相同且厚度薄,强度高,相对于手糊成型拉伸强度提高20%以上。该工艺对模具要求不高,模具制作相对简单。与传统工艺相比,其模具成本可以降低50一70%。

真空灌注成型工艺对树脂粘度的要求较为严格,一般粘度控制在300cps以下。所选的树脂应具有较好的力学性能、耐腐蚀和固化收缩小。增强材料要求对树脂的流动阻力小、浸润性好、机械强度高、铺覆性好(增强材料无皱折、无断裂、无撕裂的情况下能够容易地制成与工作相同形状)、质量均匀性好,工

艺流程见图2。

真空灌注成型工艺制备风力发电转子叶片的关键有:①优选浸渗用的基体树脂。特别要保证树脂的最佳粘度及其流动性;②模具设计必须合理。特别对模具上树脂注入孔的位置、流通分布更要注意,确保基体树脂能均衡地充满任何一处;③工艺参数要最佳化。真空灌注成型工艺的工艺参数要事先进行实验研究,保证达到最佳化;④增强材料在铺放过程中保持平直,以获得良好的力学性能,同时注意尽可能减少复合材料中的孔隙率。树脂粘度对真空灌注成型的板材强度影响很大。降低粘度后树脂浸润好。低树脂含量可使板材的强度大幅度提高。同时,在真空灌注成型工艺中树脂粘度是影响进浸胶速率的重要因素之一。粘度降低,树脂流动性好,浸胶速率大大提高,增强材料对树脂的浸润性好坏直接影响产品性能的优劣。一般来说,对于真空灌注成型工艺,连续毡优于短切毡,编织布好于方格布,连续毡和编织布有利于树脂在整个密闭体系中的流动。若生产碳纤维制品,选材时应考虑用

与碳纤维浸润性好的树脂。

凝胶时间的控制也是真空灌注成型成功的一个重要因素。凝胶时间太短树脂较难填满整个模腔,凝胶时间过长将产生流胶现象,同时会影响产品的脱模时间。模腔充满后10~20min凝胶比较合适,确保树脂充模后能充分地浸润纤维铺层,消除气泡,以提高产品质量。

4 总结与展望

风力发电的发展依赖于生产制造大量的风力发电机,风力发电机离不开叶片,而制造叶片则需要复合材料产业的支撑。对我国的复合材料产业来说,风力发电是一个难得的机遇。选择最佳的材料体系和制造工艺,制造出质量上乘的复合材料叶片,满足快速发展的风力发电的需求,这是我们追求的目标。

目前来看,改进的真空灌注成型工艺以及碳/玻混杂复合材料叶片的研究及新概念、新工艺将成为

引领风电叶片研究和制造的新热点。

参考文献

[1]李祖华,风力发电现状和复合材料在风机叶片上的应用[J].高科技纤维与应用,2008,4(2):28-3

3.

[2]潘艺,周鹏展,王进等风力发电机叶片技术发展概述[J].湖南工业大学学报,2007,5(3):48-51.

[3]马振基,林育锋,复合材料在风力发电上的应用发展[J]高科技纤维与应用,2005。8(4):5-14.

[4]戴春晖,刘钧,曾竟成,边力平。复合材料风电叶片的发展现状及若干问题的对策[J].2008,(1):

53-56.

[5]李传胜,张锦南真空灌注成型工艺在大型风力机叶片中的应用[C].玻璃钢学会第十六届全国玻

璃钢/复合材料学术年会论文集,2006,E-15:254-256.

先进制造技术论文

先进制造技术论文 学院:xxx 班级:xxx 姓名:xxx 学号:xxx 目录 ? ? ? ? ? ? ? 概述 摘要:随着我国制造业的的不断发展,先进制造技术得到越来越广泛的应用。介绍了先进制造技术和先进制造模式的内容和发展情况,从两种角度解释其结构特征和关系,并从各种不同角度展望先进制造技术和先进生产模式的发展前景及其趋势特征。 先进制造技术AMT(AdvancedManufacturingTecnology)是在传统制造的基础上,不断吸收机械、电子、信息、材料、能源和现代管理技术等方面的成果,将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活生产,提高对动态多变的市场的适应能力和竞争能力的制造技术的总称,也是取得理想技术经济效益的制造技术的总称。 当前的金融危机也许还会催生新的先进制造制造技术,特别在生产管理技术方面。先进制造技术不是一般单指加工过程的工艺方法,而是横跨多个学科、包含了从产品设计、加工制造、到产品销售、用户服务等整个产品生命周期全过程的所有相关技术,涉及到设计、工艺、加工自动化、管理以及特种加工等多个领域,并逐步融合与集成。 可基本归纳为以下五个方面:

