搜档网
当前位置:搜档网 › 【附20套高考模拟试题】2020届天津市重点名校高考数学模拟试卷含答案

【附20套高考模拟试题】2020届天津市重点名校高考数学模拟试卷含答案

【附20套高考模拟试题】2020届天津市重点名校高考数学模拟试卷含答案
【附20套高考模拟试题】2020届天津市重点名校高考数学模拟试卷含答案

2020届天津市重点名校高考数学模拟试卷

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入的

值分别为

,则输出的值为

A .

B .

C .

D .

2.已知,是空间中的两条不同的直线,,是空间中的两个不同的平面,则下列命题正确的是( ). A .若,,则. B .若,,则.

C .若,,则.

D .若

,则

.

3.已知函数,若

,则实数m 的取值范围是

A .

B .

C .

D .

4.函数2

y 34

x x =

--+ )

A .(41)--,

B .(41)-,

C .(11)-,

D .(11]

-, 5.如图是一个几何体的三视图,则该几何体的体积为( )

A .23

B .43

C .23

D .43

6.若存在等比数列{}n a ,使得()123169a a a a +=-,则公比q 的最大值为(

A .15+

B .152+

C .154-+

D .15

2-+

7.已知点,,点是圆上的动点,则

面积的最小值为( )

A .1

B .2

C .3

D .4

8. “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是

A .2

B .3

C .10

D .15

9.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50?海里方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20?,在B 处观察灯塔,其方向是北偏东65?,那么B 、C 两点间的距离是( ) A .2海里

B .103

C .2

D .203

10.已知O 是ABC ?所在平面上的一定点,若动点P 满足sin sin AB AC OP OA AB B AC C λ??

=++ ? ???

u u u r u u u r

u u u r u u u r ,

()0,λ∈+∞,则点P 的轨迹一定通过ABC ?的( )

A .内心

B .外心

C .重心

D .垂心

11.若1sin()4a π+=,,02a π??

∈- ???,则

cos 21tan αα

-=( )

A.

15

8

-

B.

15

8C

15

4D.

15

16

12.若

4

cos

5

α=-,α是第三象限的角,则

1tan

2

1tan

2

α

α

+

=

-

()

A.

1

2

-

B.

1

2C.2 D.-2

二、填空题:本题共4小题,每小题5分,共20分。

13.若

(),

P x y

满足条件

1

3

0,2,

24

x

x z

x y z

y

x y

?

-

?

-≥=

?

?-≤

?

且则

的最大值为__________.

14.若

4

()(2)

ax y x y

-+的展开式中23

x y的系数为8,则a=_____________.

15.已知双曲线C:

22

22

1(0,0)

x y

a b

a b

-=>>

的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线于交M、N两点,若60

MAN

∠=o,则C的离心率为__________.

16.已知函数

()

31,01

4

,1

1

x x

f x

x

x

?+≤<

?

=?

?+

?,若关于x的方程()1

f x kx

=+

有3个互异的实数解,则实数k的取值范围是______.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(12分)一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:

在给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数y与进店人数x是否线性相关?(给出判断即可,不必说明理由)

建立

y

关于x的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数)

18.(12分)如图,已知AB ACD

⊥平面,//

AB DE22

AD AC DE AB

====,且F是CD的中点,

3AF =.

求证://AF BCE 平面;求证:平面BCE ⊥平面CDE ;求CB 与平

面CDE 所成角的正弦值.

19.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,平面PAD ⊥平面ABCD ,且

2PA AD ==,120PAB PAD ∠=∠=?,E 为PD 的中点,AE EC ⊥.

求证://PB 平面EAC ;求三棱锥B ACE -的体积.

20.(12分) [选修4-4:坐标系与参数方程]

平面直角坐标系xOy 中,射线l :3(0)y x x =≥,曲线1C 的参数方程为3cos 2sin x y α

α=??

=?(a 为参数),曲

线

2

C 的方程为

22

(2)4x y +-=;以原点为极点,x 轴的非负半轴为极轴建立极坐标系.曲线3C 的极坐标方程为8sin ρθ=.写出射线l 的极坐标方程以及曲线1C

的普通方程;已知射线l 与2C 交于O ,M ,与3

C 交于O ,N ,求

MN

的值.

21.(12分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA AB AD ===,四边形ABCD 满足,//AB AD BC AD ⊥且4BC =,点M 为PC 的中点,点E 为BC 边上的动点,且

BE

EC

λ=. 求证:平面ADM ⊥平面PBC ;是否存在实数λ,使得二面角P DE B --的

余弦值为

2

3

?若存在,试求出实数λ的值;若不存在,说明理由.

22.(10分)已知数列{}

n

a

的前n项和为n

S

,且

3

n n

a S n

+=+

.设

1

n n

b a

=-

,求证:数列

{}

n

b

是等比数

列;设

(21)

n n

c n a

=-

,求数列

{}

n

c

的前n项和n T.

参考答案

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.C

2.D

3.D

4.C

5.A

6.D

7.A

8.C

9.A

10.C

11.B

12.A

二、填空题:本题共4小题,每小题5分,共20分。

13.7

14.1

15

16

.(7(0,1) -+U

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

17.(1)见解析;(2)见解析.

【解析】

【分析】

(1)根据所给的这一组数据,得到7个点的坐标,把这几个点的坐标在直角坐标系中描出对应的点,得到散点图,从散点图可以看出,这两个两之间是线性相关;

(2)根据所给的数据,做出x,y的平均数,进而求出线性回归方程的系数,写出线性回归方程.把x=80的值代入方程,预报出对应的y的值.

