搜档网
当前位置:搜档网 › 石墨化氯气供气工艺介绍

石墨化氯气供气工艺介绍

石墨化氯气供气工艺介绍
石墨化氯气供气工艺介绍

石墨化炉纯化系统工艺要求

在石墨化炉通电过程中,向石墨化炉内通入净化气体以提高石墨化制品的纯度的过程叫通气提纯。通气石墨化炉与一般石墨化炉略有区别,通气石墨化炉需要在炉底放置数排表面钻有小孔的石墨管,净化气体通过石墨管向上滲入炉芯,炉外供气系统由高压储气瓶,流量计、管道、控制阀门等组成。

一般在石墨化炉温达到1800±50℃,首先向炉内通入氮气,在1900±50℃时通入氯气,此时不能通入氟。因为在这一温度区域内会生成四氟化碳,使制品受损。在2350±50℃时通入五氟乙烷与氯气共吹。炉子停电后还要继续通净化气体,目的是防止杂质气体反方向向炉芯扩散。石墨化炉温降至2000℃以下,要用氮气吹洗炉芯,把残留在炉内的净化气体驱除干净,以便于出炉操作和保障人身安全。在高温下通氮应注意可能发生剧毒的氰酸((HCH)或氰化物)。

在石墨化过程中,通入净化气体可以使产品的灰分残留总量降低到0.01%以下,因此,通入净化气体是降低杂质灰分的最有效方法。

1、采用单侧通气,通气管布置图如下:

2、气体来源说明:氯气来自钢瓶氯气;高纯氮气来自管网氮气,五氟乙烷来自瓶装。

3、石墨炉具体通气工艺:

石墨化炉供气采用同一管道供气,氯气单独供气的流量区间在10~60kg/h的区间,氮气单独供气的流量区间在15~18kg/h;五氟乙烷单独供气流量区间在10~60kg/h。氯气和五氟乙烷同时供气的流量最大流量50kg/h。

所有的气体实际供应压力≤0.05Mpa。

计量:氯气和五氟乙烷以重量计量;氮气换算成标方后以流量计计量。

4、借鉴方案:流程及简述

A、气瓶钢制平台,使吨装氯气,氟里昂钢瓶就位,方便于管件的连接,使钢瓶按要求到送气位置。

B、流量控制和调节、校正系统,设备为氯气系统和氟里昂系统各一组,系统主要包括数量计量记录仪,转子流量显示装置,调节阀连接件等。

C、钢瓶除霜和气体释放调节系统。

解决钢瓶中气体气化吸热引起的瓶外积霜清除,使气体加速气化,加速释放,分别在氯气钢瓶和氟里昂钢瓶设置各一套。

D、钢瓶气体释放存贮、缓冲器

分别设氯气、氟里昂、氮气各一组,使主化气体在送出车间前有一定的存量和缓冲过渡,减少气体的瞬时冲击。

E、送气室内辅助安全、通风设施及若干送气工具。

F、车间内送气管路和阀门。

G、炉边气体均衡变换器(四组)

灰铸铁件石墨化退火工艺守则

灰铸铁件石墨化退火工艺守则 1热处理设备 1.1采用电阻加热炉,炉温均匀性及炉温精度满足工艺要求。 1.2加热和冷却的测温、控温和自动记录装置完好。 1.3热电偶和炉温仪表每年定期校验,并保存有关记录。 2热处理前准备 2.1检测热处理铸件外观、形状尺寸,不得有影响性能的气孔、缩孔、裂纹等缺陷。 2.2根据热处理铸件的化学成分、牌号、原始组织和技术要求确定采用高温石墨化退火工艺或低温石墨化退火工艺。当铸件中共晶渗碳体不多时,石墨化的目的是使共析渗碳体分解,此时可选用低温石墨化退火。当铸件中含有自由渗碳体或共晶渗碳体时,石墨化的目的是消除自由渗碳体和共晶渗碳体,此时进行高温石墨化退火。 2.3检查加热、起重、机械、电器等完好情况,如发现故障,应及时采取措施修复。 3装炉 3.1热处理铸件装在有效加热区内,试棒随同炉铸件放在规定位置。 3.2同炉热处理铸件牌号、壁厚相近,将薄件、小件或复杂的件装在离热源较远处。 3.3装炉不要过载。 4工艺规范 4.1升温速度