一、先进的工程设计技术 二、先进制造工艺技术 三、制造自动化技术 四、先进生产管理技术、制造哲理与生产模式 五、发展。 一、先进的工程设计技术 先进的工程设计技术包括众多的现代设计理论与方法。包括CAD、CAE、CAPP、CAT、PDM、模块化设计、DFX、优化设计、三次设计与健壮设计、创新设计、反向工程、协同产品商务、虚拟现实技术、虚拟样机技术、并行工程等。 (1)产品(投放市场的产品和制造产品的工艺装备(夹具、刀具、量检具等))设计现代化。以CAD为基础(造型,工程分析计算、自动绘图并提供产品数字化信息等),全面应用先进的设计方法和理念。如虚拟设计、优化设计、模块化设计、有限元分析,动态设计、人机工程设计、美学设计、绿色设计等等; (2)先进的工艺规程设计技术与生产技术准备手段。在信息集成环境下,采用计算机辅助工艺规程设计、即CAPP,数控机床、工业机器人、三坐标测量机等各种计算机自动控制设备设备的计算机辅助工作程序设计即CAM等。 二、先进制造工艺技术 (1)高效精密、超精密加工技术,包括精密、超精密磨削、车削,细微加工技术,纳米加工技术。超高速切削。精密加工一般指加工精度在10~μm(相当于IT5级精度和IT5级以上精度),表面粗糙度Ra值在μm以下的加工方法,如金刚车、金刚镗、研磨、珩磨、超精研、砂带磨、镜面磨削和冷压加工等。用于精密机床、精密测量仪器等制造业中的关键零件加工,如精密丝杠、精密齿轮、精密蜗轮、精密导轨、精密滚动轴承等,在当前制造工业中占有极重要的地位。 超精密加工是指被加工零件的尺寸公差为~μm数量级,表面粗糙度Ra值为μm 数量级的加工方法。此外,精密加工与特种加工一般都是计算机控制的自动化加工。 (2)精密成型制造技术,包括高效、精密、洁净铸造、锻造、冲压、焊接及热处理与表面处理技术。 (3)现代特种加工技术,包括高能束流(主要是激光束、以及电子束、离子束等)加工,电解加工与电火花(成型与线切割)加工、超声波加工、高压水加工等。电火花加工(Electricaldischargemachining(EDM)电火花加工electricsparkmachining)是指在一定介质中,通过工具电极和工件电极之间脉冲放电的电蚀作用对工件进行的加工。能对任何导电材料加工而不受被加工材料强度和硬度的限制。可分为电火花成型加工(EDM)和电火花线切割加工(电火花线切割加工electricaldischargewire–cutting--EDW) 两大类。一般都采用CNC控制。 (4)快速成型制造(RPM).快速成形技术是在计算机控制下,基于离散堆积原理采用不同方法堆积材料最终完成零件的成型与制造的技术。从成型角度看,零件可视为“点”或“面”的叠加而成。从CAD电子模型中离散得到点、面的几何信息,再与成型工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 (5)先进制造工艺发展趋势 1)采用模拟技术,优化工艺设计; 2)成形精度向近无余量方向发展; 3)成形质量向近无“缺陷”方向发展; 4)机械加工向超精密、超高速方向发展; 5)采用新型能源及复合加工,解决新型材料的加工和表面改性难题; 6)采用自动化技术,实现工艺过程的优化控制;

材料成型技术基础试题答案

《材料成形技术基础》考试样题答题页 (本卷共10页) 、判断题(每题分,共分,正确的画“O ”,错误的打“X ”) 、选择题(每空1分,共38分) 三、填空(每空0.5分,共26分) 1.( 化学成分) ( 浇注条件) ( 铸型性质) 2.( 浇注温度) 3.( 复杂) ( 广) 4.( 大) 5.( 补缩) ( 控制凝固顺序)6.( 球铁) ( 2 17% ) 7.( 缺口敏感性) ( 工艺)8.( 冷却速度) ( 化学成分) 9.( 低) 10.( 稀土镁合金)11.( 非加工)12.( 起模斜度) ( 没有) 13.( 非铁) ( 简单)14.( 再结晶)15.( 变形抗力) 16.( 再结晶) ( 纤维组织)17.( 敷料) ( 锻件公差) 18.( 飞边槽)19.( 工艺万能性)20.( 三) ( 二) 21.( -二二) ( 三)22.( 再结晶退火)23.( 三) 24.( -二二)25.( 拉) ( 压)26.( 化学成分) ( 脱P、S、O )27.( 作为电极) ( 填充金属)28.( 碱性) 29.( 成本) ( 清理)30.( 润湿能力)31.( 形成熔池) (达到咼塑性状态) ( 使钎料熔化)32.( 低氢型药皮) ( 直流专用)

Ct 230 图5 四、综合题(20分) 1、绘制图5的铸造工艺图(6分) ? 2J0 环O' 4 “ei吋 纯 2、绘制图6的自由锻件图,并按顺序选择自由锻基本工序(6 分)。 O O 2 令 i 1 q―1 孔U 400 圈6 3、请修改图7?图10的焊接结构,并写出修改原因。 自由锻基本工序: 拔长、局部镦粗、拔长 图7手弧焊钢板焊接结构(2 分)图8手弧焊不同厚度钢板结构(2 分) 修改原因:避免焊缝交叉修改原因:避免应力集中(平滑过 度)

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

真空灌注-包括轻质rtm和真空导流-工艺方法及问题处理

真空灌注工艺(LRTM、真空导流工艺方法及问题处理)关于玻璃钢的新工艺方法,注射工艺较多,从最初的压力注射,到现在的真空注射,走过了很多的弯路。由于玻璃钢的特点,它易于成型,进入门槛比较低。在汽车工业、环卫领域、风能领域,都有极大的市场。 管路简图 图解:1、高压真空吸合模具边缘;2、低压真空从模具内流