【详解】

(1)

由散点图可以判断,商品件数y 与进店人数x 线性相关 (2)因为

7

1

3245i i

i x y

==∑,25x =,15.43y =,

7

21

5075i i x ==∑,()2

74375x =,72700xy =,

所以()

7

172

21732452700

0.785075437?5

7i i i i

i x y xy

b x x ==--==

≈--∑

^^

y x a

b

=- 15.430.7825 4.07=-?=-

所以回归方程0.7847?.0y

x =-, 当80x =时,0.7880 4.0?758y

=?-≈(件) 所以预测进店人数为80时,商品销售的件数为58件. 【点睛】

在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具

有线性相关关系,可通过线性回归方程来估计预测. 18.(1)证明见解析;(2)证明见解析;(315

。 【解析】 【分析】

(1)取CE 的中点G ,可以利用中位线定理,根据已知的平行关系和长度关系,可以得到一个平行四边形,利用平行四边形的对边平行,这样得到线线平行,也就能证明出线面平行;

(2)通过已知和(1)可知AF CD ⊥,通过线面垂直和平行线的性质,可以,DE AF ⊥这样可以证明出线面垂直,而,AF BG P 从而证明出BG ⊥平面,CDE 利用面面垂直的判定定理可以证明出平面BCE ⊥平面CDE ;

(3)通过(2)证明出的线面垂直关系,找到线面角,利用勾股定理、平行四边形的性质,求出相关的边,

利用正弦的定义,求出CB 与平面CDE 所成角的正弦值。 【详解】

(1)如上图,取CE 的中点G ,连接,BG FG , 由F 是CD 的中点,,FG DE ∴P 且1,2FG DE =

又//AB DE ,且1

,2

AB DE = ,FG AB ∴= 且FG AB ∥. ABGF ∴是平行四边形,从而FA GB P ,

又AF ?平面BCE ,BG ?平面BCE , 因此//AF BCE 平面; (2)证明:,AD AC F =Q 是CD 的中点,AF CD ∴⊥, 因为AB ⊥平面ACD ,AB DE ∥,所以DE ⊥平面ACD , 又AF ?平面,ACD ,DE AF ∴⊥而,DE CD D ?= ()222

0.3U R r R E U +=

=Ω-平面,CDE

由,AF BG P 可知BG ⊥平面,CDE BG ?Q 平面BCE ,∴平面BCE ⊥平面CDE ;

(3)由(2)知BG ⊥平面,CDE CG ∴是CB 在平面CDE 的射影,则CB 与平面CDE 所成的角为BCG ∠,

因为

AB ACD 平面⊥,所以5AB AC BC ⊥?=,由(1)可知: ABGF 是平行四边形,从而3GB AF ==

在Rt CBG ?中,315sin 5

BG BCG BC ∠=

== CB 与平面CDE 15

【点睛】

本题考查了线面平行、面面垂直的判定以及线面角的求法。 19.(1)证明见解析;(2)1

2

B ACE V -=. 【解析】

【分析】

(1)连接BD ,交AC 于点O ,连接EO ,根据三角形中位线的性质可得//PB EO ,再根据线面平行的判定可得结论成立.(2)在PAB ?中由余弦定理得23PB =,于是3EO =

.在平面PAD 内,作

PF AD ⊥,交DA 的延长线于F ,由条件可得PF ⊥平面ABCD ,即PF 为点P 到平面ABCD 的距离,

然后再结合1

2

B ACE E ACB P AB

C V V V ---==求解可得所求. 【详解】

(1)证明:连接BD ,交AC 于点O ,连接EO . ∵E 为PD 的中点,O 为BD 的中点, ∴EO 为PBD ?的中位线, ∴//PB EO ,且1

2

EO PB =

. 又EO ?平面EAC ,PB ?平面EAC , ∴//PB 平面EAC .

(2)在PAB ?中,2PA AB ==,120PAB ∠=?, 由余弦定理得2222cos12012PB PA AB PA AB =+-??=, ∴3PB = ∴3EO =

∵AE EC ⊥,且O 为AC 的中点, ∴223AC EO == 在ABO ?中,221BO AB AO =

-=.

在平面PAD 内,作PF AD ⊥,交DA 的延长线于F . ∵平面PAD ⊥平面ABCD ,平面PAD ?平面ABCD AD =, ∴PF ⊥平面ABCD .

即PF 为点P 到平面ABCD 的距离. ∵点E 为PD 的中点,

∴点E 到平面ABCD 的距离h 是PF 长度的一半.

在PFA ?中,sin6022

PF PA ?==?=

∴1111(2232

B ACE E ACB P AB

C ABC V V V S ---?===??=. 【点睛】

在求空间几何体的体积时,要注意分清几何体的形状,对于形状规则的几何体可直接根据公式求其体积;

对于形状不规则的几何体,可根据“分割”或“补形”的方法转化为形状规则的几何体再求其体积.

20.(Ⅰ)()03π

θρ=≥ 22

194

x y +=;

(Ⅱ)【解析】 【分析】

(Ⅰ)依题意,根据极坐标与直角坐标的互化公式,以及参数方程与普通方程的互化,即可得到射线l 的极坐标方程以及曲线1C 的普通方程;

(Ⅱ)曲线2C 的方程为()2

224x y +-=,得到曲线2C 的极坐标方程为4sin ρθ=,根据极径的几何意义,即可求解。 【详解】

(Ⅰ)依题意,因为射线():0l y x =≥,故射线():03

l π

θρ=

≥;

因为曲线13cos :(2sin x C y ααα=??=?

为参数),可得曲线22

1:194x y C +=.

(Ⅱ)曲线2C 的方程为()2

224x y +-=,故2

2

40x y y +-=,

故曲线2C 的极坐标方程为4sin ρθ=,设点,M N 对应的极径分别为12,ρρ,

故124sin 8sin

3

3

MN π

π

ρρ=-=-=【点睛】

本题主要考查了极坐标与直角坐标,参数方程与普通方程互化,以及极坐标的几何意义的应用,其中解答

中熟记极坐标与直角坐标互化公式,合理消参是解答的关键,同时注意极坐标中极径的应用,着重考查了分析问题和解答问题的能力,属于基础题。 21.(1)证明见解析;(2)3λ=或1

3

λ=. 【解析】

试题分析:(1)取PB 的中点N ,连接AN MN 、,先证明四边形ADMN 为平行四边形,再证明AN ⊥平面PBC ,进而可得平面ADM ⊥平面PBC ;(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系A xyz -,求出平面PDE 的一个法向量,结合平面DEB 一个法向量为()20,0,1n =,利用空间向量夹角的余弦公式列出关于λ的方程即可求解.

试题解析:(1)取PB 的中点N ,连接AN MN 、, ∵M 是PC 的中点,N 是PB 的中点,∴1

//,MN 22

MN BC BC =

=. 又∵//BC AD ,∴//,MN MN AD AD =,∴四边形ADMN 为平行四边形. ∵,AB AD AP AD ⊥⊥,∴AD ⊥平面PAB ,∴AD AN ⊥,∴AN MN ⊥, ∵AP AB =,∴AN PB ⊥,∴AN ⊥平面PBC , ∵AN ?平面ADM ,∴平面ADM ⊥平面PBC . (2)存在符合条件的λ,

以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系A xyz -,则

()()()0,0,2,0,2,0,2,0,0P D B ,

设()2,t,0E ,从而()()0,2,2,2,2,0PD DE t =-=-u u u v u u u v

,则平面PDE 的一个法向量为()12,2,2n t =-,

又平面DEB 即为平面xAy ,其一个法向量为()20,0,1n =, 则()

12

122

12

2cos ,3

244

n n n n n n t ?=

==

?-++, 解得3t =或1t =,故3λ=或13

λ=

. 考点:1、线面垂直与面面垂直的判定定理;2、空间向量夹角的余弦公式.

22.(1)见解析;(2)2n ()1

16232n n -??+-+ ???

.

【解析】 【分析】

(1)由3n n a S n +=+得114n n a S n +++=+,两式相减可得111

22

n n a a +=

+,代入1n n b b +即可得证;

(2)由()21

1111352113521222n n T n n -????=+?+?++-+++++- ? ?

????L L ,分组求和即可,设

n

M ,利用错位相减求和即可,另一部分利用等差数列求和公式

即可得解. 【详解】

(1)由3n n a S n +=+得114n n a S n +++=+, 两式相减得121n n a a +-=,即111

22

n n a a +=

+,

高三模拟考试数学试卷(文科)精选

高三模拟考试数学试卷(文科) 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数f(x)=的定义域为( ) A.(﹣∞,0] B.(﹣∞,0)C.(0,)D.(﹣∞,) 2.复数的共轭复数是( ) A.1﹣2i B.1+2i C.﹣1+2i D.﹣1﹣2i 3.已知向量=(λ, 1),=(λ+2,1),若|+|=|﹣|,则实数λ的值为( ) A.1 B.2 C.﹣1 D.﹣2 4.设等差数列{a n}的前n项和为S n,若a4=9,a6=11,则S9等于( ) A.180 B.90 C.72 D.10 5.已知双曲线﹣=1(a>0,b>0)的离心率为,则双曲线的渐近线方程为( ) A.y=±2x B.y=±x C.y=±x D.y=±x 6.下列命题正确的个数是( ) A.“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题; B.命题p:x≠2或y≠3,命题q:x+y≠5则p是q的必要不充分条件; C.“?x∈R,x3﹣x2+1≤0”的否定是“?x∈R,x3﹣x2+1>0”; D.“若a>b,则2a>2b﹣1”的否命题为“若a≤b,则2a≤2b﹣1”. A.1 B.2 C.3 D.4 7.已知某几何体的三视图如图所示,则这个几何体的外接球的表面积等于( ) A.B.16πC.8πD. 8.按如图所示的程序框图运行后,输出的结果是63,则判断框中的整数M的值是( )

A.5 B.6 C.7 D.8 9.已知函数f(x)=+2x,若存在满足0≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my﹣10=0垂直,则实数m的取值范围是(三分之一前有一个负号)( ) A.C.D. 10.若直线2ax﹣by+2=0(a>0,b>0)恰好平分圆x2+y2+2x﹣4y+1=0的面积,则的最小值( ) A.B.C.2 D.4 11.设不等式组表示的区域为Ω1,不等式x2+y2≤1表示的平面区域为Ω2.若Ω1与Ω2有且只有一个公共点,则m等于( ) A.﹣B.C.±D. 12.已知函数f(x)=sin(x+)﹣在上有两个零点,则实数m的取值范围为( ) A.B.D. 二、填空题:本大题共4小题,每小题5分. 13.设函数f(x)=,则方程f(x)=的解集为__________. 14.现有10个数,它们能构成一个以1为首项,﹣3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是__________. 15.若点P(cosα,sinα)在直线y=﹣2x上,则的值等于__________. 16.16、如图,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱C1D1、C1C的中点.以下四个结论: ①直线AM与直线CC1相交; ②直线AM与直线BN平行; ③直线AM与直线DD1异面; ④直线BN与直线MB1异面. 其中正确结论的序号为__________.

2019年百所名校高考文科数学模拟试卷5套(含解析)

2019年百所名校高考模拟试卷 文科数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只 有一项是符合题目要求的. 1.已知集合{}24A x x =∈-<??∴? +?-

2020最新高考数学模拟测试卷含答案

第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题 给出的四个选项中,只有一项是符合题目要求的. (1)化简? --???-160cos 120cos 20cos 20sin 212 得 ( ) (A ) ?-40sin 1 (B ) ? -?20sin 20cos 1(C )1 (D )-1 (2)双曲线8822=-ky kx 的一个焦点是(0,-3),则k 的值是 ( ) (A )1 (B )-1 (C )3 15 (D )-3 15 (3)已知)(1 x f y -= 过点(3,5),g (x )与f (x )关于直线x =2对称, 则y =g (x )必过 点 ( ) (A )(-1,3) (B )(5,3) (C )(-1,1) (D )(1,5) (4)已知复数3)1(i i z -?=,则=z arg ( ) (A )4 π (B )-4 π (C )4 7π (D )4 5π (5)(理)曲线r =ρ上有且仅有三点到直线8)4 cos(=+πθρ的距离为1,则r 属于集合 ( ) (A )}97|{<