向真空筒;3、模具出胶时用大力钳锁紧出口;4、用丙酮涮洗真空管,并封住进口;5、最后卡住所有出胶口。继续保持高压锁模;6、产品固化后脱模。 一、正面模具的制作: 正面模具是制作模具的基础,只有正面模具,他直接影响模具的结构形式,他的表面质量在翻制反模时并不起作用。但是他的表面胶衣质量要求很高,因为在一个封闭的空间里,玻璃钢固化放出的热量很多,积聚在模具内部灼伤磨具表面。除了选用好的胶衣材料外,应当注意的还有以下几点。 1、分型面的确定 一个产品的分型面,当然选取最大部分,但是如果产品如下图,中间分型面是选用那个面呢,应该选用下面,因为同样的能出产品,选用下面分型,可以很好的铺层,在铺层时有了参考边,否则,切割线被胶衣遮盖,铺层时没有依据。 2避免针孔: A.首先,选用优质的模具胶衣。合适的的模具胶衣。胶衣的流平性、消泡性、粘度和触变性固化特性稳定。好的胶衣除基体树脂优

异外,还有一定的消泡剂和流平助剂。选用优秀的模具胶衣有很好的助剂类,可以有效降低针孔数量。 B.胶衣的固化体系容易产生针孔的原因之一,首先要防止固化时间过短,而且固化剂的比例添加适当。为了更符合比例,建议采用预促进型,另外好的固化剂过氧化氢少,在引发聚合反应时分解的水分子少,从而提高了胶衣固化程度,减少针孔现象。 C.胶衣厚度均匀。尽量使厚度均匀,所以采用喷涂方式,比手刷有利于气泡的排除,也是减少真空和气泡的方法之一。 D.喷涂用的压缩空气清洁度不高也是产生真空的原因之一,要使用干净的空气,避免油滴和水气造成针孔。 E.喷涂的方法。有利于气泡排除,首遍的首层薄喷,间隔1-2 分钟后再涂盖前面的喷涂方法,易于气泡排除,另外,尽量减少或不用苯乙烯、丙酮稀释。最佳的方法是提高环境温度和胶衣温度,18-30 度的室温,和35%-50%的湿度是胶衣喷涂的最佳条件。 F.良好的木型表面。疏松粗糙的表面不利于胶衣施工,也不利于气泡排出。所以尽量提高表面的致密度和硬度,做到表面光洁。G.在木型完工后,尽量马上检验,并进行下一步施工,或是用屏蔽物加以遮盖。如果空气尘粉或随喷涂落在模具表面,造成了一定的质量隐患。 3、了解模具的关联尺寸; 这个问题大家都会注意的,就像机械行业的公差配合,关联尺寸的要求是与别的产品相互影响的,单独的尺寸。

(完整版)先进制造技术(第三版)知识点总结

概述第一章 先进制造技术的特点:先进性、广泛性、实用性、集成性、系统性、动态性。、1先进制造技术分为三个技术群:主体技术群、支撑技术群、制造技术环境。、23、主体技术:面向制造的设计技术群(1)产品、工艺设计 (2)快速成形技术(3)并行工程 制造工艺技术群:(1)材料生产工艺(2)加工工艺(3)连接与装配 (4)测试和检测(5)环保技术(6)维修技术(7)其他 支撑技术:(1)信息技术(2)标准和框架(3)机床和工具技术 (4)传感器和控制技术 4、先进制造技术研究的四大领域: (1)现代设计技术 (2)先进制造工艺技术 (3)制造自动化技术 (4)系统管理技术 4、美国的先进制造技术发展概况P10 美国先进制造技术发展概况:美国政府在20 世纪90 年代初提出了一系列制造业的振兴计划,其中包括“先进制造技术计划”和“制造技术中心计划”。 先进制造技术计划 美国的发展目标: 1、为美国人创造更过高技术、高工资的就业机会,促进美国经济增长。 2、不断提高能源效益,减少污染,创造更加清洁的环境。 3、使美国的私人制造业在世界市场上更具有竞争力,保持美国的竞争地位。 4、使教育系统对每位学生进行更有挑战性的教育。 5、鼓励科技界把确保国家安全以及提高全民生活质量作为核心目标 三个重点领域的研究: 1、成为下一代的“智能”制造系统 2、为产品、工艺过程和整个企业的设计提供集成的工具 3、基础设施建设

第二章柔性制造系统(FMS)技术 1、柔性制造系统(FMS)的特点: (1)主要特点:柔性和自动化 (2)设备利用率高,占地面积小 (3)减少直接劳动工人数 (4)产品质量高而稳定 (5)减少在制品库存量 (6)投资高、风险大,开发周期长,管理水平要求高 2、FMS与传统的单一品种自动生产线(即刚性自动生产线,其物流设备和加工工艺是相对 固定的,只能加工一个零件,或加工几个相互类似的零件) 缺点:改变加工产品的品种,刚性自动线做较大改动,投资和时间方面耗资大,难以男足市场要求。(不适应变化,维修成本高) 优点:刚性自动线设备利用率高,生产率高. 3、FMS的组成: (1)加工系统:加工系统的功能是以任意顺序自动加工各种元件,并能自动地更换工件和刀具。 (2)运输系统:包含传送带、有轨小车、无轨小车、搬运机器人、上下料托盘、交换工作台等机构,能对刀具、工件和原材料等物料进行自动装卸和运输。 (3)计算机控制系统:能够实现对FMS 的运行控制、刀具管理。质量控制,以及FMS 的数据管理和网络通信。 4、自动导向小车AGV的类型(工作原理、适用范围): (1)线导小车:线导小车是利用电磁感应制导原理进行导向的,小车除有驱动系统以外,在前部还装有一对扫描线圈。当埋入地沟内的导线通以低频率变电流时,在导线周围便形成一个环形磁场。当导线从小车前部两个扫描 线圈中间通过时,两个扫描线圈中的感应电势相等。当小车偏离轨道时,扫描线圈就会产生感应电动势差,其中势差经过放大后给转向制导电机,使AGV 朝向减少误差的方向偏转,直至电动势差消除为止,从而保证小车始终沿着导线方向进行。 (2)光导小车:光导小车是采用光电制导原理进行导向的。沿小车预定路径在地面上粘贴易反光的反光带,还安装有发光器和受光器。发出的光经反光带反射后由受光器接收,并将该光信号转换成电信号控制小车的舵轮。 (3)遥控制导小车:这种小车没有传送信息的电缆,而是使用无线电或激光发送和接收设备来传送控制命令和信息。小车的顶部装有一个可沿360°按一定频率发射激光的装置,同时在小车运行范围的四周一些固定位置上放置反射镜片。当小车运行时,不断接受到从已知位置反射来的激光束,经过运算后确定小车的位置,从而实现导航引导。 第三章计算机集成制造系统(CIMS)技术 1、CIMS系统包括人、经营、技术三要素。 2、CIMS技术的发展从系统集成优化发展的角度来划分为三个阶段:信息集成、过程集成、 企业集成。 3、CIMS的主要功能分系统及各部分作用: (1)管理信息系统:管理信息系统是CIMS 的神经中枢,指挥与控制着其他各部分有条不紊地工作。

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

激光再制造技术

?改革开放以来,国外大批的高精尖设备引入我国,许多重大工程装备造价十分昂贵,一旦出现损坏,使生产线中断。特别是进口设备,缺少备件,临时引进不仅价格昂贵,而且时间紧迫,不能保证及时生产,将造成重大的经济损失。因此,开展重大装备修复,发展快速、高效、精密的修复技术不仅具有广阔的市场需求,而且具有重大的经济效益和社会效益。 常规修复技术的种类很多,每种技术有其擅长之处,也有应用的局限性,而精密可控成形再制造的修复技术已成为重要发展方向。 近年来,国际上诞生了一门新兴技术—再制造技术(Refabricating Technology)。与以往修复技术不同,再制造技术是一种全新概念的先进修复技术,它集先进高能束技术、先进数控和计算机技术、CAD/CAM技术、先进材料技术、光电检测控制技术为一体,不仅能使损坏的零件恢复原有或近形尺寸,而且性能达到或超过原基材水平。由此形成了一门新的光、机、电、计算机、自动化、材料综合交叉的先进制造技术。文中介绍了激光再制造系统的组成、材料选择原则、多层熔敷后的效果及工业应用实例。 1 激光再制造系统构成 激光再制造技术的技术基础是激光熔敷。激光熔敷原本是一种表面强化技术,它不涉及零件精确成形问题。以激光熔敷为修复技术平台,加上现代先进制造、快速原形等技术理念,则发展成为激光再制造技术。它是以金属粉末为材料,在具有零件原型的CAD/CAM软件支持下,CNC (计算机数控)控制激光头、送粉嘴和机床按指定空间轨迹运动,光束与粉末同步输送,形成1支金属笔,在修复部位逐层熔敷,最后生成与原型零件近形的三维实体。 激光器:1~5kWCO2激光器,多模即可,或用0.4~2kWNd:Y AG激光器,多模即可。 光学系统:采用聚焦光束和宽带光束2种方法,宽带光束可使熔敷表面光滑平整,而且没有裂纹等产生。 送粉器:采用载气式或非载气式输送2种均可。非载气式送粉,粉末利用率高达90%,载气式仅30%~40%。在进行二维以下运动修复时,采用非载气式送粉可节省粉末,从而降低使用成本。 从光束与粉嘴相互运动关系来看,可分为一维、二维及三维修复。 红外温度监控系统: 在激光熔敷修复过程中,由于多层叠加,熔层表面温度会随高度增加而增加,在尖角处也会引起热量陡增。必须对熔池温度面进行实时监测,并将测温结果反馈给激光器和数控机床,控制激光器功率输出以及CNC机床的运动速度,以保持熔池温度稳定。其测温原理为:激光涂层吸收的能量EA,一部分用于熔化粉末Ep,一部分以热辐射的形式向外散出ER,一部分用于热传导ET,一部分用于与环境对流Ec,即: EA=Ep ER ET EC 根据黑体辐射定律和为维恩位移定律:λmT=2897.8μm·K,其中λm为光谱辐射极大值对应波长,T为绝对温度(K)。由此而进行双波长比色红外测温。采用双波长比色测温计,测温范围400~2000℃,精度系数±1%; 2 激光再制造与热喷涂冶金组织比较