线的夹角 在)12 ,0(π内变动时,a 的取值范围是 ( ) (A )(0,1) (B ))3,3 3 ( (C ))3,1( (D ) )3,1()1,3 3 ( Y 6.半径为2cm 的半圆纸片卷成圆锥放在桌面上,一阵风吹倒它,它的最高处距桌面( ) (A )4cm (B )2cm (C )cm 32 (D )cm 3 7.(理))4sin arccos(-的值等于 ( ) (A )42-π (B )2 34π- (C )423-π (D )4+π (文)函数2 3cos 3cos sin 2- + =x x x y 的最小正周期为 ( ) (A )4 π (B )2 π (C )π (D )2π 8.某校有6间电脑室,每晚至少开放2间,则不同安排方案的种数为 ( ) ①26C ②66 56 46 36 2C C C C +++③726- ④26P 其中正确的结论为 ( ) (A )仅有① (B )有②和③ (C )仅有② (D )仅有③ 9.正四棱锥P —ABCD 的底面积为3,体积为,2 2E 为侧棱PC 的中点, 则PA 与BE 所成 的角为 ( ) (A )6 π (B )4 π (C )3 π (D )2 π

100所名校高考模拟金典卷--数学卷(二)

100所名校高考模拟金典卷 数学卷(二) 一、选择题. 共12小题, 每题5分. 1.已知复数i m z 21+=, i z 432-=, 若21z z 为实数, 则实数m 的值为(C ) A .23 B .38 C .-23 D .-3 8 2.已知集合{})1(2 2log |-x y x A ==, ??????==1)21(|-x y y B ,则B A ?等于(D ) A .(2 1, 1) B .(1, 2) C .(0, +∞) D .(1, +∞) 3.设R a ∈, 则“1=a ”是“直线012:1=-+y ax L 与直线04)1(:2=+++y a x L 平行”的(A ) A .充分不必要条件 B . 必要不充分条件 C .必要条件 D . 即不充分也不必要条件 4.已知向量a , b 都是单位向量, 且2b =-a , 则)(b a a +?的值为(C ) A .-1 B .0 C .1 D .2 5.已知6.05=a , 56.0=b , 56.0log =c , 则a , b , c 的大小顺序是(D ) A .a

7.某几何体的三视图如图所示, 图中的四边形都是边长为2的正方形, 两条虚线互相垂直, 则该几何体的体积是 (A ) A .320 B .3 16 C .68π- D .38π- 8.已知函数x x x x f 212)(2-++=, 则)(x f y =的图像大致为 (A ) 9.函数)2|)(|2sin()(π??< +=x x f 向左平移6π个单位后是奇函数, 则函数)(x f 在??????2,0π上的最小值为(A ) A .23- B .2 1- C .21 D .23 10.某大学的八名同学准备拼车去旅游,其中大一大二大三大四每个年级各两名,分乘甲乙两辆汽车.每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆汽车,则乘坐甲车的4名同学中恰有2名同学是来自于同一年级的乘坐方式共有(B) A .18种 B .24种 C .36种 D .48种 11.已知双曲线)0,0(12222>>=-b a b y a x 的右焦点)0,(c F , 直线c a x 2 =与其渐近线交于A ,B 两点, 且ABF △为钝角三角形, 则双曲线离心率的取值范围是(D ) A .),3(+∞ B .)3,1( C .),2(+∞ D .)2,1(

100所名校高考模拟金典卷(十)理科数学

100所名校高考模拟金典卷(十)理科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 参考公式: 样本数据12,,,n x x x 的标准差 s = 其中x 为样本平均数 柱体体积公式V Sh = 其中S 为底面面积,h 为高 锥体体积公式 1 3 V Sh = 其中S 为底面面积,h 为高 球的表面积,体积公式 2 4R S π=,3 3 4R V π= 其中R 为球的半径 第Ⅰ卷(选择题共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.在复平面内,复数 2334i i -+-所对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.已知集合{}|23A x x =-≤<,{}|lg(1)B x y x ==-,那么集合A B 等于 A .{}|13x x -<< B .{|1x x ≤-或3}x > C .{}|21x x -≤<- D .{}|13x x << 3.已知,p q 为两个命题,则“p q ∧是真命题”是“p ?为假命题”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人.从女生中任意抽取20人进行调查,这种抽样方法是 A .简单随机抽样法 B .抽签法 C .随机数表法 D .分层抽样法 5.双曲线2 2 3412x y -=的离心率为 A .B . C .2 D 6.程序框图如右图,若5n =,则输出s 的值为 A .30 B .50 C .62 D .66

2020年全国100所名校高考模拟金典卷理科数学(二)试题(含解析)

100所名校高考模拟金典卷·数学(二) (120分钟 150分) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{|01}A x x =剟 ,1|2B x x ?? =>???? ,则A B ?=( ) A .1,12?? ???? B .1,12?? ??? C .(0,1) D .10,2?? ?? ? 2.复数11z i i ??=+ ?? ? (i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.设双曲线22 22:1(0,0)x y C a b a b -=>>的实轴长为8,一条渐近线为34 y x =,则双曲线C 的方程为( ) A . 22 16436 x y -= B . 22 13664 x y -= C . 22 1916 x y -= D . 22 1169 x y -= 4.函数())1f x x x =+的大致图象为( ) A . B . C . D . 5.已知{}n a 为公差不为0的等差数列,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,* n ∈N ,则21S 的值为( ) A .0 B .90- C .90 D .110 6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中一定正确的是( ) (注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生).

高考数学模拟复习试卷试题模拟卷180

高考模拟复习试卷试题模拟卷 【高频考点解读】 1.了解逻辑联结词“或”、“且”、“非”的含义. 2.理解全称量词与存在量词的意义. 3.能正确地对含有一个量词的命题进行否定. 【热点题型】 题型一含有逻辑联结词的命题的真假判断 例1、(1)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为() A.(p)∨(q)B.p∨(q) C.(p)∧(q) D.p∨q (2)如果命题“非p或非q”是假命题,给出下列四个结论: ①命题“p且q”是真命题; ②命题“p且q”是假命题; ③命题“p或q”是真命题; ④命题“p或q”是假命题. 其中正确的结论是() A.①③ B.②④C.②③ D.①④ 【提分秘籍】 (1)“p∨q”、“p∧q”、“p”形式命题真假的判断关键是对逻辑联结词“或”“且”“非”含义的理解,其操作步骤是:①明确其构成形式;②判断其中命题p、q的真假;③确定“p∨q”、“p∧q”、“p”形式命题的真假. (2)p且q形式是“一假必假,全真才真”,p或q形式是“一真必真,全假才假”,非p则是“与p的真假相反”. 【举一反三】 已知命题p:?x0∈R,使sin x0= 5 2;命题q:?x∈R,都有x2+x+1>0.给出下列结论: ①命题“p∧q”是真命题;②命题“p∨q”是真命题;③命题“p∨q”是假命题;④命题“p∧q”是假命题.其中正确的是() A.②③B.②④ C.③④ D.①②③ 题型二全称命题、特称命题的真假判断

例2 下列命题中,真命题是() A .?m0∈R ,使函数f(x)=x2+m0x(x ∈R)是偶函数 B .?m0∈R ,使函数f(x)=x2+m0x(x ∈R)是奇函数 C .?m ∈R ,函数f(x)=x2+mx(x ∈R)都是偶函数 D .?m ∈R ,函数f(x)=x2+mx(x ∈R)都是奇函数 【提分秘籍】 (1)①要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p(x)成立.②要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x0,使p(x0)不成立即可. (2)要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x0,使p(x0)成立即可,否则这一特称命题就是假命题. 【举一反三】 下列命题中是假命题的是( ) A .?x ∈? ?? ?0,π2,x>sin x B .?x0∈R ,sin x0+cos x0=2 C .?x ∈R,3x>0 D .?x0∈R ,lg x0=0 题型三含有一个量词的命题否定 例3、命题“对任意x ∈R ,都有x2≥0”的否定为( ) A .对任意x ∈R ,都有x2<0 B .不存在x ∈R ,使得x2<0 C .存在x0∈R ,使得x20≥0 D .存在x0∈R ,使得x20<0 【提分秘籍】 全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词、存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可. 【举一反三】 设x ∈Z ,集合A 是奇数集,集合B 是偶数集,若命题p :?x ∈A,2x ∈B ,则() A .p :?x ∈A,2x ?B B .p :?x ?A,2x ?B

(完整版)100所名校高考模拟金典卷数学卷(三)

100所名校高考模拟金典卷 数学卷 三 一.选择题.本大题共12道小题,每题5分. 1.集合}{06|2≤-+=x x x A ,}{21,ln |e x x y y B ≤≤==.则)(B C A R I 等于 (D ) A .[]2,3- B .[)(]3,00,2Y - C .[]0,3- D .[)0,3- 2.设)(1是虚数单位i i z +=,则22z z +在复平面内对应的点在 (A ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列函数中,既是偶函数又在),0(+∞上单调递增的是 (D) A .x e y = B .x y sin = C .x y = D .2ln x y = 4.最新在微博上流行一个词叫做“中国式过马路”,就是凑够一撮人就可以走了,跟红绿灯是没有关系的.部分专家认为交通规则的制定目的就在于服务于城市管理,方面行人,而“中国式过马路”是对我国法制化进程的严重阻碍,体现了国人规则意识的淡薄.对这种只从公众的角度进行原因分析的观点,某媒体进行了网上调查,持不同态度的人数如下表: 在所有参与调查的人中,用分层抽样的方法抽取n 个人,已知从“支持”态度的人中抽取了45人,则n 的值为(B ) A .120 B .100 C .50 D .150 5.以线段)20(02:≤≤=-+x y x AB 为直径的圆的方程为 (B ) A .2)1()1(22=+++y x B .2)1()1(2 2=-+-y x C .8)1()1(22=+++y x D .8)1()1(22=-+-y x 6.执行如图所示的程序框图,则? 21sxdx 等于(B ) 框图找不到了 A .10- B .15- C .25- D .5- 7.(2014年辽宁卷理科,8)设等差数列}{n a 的公差为d ,若数列}{n a a 12 为递减数列,则 (C) A .0d C .01d a

2020年全国100所名校高考模拟金典卷理科数学(十)试题

100所名校高考模拟金典卷·数学(十) (120分钟 150分) 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符题目要求的. 1.已知集合{} 2|4M x x =…,{2,1,0,1,2}N =--,则( ) A .M N ?=? B .N M ? C .{1,0,1}M N ?=- D .M N ?=R 2.下列复数中实部比虚部小的是( ) A .92i + B .34i - C .2 (3)i + D .(45)i i + 3.已知向量(2,)a m =r ,(1,3)b =-r ,若()a b b +⊥r r r ,则m =( ) A .1- B .1 C .4 D .4- 4.在ABC △中,sin B A =,a =,且4 C π = ,则c =( ) A B .3 C . D .5.为比较甲、乙两名学生的数学学科素养的各项能力指标值(满分为5分,分值高者为优),绘制了如图所示的六维能力雷达图,例如图中甲的数学抽象指标值为4,乙的数学抽象指标值为5,则下面叙述正确的是( ) A .乙的逻辑推理能力优于甲的逻辑推理能力 B .甲的数学建模能力指标值大于乙的直观想象能力指标值 C .乙的六维能力指标值平均水平大于甲的六维能力指标值平均水平 D .甲的数学运算能力指标值大于甲的直观想象能力指标值 6.甲、乙两个几何体的三视图如图所示(单位相同),记甲、乙两个几何体的体积分别为1V 、2V ,则( )