先进制造技术答案完整版完整版

先进制造技术答案完整 版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

先进制造技术复习题 一、填空题 1.先进制造技术包含主体技术群、支撑技术群和制造技术环境三个技术群。 2.制造系统是由制造过程及其所涉及硬件、软件和人员组成的一个有机整体。 3.系统的可靠性预测要根据系统的组成形式分别按串联系统,并联系统 和混联系统可靠度进行计算。 4.根据产品的信息来源,反求工程可分为实物反求,软件反求和影像反求。 5.先进制造工艺技术的特点除了保证优质、高效、低耗外,还应包括清洁 和灵活生产。 6.微细加工中的三束加工是指电子束,离子束,激光束。 7.超精密机床的关键部件包括:主轴,导轨,床身,其中机床的床身多采用天然花岗石制造。 8. 绿色制造技术是指在保证产品的功能、质量、成本的前提下,综合考虑环境影响 和资源效率的现代制造模式。 9.及时制生产追求的目标为零缺点,零库存,零整备时间,零前置时间。最终目标是排除一切可能浪费。 10.扫描隧道显微镜的两种工作模式为恒(直)电流工作模式,恒高度工作模式。

11.超高速机床主轴的结构常采用交流伺服电动机内置式集成结构,这种主轴通常被称 为空气轴承主轴。 12.快速原型制造常用的工艺方法光固化成形,叠层实体制造, 选择性激光烧结,熔融沉积制造。 13.精益生产的体系结构中三大支柱是GIT及时生产制,GT成组技术和 T QC全面质量管理14.敏捷制造的基本思想就是在“竞争—合同—协同”机制下,实现对市场需求作出快速反应的一种生产制造新模式。 15.虚拟制造技术是以信息技术、仿真技术、虚拟现实技术为支持,在产品设计或制造系统的物理实现之前,就能使人体会或感受到未来产品的性能或者制造系统的状态,从而可以作出前瞻性的决策与优化实施方案。 16.并行工程的特征为并行特性,整体特性,协同特性,约束特性。 17.大规模集成电路的微细制作方法有外延生长,氧化,光刻,选择扩散,真空镀膜。 18.优化设计的两个前提条件以数学规划为理论基础,以计算机为基础。 19.常用的看板有生产看板,运送看板两种。 20.快速原型制造技术的熔丝沉积成形法通常采用的原材料是热塑性材料。 21.精密与超精密加工有色金属时,常用的刀具材料为金刚石。 的机床配置形式通常有柔性制造单元,柔性制造系统和柔性制造生产线。23.超精密机床导轨的主要形式有:立式,滚珠丝杠式和 R-θ式

再制造表面修复技术

?????????*????*?????激光再制造技术 激光再制造技术是一种全新概念的先进修复技术,它集先进的激光熔覆加工工艺技术、激光熔覆材料技术和其它多种技术于一体,不仅可以使损伤的零部件恢复外形尺寸,还可以使其性能达到甚至超过新品的水平,是重大工程装备修复 表面添加熔覆材料,并利用高能密度的激光使之与基体表面薄层一起熔凝的方法,在材料表面形成与其为冶金结合的添料熔覆层,以改善工件表面性能的工艺。 激光再制造主要工艺流程 ?电刷镀技术 电刷镀技术需要采用专用的直流电源设备,电源的正极连接镀笔作为刷镀时的阳极;电源的负极连接工件作为刷镀时的阴极。镀笔通常采用高纯度细石墨块作为阳极材料,石墨块外面包裹一层棉花和耐磨的涤棉套。刷镀时使浸满镀液的镀笔以一定的相对运动速度在工件表面上移动,并保持适当的压力。在镀笔与工

件接触的部位,镀液中的金属离子在电场的作用下扩散到工件表面,并在表面获得电子被还原成金属原子,沉积结晶形成镀层,随着刷镀时间的增长,镀层增厚,从而达到镀覆及修复的目的。 ?纳米电刷镀技术 纳米电刷镀技术是在传统电刷镀技术的基础上发展起来的先进表面工程技术,通过把具有特定性能的纳米颗粒加入到电刷镀液中,从而得到含有纳米颗粒的复合电刷镀溶液,在刷镀过程中,复合镀液中的纳米颗粒在电场力的作用下或在络合离子挟持作用下与金属离子共同沉积在基体表面,获得纳米颗粒弥散分布的复合电刷镀层,进而提高装备零件表面性能。 纳米电刷镀溶液的制备是纳米电刷镀技术的关键和基础。镀液制备的关键是要解决纳米颗粒在盐溶液中团聚这一重大难题。 高能机械化学法是一种能有效地将纳米陶瓷颗粒分散在金属基质溶液中的复合分散方法。 ?纳米铜自修复技术 纳米铜自修复技术就是纳米铜粉作为润滑油添加剂时摩擦副出现“负磨损”现象形成的一种技术。 试验样品:铜粉颗粒直径20nm-80nm(0.5%质量),基础油为650SN。试验使用前用超声分散60min。 ?激光熔覆技术 激光熔覆技术是指在被涂覆基体表面上,以不同的添料方式放置选择的涂层材料,经激光辐照使之和基体表面薄层同时熔化,快速凝固后形成稀释度极低,与基体金属成冶金结合的涂层,从而显著改善基体材料表面的耐磨、耐蚀、耐热、抗氧化等工艺性能的方法。 目前,有些亟待解决的难题,如残余应力、变形和裂纹等。 ?激光熔覆同步送粉技术 激光熔覆过程送粉方式:预置式和同步式。预置式是将熔覆材料在激光扫描前已沉积到基体表面,此方法难以满足制备全密度功能梯度材料、高柔性等诸多现代科技需求;同步式是在激光扫描基体表面同时将熔覆材料引入熔池,可克服预置式的不足。 同步送粉法分侧向送粉和同轴送粉。 (1)侧向送粉法是粉末流与激光束轴线之间存在一定夹角,即喷嘴置于激光束一侧。难题是扫描速度方向的变化会引起熔覆层形状与厚度的改变。 (2)同轴送粉法是粉末流与激光束都垂直于熔覆层表面,克服了侧向送粉的不足。实现方法有二,如下: ①典型同轴送粉。环形粉末流围绕垂直放置的单个激光束,并汇聚于粉末流焦点。粉末流有圆环锥形聚焦粉末流和对称聚焦粉末流。 ②光内送粉。环形激光束围绕垂直放置的单个粉末流,并与粉末流相交。 光内送粉将真正消除扫描方向性问题,提高粉末流稳定性。光粉耦合不受光束离焦量影响,精度高,操作容易。通过适当调节粉斑直径和聚焦光斑直径,不仅可实现光斑略大于粉斑工艺,还能完成轮廓法熔覆过程,大大增加粉末利用率、改善熔覆质量。