A .122V V > B .122V V = C .12163V V -= D .12173V V -= 7.如图,正方形BCDE 和正方形ABFG 的边长分别为2a ,a ,连接CE 和CG ,在两个正方形区域内任取一点,则该点位于阴影部分的概率是( ) A . 35 B . 38 C . 310 D . 320 8.已知的数1 ()2cos22 f x x x = -,把函数()f x 的图象上所有点的横坐标伸长到原来的3倍(纵坐标不变),再把所得到的曲线向右平移4 π 个单位长度,得到函数()g x 的图象,则函数()g x 的对称中心是( ) A .3,022k ππ?? + ??? ,k ∈Z B .2,02k π π? ? + ?? ? ,k ∈Z C .35,024k ππ?? + ??? ,k ∈Z D .5,04k ππ? ? + ?? ? ,k ∈Z 9.执行如图所示的程序框图,则输出的k 值是( ) A .4 B .5 C .6 D .8

高三数学高考模拟测试卷及答案

-南昌市高三测试卷数学(五) 命题人:南昌三中 张金生 一、 选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一 项是符合题目要求的。 1.已知集合{}{} M x x y y N M ∈==-=,cos ,1,0,1,则N M 是 ( ) A .{}1,0,1- B. { }1 C. {}1,0 D.{}0 2.(文)在数列{n a }中,若12a =-,且对任意的n N *∈有1221n n a a +-=,则数列{}n a 前15项的和为( ) A . 105 4 B .30 C .5 D . 452 (理) 若复数i i a 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 ( ) A. 13 B.13 C. 3 2 D. -6 3.若0< B .||||b a > C .a b a 1 1>- D .22b a > 4.设,,a b c 分别ABC △是的三个内角,,A B C 所对的边,若1,3060A a b ==则是B =的 ( ) A.充分不必要条件; B.必要不充分条件; C.充要条件; D.既不充分也不必要条件; 5.设a ,b ,c 是空间三条直线,α,β是空间两个平面,则下列命题中,逆命题不成立的是( ) A 当c α⊥时,若c β⊥,则α∥β B 当α?b 时,若b β⊥,则βα⊥ C 当α?b ,且c 是a 在α内的射影时,若b c ⊥,则a b ⊥ D 当α?b ,且α?c 时,若//c α,则//b c 6.设n x x )5(3 12 1-的展开式的各项系数之和为M ,而二项式系数之和为N ,且M -N=992。则展开式中x 2项的系数为( ) A .150 B .-150 C .250 D .-250 7.将A 、B 、C 、D 四个球放入编号为1,2,3的三个盒子中,每个盒子中至少放一个球且A 、B 两个球不能放在同一盒子中,则不同的放法有( ) A .15 B .18 C .30 D .36 8.(文)已知=(2cos α,2sin α), =(3cos β,3sin β),与的夹角为60°,则直线 x cos α-ysin α+2 1 =0与圆(x -cos β)2+(y+sin β)2=1的位置关系是( ) A .相交 B .相切 C .相离 D .不能确定 (理)统计表明,某省某年的高考数学成绩2(75,30)N ξ,现随机抽查100名考生的数学试卷,则 成绩超过120分的人数的期望是( ) (已知(1.17)0.8790,(1.5)0.9332,(1.83)0.9664φφφ===) A. 9或10人 B. 6或7人 C. 3或4人 D. 1或2人 9.设}10,,2,1{ =A ,若“方程02=--c bx x 满足A c b ∈,,且方程至少有一根A a ∈”,就称 该方程为“漂亮方程”。则“漂亮方程”的个数为( ) A .8 B .10 C .12 D .14 10.已知12 1(0,0)m n m n +=>>,则当m+n 取得最小值时,椭圆22221x y m n +=的离心率为( ) A. 1 2 B. C. D. 11.关于函数()cos(2)cos(2)36 f x x x ππ =- ++有下列命题: ①()y f x = ;②()y f x =是以π为最小正周期的周期函数; ③()y f x =在区间13[,]2424 ππ 上是减函数; ④将函数2y x = 的图象向左平移 24 π 个单位后,与已知函数的图象重合. 其中正确命题的序号是( ) A .①②③ B .①② C .②③④ D .①②③④ 12. 以正方体的任意三个顶点为顶点作三角形,从中随机地取出两个三角形,则这两个三角形不共面的概率为 ( ) A .367385 B . 376385 C .192385 D .18 385

2020届全国100所名校高三最新高考模拟示范卷(一)数学(理)试题(解析版)

2020届全国100所名校高三最新高考模拟示范卷(一)数学 (理)试题 一、单选题 1.已知集合{|24,}A x x x Z =-≤≤∈,{} |2,k B x x k Z ==∈,则A B =I ( ) A .{2,4} B .{1,2,4} C .{0,1,2} D .{0,1,2,4} 【答案】B 【解析】先求出集合A ,再结合集合B ,然后求交集即可. 【详解】 解: 由题可知{}{|24,}=-2-1,0,1,2,3,4A x x x Z =-≤≤∈, , 又{ } |2,k B x x k Z ==∈ 则{1,2,4}A B ?=, 故选:B . 【点睛】 本题考查集合的交集运算,属基础题. 2.设复数2z ai =+,若z z =,则实数a =( ) A .0 B .2 C .1- D .2- 【答案】A 【解析】利用共轭复数及复数相等的定义即可得到答案. 【详解】 因为z z =,所以22ai ai +=-,解得0a =. 故选:A. 【点睛】 本题考查复数的概念,考查学生的基本运算能力,是一道容易题. 3.若1,a ,4,b ,c 成等比数列,则b =( ) A . B .8 C .8± D .± 【答案】C 【解析】由等比数列的性质,若{}n a 为等比数列,当2p q m n k +=+=时, 2p q m n k a a a a a ==,代入求解即可.

【详解】 解:由等比数列的性质可得24=1c ?, 即=16c , 又24b c =, 即4168b =±?=±, 故选:C . 【点睛】 本题考查等比中项,重点考查了等比数列的性质,属基础题. 4.下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是( )

(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试理科数学模拟测试试题(含答案)

2020年普通高等学校招生考试 数学模拟测试 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5} B.{0,1,4,5} C.{2,3} D.{0,1,2,3,4,5} 2.i 是虚数单位,z=2—i,则|z|= B.2 3.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1 B.1 C.-2 D.2 4.设命题p:?x ∈R ,x 2 >0,则p ?为 A.?x ∈R ,x 2≤0 B.?x ∈R ,x 2>0 C.?x ∈R ,x 2>0 D.?x ∈R ,x 2≤0 5.5 1(1)x -展开式中含x -2的系数是 A.15 B.-15 C.10 D.-10 6.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53 ,点P(b,0),为则12|| ||PF PF = A.6 B.8 C.9 D.10 7.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于 3 2(3 d d 为球的直径),并得到球的体积为1 6 V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式 中最精确的一个是 A.d ≈ 3 B .d ≈√2V 3 C.d≈√300 157V 3 D .d≈√15 8V 3

2020最新高考模拟测试数学卷含答案

第Ⅰ卷(选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. 1.若x>0,则由33332,,|,||,|,,x x x x x x x ----组成的集合中的元素有 ( ) A .1个 B .2个 C .3个 D .7个 2.极坐标系中,圆)6 sin(2π θρ+=的圆心坐标是 ( ) A .)6 ,1(π B .)3 ,1(π C .)3 2,1(π D .)6 5, 1(π 3.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=,)3 1(x 那么) 2 1(f 的值是 ( ) A . 3 3 B .- 3 3 C .3 D .-3 4.若αα2cos ),5 3arcsin(则-=的值是 ( ) A .257 B .- 257 C .25 16 D .-25 16 5.在正方体ABCD —A 1B 1C 1D 1中,E 是AD 的中点,则异面直线 C 1E 与BC 所成的角的余弦值是( ) A .510 B .1010 C .3 1 D .3 22 6.若椭圆两焦点为)0,4(),0,4(21F F -点P 在椭圆上,且△PF 1F 2的面积的最大值为12,则此椭圆的方程是 ( ) A .1203622=+y x B .112 282 2=+y x C . 19 252 2=+y x A 11

D .14 202 2=+y x 7.地球半径为R ,北纬45。圈上A 、B 两点分别在东经130。和西经140。,并且北纬45。圈小圆的圆心为O ,,则在四面体O —ABO ,中,直角三角形有 ( ) A .0个 B .2个 C .3个 D .4个 8.设a ,b 是两个实数,给出下列条件:①a+b >1; ②a+b >2 ; ③ a 2+ b 2>2 ;④ab >1,其中能推出“a ,b 中至少有一个大于1”的条件 是 ( ) A .①和④ B .②和④ C .②和③ D .只有② 9.设矩形OABC 的顶点O (坐标原点),A 、B 、C 按逆时针方向排列,点A 对应的复数为4-2i ,且,2| || |=OC OA 那么向量AC 对应的复数是 ( ) A .3+4i B .-3+4i C .-3-4i D .3-4i 10.圆x 2+y 2-4x +2y +c =0与y 轴交于A 、B 两点,圆心为P ,若∠ APB =90°,则c 的值是 ( ) A .-3 B .3 C .225- D .22 11.某工厂8年来某种产品的总产量c 与时间t (年)的函数关系如右图,下列四种说法:①前三年中产品增长的速度越来越快;②前三年中产品增长的速度越来越慢;③第三年后,这种产品停止生产;④第三年后,年产量保持不变,其中正确的说法是 ( ) A .②和③ B .①和④ C .①和③ D .②和④ 12.一组实验数据如下:

2020届全国100所名校高考模拟金典卷理科数学(四)试题(word无答案)

2020届全国100所名校高考模拟金典卷理科数学(四)试题一、单选题 (★) 1 . 已知集合,,则() A.B. C.D. (★) 2 . 若复数(为虚数单位),则() A.B.C.D. (★★) 3 . 袋子中装有大小、形状完全相同的个白球和个红球,现从中不放回地摸取两个球,已知第二次摸到的红球,则第一次摸到红球的概率为() A.B.C.D. (★) 4 . 已知角的终边经过点,则() A.B.C.D. (★) 5 . 若函数,在其定义域上单调递增,则实数的取值范围是()A.B.C.D. (★) 6 . 已知双曲线,经点的直线与有唯一公共点,则直线的方程为() A.B.

C.或D.或 (★) 7 . 在中,角,的对边分别是,,且,,,若解此三角形有两解,则的取值范围是() A.B.C.D. (★) 8 . 二项式的展开式中含有非零常数项,则正整数的最小值为() A.7B.12C.14D.5 (★★) 9 . 榫卯(sǔnmǎo)是两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫,凹进去的部分叫卯,榫和卯咬合,起到连接作用.代表建筑有北京的紫禁城、天坛祈年殿,山西悬空寺等,如图是一种榫卯构件中榫的三视图,则该榫的表面积和体积为() A.B. C.D. (★★) 10 . 运行程序框图,如果输入某个正数后,输出的,那么的值为()

A.3B.4C.5D.6 (★) 11 . 已知定义在非零实数集上的奇函数,函数与图像共有4 个交点,则该4个交点横坐标之和为() A.2B.4C.6D.8 (★★★★) 12 . 已知函数,若时,函数至少有2个零点,其 中为自然对数的底数,则实数的取值范围是() A.B.C.D. 二、填空题 (★) 13 . 已知、为两个单位向量,且,则与夹角的余弦值为 __________ .(★) 14 . 椭圆的离心率为_________. (★) 15 . 已知,满足则的最大值为__________. (★★) 16 . 如图,在直角梯形中,,,,是边的 中点,沿翻折成四棱锥,则点到平面距离的最大值为 __________ .