真空灌注工艺

真空灌注工艺 简介 真空灌注工艺是指树脂通过真空的力量来灌注的。材料是平铺在模具上,树脂在抽完真空以后导入。要达到完全的真空,树脂通过管子逐层渗透到铺层,此工艺需根据不同厂家和材料进行分类。 传统的手糊工艺,将加强层平铺在模具上,用毛刷、辊子或其他功能一样的浸润压实,能够提高的方法就是利用真空袋将多余的树脂吸出来,真空袋能够很大地提高树脂对玻璃丝的渗透率,主要结果是让产品更强更轻。如果对真空袋不是很熟悉的话,我们建议阅读我们的手册,关于真空袋设备及技术应用,及真空成型工艺应用的经验及原理。 真空灌注的优点 真空灌注比传统的真空袋法工艺有一定的改进,主要优点如下: ?更高的树脂纤维比 ?减少浪费的树脂 ?树脂用量的一致性; ?减少准备时间; ? 清洁 真空灌注工艺的纤维树脂比比真空袋法好。传统的手糊工艺是含100%的纤维加树脂,单独的树脂是很易碎的,所以过多的树脂实际上更容易碎。真空袋能够减少这方面的问题,但是也不能解决其他额外的问题。

真空袋法对于手糊来说,确实是一大提高,但还是和手糊有关。因为这样,碾压一直处于饱和的状态。真空气压使多余的树脂吸出,但大多数的清除还要靠加强层,树脂,时间等其他的因素。 真空灌注的不同方式是,当抽成真空状态时,纤维都还是干的。从以上的观点,树脂是通过真空的力量导入,比刚开始就将多余的树脂吸入的好。真空灌注开始时没有让树脂导入。实际上,多余的树脂通过真空管导出,结果就是只有最少的树脂导入,这样就可以减轻重量,提高强度,最大化地节约树脂与纤维。部件通过真空灌注成型的可以达到很平整的水平。 由于通过真空灌注成型,树脂用量变得可计算了。当标准的手糊树脂用量,因不同的操作这而变化,真空灌注的树脂用量却是一致的。既使当制造一个大产品, 树脂用量也是高度的可重复。这样的结果是减少树脂的浪费,更重要的是减少浪费钱。 真空灌注需要注意的另一个重要因素:时间。经常发生问题是真空灌注的时间。有很多树脂的储存期约30分钟,尽管有些树脂(比如环氧树脂)的储存期是2小时,即使如此,这个时限(储存期)也是真空灌注的关键因素。大的项目很容易达到2小时的时限,即使小的,表面简单项目在出现真空泄漏时很不容易被发现,当安装好真空袋时,树脂就可能在部件间流动了。 真空灌注没有时间方面的限定,因为抽真空时,加强层还是干的,直到所有的树脂都完成。安装真空袋以后,泄漏很快会被找出来,如果有些地方不合适的,可能重新灌真空和重调。直到它不灌输树脂时,

先进制造技术名词解释及简答带答案

名词解释: 广义制造:包括市场分析、产品设计、工艺设计、生产准备、加工装配、质量保证、生产过程管理、市场营销、售前售后服务,以及报废后的回收处理等整个产品生命周期内一序列相互联系的生产活动。 狭义制造:是指生产车间内与物流有关的加工和装配过程。 先进制造技术(A MT):是指在传统制造技术基础上不断吸收机械、电子、信息、材料、能源以及现代管理技术的成果,将其综合应用于产品设计、加工装配、检验测试、经营管理、售后服务乃至回收的制造全过程,以实现优质、高效、低耗、清洁、灵活的生产,提高对动态多变市场的适应能力和竞争能力的制造技术的总称。 制造系统:是指由制造过程及其所涉及的硬件、软件和人员组成的一个具有特定功能的有机整体。 工业机器人:工业机器人是一种可重复编程的多自由度的自动控制操作机,是涉及机械学、控制技术、传感技术、人工智能、计算机科学等多学科技术为一体的现代制造业的基础设备; 柔性制造技术:是集数控技术、计算机技术、机器人技术以及现代管理技术为一体的现代制造技术。 柔性制造系统(F MS):由若干台数控加工设备、物料运储系统和计算机控制的信息系统组成的,通过改变软件程序适应多品种、中小批量生产的自动化制造系统。 绿色产品(G P):绿色产品是指在产品全生命周期内,能节约资源和能源,对生态环境无危害或少危害,且对生产者及使用者具有良好保护性的产品。 高速加工技术:是指采用超硬材料的刀具和磨具,能可靠地实现高速运动的自动化制造设备,极大地提高材料的切除率,并保证加工精度和加工质量的现代制造加工技术。 制造业:是指将制造资源,包括物料、设备、工具、资金、技术、信息和人力等,通过制造过程转化为可供人们使用和消费的产品的行业。 计算机集成制造(C IM):借助于以计算机为核心的信息技术,将企业中各种与制造有关的技术系统集成起来,使企业内的各类功能得到整体优化。 计算机集成制造系统(CIMS):CIMS 是在自动化技术、信息技术和制造技术的基础上,通过计算机及其软件,将制造工厂全部生产活动所需的各种分散的自动化系统有机地集成,是适合多品种、中小批量生产的系统。 广义制造自动化:产品设计、企业管理、加工过程、质量控制等产品制造全过程及各个环节综合集成自动化。 柔性:指制造系统对系统内部及外部环境的一种适应能力,也是指制造系统能够适应产品变化的能力。 超精密切削加工:超精密切削加工主要指金刚石刀具超精密车削,主要用于加工铜、铝等非铁金属及其合金,以及光学玻璃、大理石和碳素纤维等非金属材料。 简答题: 1. 简述柔性、FMS 的定义?柔性制造系统( FMS )由哪几部分组成?各部分都有什么功能?简述柔性制造系统( F MS)的工作过程?柔性制造系统的特点和适用范围是什么? 答:柔性:指制造系统对系统内部及外部环境的一种适应能力,也是指制造系统能够适应产品变化的能力。 FM S:柔性制造系统是由若干台数控加工设备、物料运储装置和计算机控制系统组成,并能根据制造任务或生产品种的变化迅速进行调整,以适应多品种、中小批量生产的自动化制造系统。 :__ _ _ __

(完整word版)材料成型工艺基础习题及答案

1.铸件在冷却过程中,若其固态收缩受到阻碍,铸件内部即将产生内应力。按内应力的产生原因,可分为应力和应力两种。 2.常用的特种铸造方法 有:、、、、和 等。 3.压力加工是使金属在外力作用下产生而获得毛 坯或零件的方法。 4.常用的焊接方法有、和 三大类。 5.影响充型能力的重要因素有、和 等。 6.压力加工的基本生产方式 有、、、、和等。 7.热应力的分布规律是:厚壁受应力,薄壁受 应力。 8.提高金属变形的温度,是改善金属可锻性的有效措施。但温度过高,必将产生、、和严重氧化等缺陷。所以应该严格 控制锻造温度。 9.板料分离工序中,使坯料按封闭的轮廓分离的工序称为; 使板料沿不封闭的轮廓分离的工序称为。 10.拉深件常见的缺陷是和。 11.板料冲压的基本工序分为和。前者指冲裁工序,后者包括、、和。 12.为防止弯裂,弯曲时应尽可能使弯曲造成的拉应力与坯料的纤维 方向。 13.拉深系数越,表明拉深时材料的变形程度越大。 14.将平板毛坯变成开口空心零件的工序称为。 15.熔焊时,焊接接头是由、、和 组成。其中和是焊接接头中最薄弱区域。 16.常用的塑性成形方法 有:、、、、 等。 16.电阻焊是利用电流通过焊件及接触处所产生的电阻热,将焊件局 部加热到塑性或融化状态,然后在压力作用下形成焊接接头的焊接方法。电阻焊分为焊、焊和焊三种型式。

其中适合于无气密性要求的焊件;适合于焊接有气密性要求的焊件;只适合于搭接接头;只适合于对接接头。 1.灰口铸铁的流动性好于铸钢。() 2.为了实现顺序凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩。() 3. 热应力使铸件的厚壁受拉伸,薄壁受压缩。() 4.缩孔是液态合金在冷凝过程中,其收缩所缩减的容积得不到补足,在铸件内部形成的孔洞。() 5.熔模铸造时,由于铸型没有分型面,故可生产出形状复杂的铸件。() 6.为便于造型时起出模型,铸件上应设计有结构斜度即拔模斜度。() 7.合金的液态收缩是铸件产生裂纹、变形的主要原因。() 8.在板料多次拉深时,拉深系数的取值应一次比一次小,即 m1>m2>m3…>mn。() 9.金属冷变形后,其强度、硬度、塑性、韧性均比变形前大为提高。() 10.提高金属变形时的温度,是改善金属可锻性的有效措施。因此,在保证金属不熔化的前提下,金属的始锻温度越高越好。()11.锻造只能改变金属坯料的形状而不能改变金属的力学性能。 () 12.由于低合金结构钢的合金含量不高,均具有较好的可焊性,故焊前无需预热。() 13.钢中的碳是对可焊性影响最大的因素,随着含碳量的增加,可焊性变好。() 14.用交流弧焊机焊接时,焊件接正极,焊条接负极的正接法常用于