最新名校2020高考理科数学模拟试题

3.23理科数学模拟试题 8.执行如图所示的程序框图,当输人的角a=150°时,输出的结果为 A.1 2 B. 2 2 C. 3 2 D.1 9.已知函数f(x)=x(1+a|x|).设关于x的不等式f(x+a)<f(x)的解集为A,若 11 [,] 22 A -?, 则实数a的取值范围是() A. 15 ( 2 B.13 ( 2 C.1513 ((0, 22 + ?D. 15 (, 2 -∞ 10.已知数列{} n a满足 1 43 n n a a n + +=+,且* n N ?∈,2 20 n a n +≥,则 3 a的取值范围是() A.[2,15] - B.[18,7] - C.[18,19] - D.[2,19] 11.已知抛物线C与双曲线 22 22 88 1 11 y x m m -= +- 有共同的焦点F,过抛物线的焦点F,斜率为 3 3 的直线,分别交C和C的准线于M,N两点,以MN为直径的圆,交C的准线于点P, 则P到直线MN的距离是()3 B.2 3 D.4 12.已知实数x,y满足()2 ln436326 x y x y e x y +- +--≥+-,则x y +的值为() A.2B.1C.0D.1- 二、填空题:本大题共4小题。每小题5分,共20分, 13.下列四个结论中正确的个数是。 ①若22 am bm <,则a b < ②已知变量x和y满足关系0.11 y x =-+,若变量y与z正相关,则x与z负相关 ③“已知直线m,n和平面α、β,若m n ⊥,mα ⊥,nβ ∥,则αβ ⊥”为真命题 ④3 m=是直线 ()320 m x my ++-= 与直线650 mx y -+=互相垂直的充要条件

2020届全国100所名校最新高考模拟示范卷高三理科数学(六)试题

2020届全国100所名校最新高考模拟示范卷高三理科数学 (六)试题 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知集合{}|2,2,P x x k k k Z ==≤∈,(){}2|29Q x x =+<,则P Q =( ) A .{}4,2,0,1-- B .{}4,2,0-- C .{}|41x x -≤< D .{}|45x x -≤< 2.已知复数z 满足1z i z +-=,在复平面内对应的点为(),x y ,则( ) A .1y x =+ B .y x = C .2y x =- D .y x =- 3.已知1311531log ,log ,363 a b c π-===,则,,a b c 的大小关系是( ) A .b a c << B .a c b << C .c b a << D .b c a << 4.中国折叠扇有着深厚的文化底蕴.如图(2),在半圆O 中作出两个扇形OAB 和OCD ,用扇环形ABDC (图中阴影部分)制作折叠扇的扇面.记扇环形ABDC 的面积为1S ,扇形OAB 的面积为2S ,当1S 与2S 时,扇面的形状较为美观,则此时扇形OCD 的半径与半圆O 的半径之比为( ) A .14 B .12 C .3 D 2 5.函数ln ()sin x f x x x =+的部分图象大致是( ) A . B .

C . D . 6.“车走直、马走日、炮打隔子、象飞田、小卒过河赛大车”,这是中国象棋中的部分下棋规则.其中“马走日”是指马走“日”字的对角线,如棋盘中,马从点A 处走出一步,只能到点B 或点C 或点D 或点E .设马从点A 出发,必须经过点,M N (点,M N 不考虑先后顺序)到达点P ,则至少需走的步数为( ) A .5 B .6 C .7 D .8 7.已知a ,b 是单位向量,且()1,1a b +=-,则a 与a b -的夹角为( ) A .π6 B .π4 C .π3 D .2π3 8.执行如图所示的程序框图,则输出的S =( ) A .414 B .325 C .256 D .75 9.已知等差数列{}n a 的前n 项和为n S ,满足33a =,()21223n n n S S S n --+=+≥,则( ) A .2n n S n a n -= B .2n n S n a n += C .21n n S a n -= D .21n n S a n +=

2020年高考数学模拟考试试卷+解析答案+评分标准

2020年高考数学模拟考试试题及答案

参考答案 一、单项选择题 1. 一看就是两个交点,所以需要算吗?C 2. 分母实数化,别忘了“共轭”,D 3. 简单的向量坐标运算,A 4. 球盒模型(考点闯关班里有讲),37分配,B 5. 在一个长方体中画图即可(出题人就是从长方体出发凑的题,其实就是一个鳖臑bie nao )C 6. 画个图,一目了然,A 7. 关键是把“所有”翻译成“任取”,C 8. 用6、4、2特值即可(更高级的,可以用极限特值8-、4、2,绝招班里有讲),B 二、多项选择题 9. 这个,主要考语文,AD 10. 注意相同渐近线的双曲线设法,22 22x y a b λ-=,D 选项可用头哥口诀(直线平方……)AC 11. B 选项构造二面平行,C 选项注意把面补全为AEFD1(也可通过排除法选出),D 选项CG 中点明显不在面上,BC 12. 利用函数平移的思想找对称中心,ABC 三、填空题 13. 确定不是小学题?36 14. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以,45 - 15. 利用焦半径公式,或者更快的用特殊位置,或者更更快用极限特殊位置(绝招班有讲),2,1 16. 根据对称之美原则(绝招班有讲),8 (老实讲,选择填空所有题都可以不动笔直接口算出来的呀~~~) 四、解答题 17. 故弄玄虚,都是等差等比的基本运算,选①,先算等比的通项()13n n b -=--,再算等差的通项316n a n =-,4k =,同理②不存在,③ m.cksdu 牛逼 4k = 18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60° (2)设AC=4x (想想为什么不直接设为x ?),将三角形CFB 三边表示出来,再用余 19. (1)取SB 中点M ,易知AM//EF ,且MAB=45°,可得AS=AB ,易证AM ⊥面SBC ,进一步得证 (2)可设AB=AS=a ,,建系求解即可,-