西南交通大学 材料成型技术基础复习纲要

第一篇 金属铸造成形工艺 一.掌握铸造定义与实质及其合金的铸造性能。 A铸造:将熔融金属浇入铸型型腔, 经冷却凝固后获得所需铸件的方法。 B铸造实质:液态成形。 C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。 D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。 二.掌握合金的充型能力及影响合金充型能力的因素。 A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。 B影响合金充型能力的因素: (1)铸型填充条件 a. 铸型材料; b. 铸型温度; c. 铸型中的气体 (2)浇注条件 a. 浇注温度(T) T 越高(有界限),充型能力越好。 b. 充型压力 流动方向上所受压力越大, 充型能力越好。 (3)铸件结构

结构越复杂,充型越困难。 三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。 A合金的收缩:合金从浇注、凝固、冷却到室温,体积 和尺寸缩小的现象。 B合金收缩的三个阶段: (1)液态收缩 合金从 T浇注→ T凝固开始 间的收缩。 (2)凝固收缩 合金从 T凝固开始→T凝固终止 间的收缩。 液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。 (3)固态收缩(易产生铸造应力、变形、裂纹等。) 合金从 T凝固终止→T室 间的收缩。 四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。 A产生缩孔和缩松的主要原因:液态收缩 和 凝固收缩 导致。 B缩孔形成原因:收缩得不到及时补充; 缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。 C缩孔与缩松的预防: (1)定向凝固,控制铸件的凝固顺序; (2)合理确定铸件的浇注工艺 五.掌握铸件产生变形和裂纹的根本原因。 铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力) 六.掌握预防热应力的基本途径。 预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。借助于冷铁使铸件实现同时凝固。

复合材料真空灌注成型制造流程

1.模具表面处理 1.1模具表面检查 检查模具表面有无缺陷,如砂眼、伤痕等。如有则避开此位置(伤痕处做好标识,待以后修补)。 1.2模具表面清洁 先用高压气体把表面吹干净,保证气体不能带水分。然后用干净的布把表面擦拭干净。 1.3脱模材料处理 1.3.1表面依次打洁模剂、封孔剂、脱模剂 2、结构铺层 2.1玻纤铺层 将玻纤平整地铺设在模具上搭接的区域不超过1cm,注意每层接缝错开50mm 左右。 2.2辅料(脱模布+带孔隔离膜+导流网)铺层 2.2.1将脱模布平整的铺在最上层复合毡的上面,注意脱模布要平整,无折痕。 脱模布有效尺寸为产品长/宽方向各+15cm。 2.2.2将带孔隔离膜、导流网依次按顺序平整铺在脱模布上面,并用豆粒大小的 密封胶条将其固定平整。带孔隔离膜、导流网有效尺寸为产品长/宽方向 各-3cm。 2.3胶条+缠绕管+欧姆管+真空袋铺设 2.3.1在美纹纸外侧周围5到6厘米的位置铺设一圈缠绕管并用豆粒大小的密封 胶条将其固定住。用覆盖在产品上最外侧的脱模布将缠绕管盖住,尺寸须刚刚完全遮住缠绕管。 2.3.2在缠绕管外侧四周距离5到6厘米的位置铺设一圈密封胶条,注意先不要 将隔纸撕下。 2.3.3注胶口设在顶部中间位置,欧姆管即设在顶部一条。截取一根Ω管并将Ω 管边缘的毛刺打磨光滑,再将Ω管从中间锯断,套上三通,三通与欧姆管连接的地方贴一层胶条。然后缠绕3-4圈密封胶条于三通直通底部上

2.3.4剪取一块长宽均大于密封胶条粘接区域20cm的真空袋膜,将真空袋膜抬到 产品上侧慢慢放下,从一边开始留足2cm余量后慢慢边扯掉缠绕管四周的密封胶条上的隔纸边铺好真空袋膜。 2.3.5使用抽气管将真空系统与树脂收集器连接。 2.4 真空保压 2.4.1开启真空泵,把真空袋膜理顺留足余量后,再把三通进胶口位置的真空袋膜 剪个口,然后在三通底座端头用密封胶条缠绕两圈,将真空袋膜与三通完全密闭,再将进胶管与欧姆管连接密封,最后用硬纸封住进气口。 2.4.2将真空表密封固定抽气管的抽气口。 2.4.3开启真空泵,检测真空系统的密封性,真空系统压力抽至20mbr以下,关闭 真空泵保压15分钟后检测压力,若压力增加不超过5mbr,方可进入下一步骤,如真空压力未达到上述要求则需不停检漏,直至无漏气点达到上述的要求。 注意:①收集器,真空泵,管连接真空密封必须保证密封②整个真空袋膜系统保证不漏气③压力必须达到标准后在灌注树脂。 3、产品制造 3.1配置树脂 配制环氧树脂:固化剂。每次配制需使用干净无杂质的配胶桶,将树脂与固化剂搅拌均匀,搅拌次数不得低于三次。 3.2真空灌注 将进胶管端部折三折,保证不漏气,然后将进胶口插入树脂中,然后再慢慢松开弯折。注意整个过程需不断检查,不要漏气。 3.3固化 3.4脱模 撕去真空辅材,注意操作时要小心,避免产品变形。然后将产品轻抬脱模,注意不要损伤产品面。 4、后处理 4.1产品切割

相关主题