以铸件厚薄和结构复杂程度选择升温速度,结构复杂铸件升温速度慢些,一般实体或形状简单铸件升温速度快些。 4.2加热温度 根据铸件牌号、铸态组织、铸件形状尺寸和工艺方法等因素确定加热温度。高温石墨化退火工艺温度900℃-950℃,保温2h-4h。低温石墨化退火温度650℃-750℃,保温2h-4h。炉温精度控制高温石墨化退火±20℃,低温石墨化退火±15℃。 4.3保温时间 必须保证铸件各部分均匀加热到所需温度,使组织均匀化,保温时间根据铸件的配合、壁厚、装炉量确定。 4.4冷却速度 退火冷却速度根据铸件精度、装炉量和基体组织确定。高精度铸件慢冷,厚壁铸件冷速较快。 5出炉 5.1退火出炉温度在180℃-250℃以下,复杂件出炉温度低些,出炉铸件未降到室温之前不得受雨、雪及水浸淋。出炉后铸件应摆放平稳,小铸件可以堆放。 5.2热处理后铸件,必要时抛丸处理,去除氧化皮。 6记录 记录热处理过程中的设备故障异常、工艺执行异常等,并保存备查。 7热处理铸件质量检验

年产5500吨高纯石墨生产工艺流程

年产5500吨高纯石墨窑炉节能技术改造项目可行性研究报告

第三章产品市场预测及改造规模 3.1石墨国内市场预测 3.1.1石墨级石墨制品的性质、用途及其制品 石墨是典型的层状结构物质,碳原子成层排列,每个碳原子与相邻碳原子之间等距相连,每一层中的碳原子按六方形环状排列,上下相邻层的碳六方环通过平行网面方向相互位移后再叠置形成层状结构,位移的方向和距离不同就导致不同的结构。上下两层的碳原子之间距离比同一层内的碳之间的距离大(层内C-C 间=0.142nm,层间C-C间距=0.340nm)。石墨由于其结构而具有以下性质: 1、耐高温型:石墨的熔点为3850±50℃,沸点为4250℃,即使经超高温电弧灼烧,重量的损失也很小。其热膨胀系数很小,石墨强度随温度升高而加强,在2000℃时,石墨强度比提高一倍。 2、导电、导热性:石墨的导电性比一般非金属矿高一百倍。导热性超过钢、铁、铅等金属材料。导热系数随温度升高而降低,甚至在极高的温度下,石墨成绝热体。石墨能够导电是因为石墨中每个碳原子与其他碳原子之间只形成3个共价键,每个碳原子仍然保留1个自由电子来传输电荷。 3、润滑性:石墨的润滑性能取决于石墨鳞片的大小,鳞片越大,摩擦系数越小,润滑性能也就越好。

4、化学稳定性:石墨在常温下有良好的化学稳定性,能耐酸、碱有机溶剂的腐蚀。 5、可塑性:石墨的韧性好,可碾成很薄的薄片。 6、抗热震性:石墨在常温下使用时能经受住温度的剧烈变化而不致破坏,温度突变时,石墨的体积变化不大,不会产生裂纹。 石墨因其独特的性能而广泛运用于冶金、机械、石油、化工、电子、建材、地质、轻工等领域,主要有以下用途: 1、作耐火材料:石墨及其制品具有耐高温、高强度的性质,在冶金工业中主要用来制造石墨坩埚,在炼钢中常用石墨作钢锭保护剂、冶金炉的内衬。 2、作导电材料:在电气工业上用来制造电刷、碳棒、碳管、水银整流器的正极、石墨垫圈、电话零件,电视机显像管的涂层等。 3、作耐磨润滑材料:石墨在机械工业中常作为润滑剂。润滑油往往不能在高速、高温、高压的条件下使用,而石墨耐磨材料可以在200-2000 ℃温度和很高的滑动速度下不使用润滑油工作。许多输送腐蚀介质的设备广泛采用石墨材料制成的活塞环、密封圈和轴承,它们运转时不需要加入润滑油。石墨乳也是许多金属加工(拔丝、拉管)时的良好润滑剂。 4、石墨具有良好的化学稳定性:经过特殊加工的石墨,具有耐腐蚀、导热性好、渗透率低等特点,大量用于制作热交换器,

石墨化氯气供气工艺介绍

石墨化炉纯化系统工艺要求 在石墨化炉通电过程中,向石墨化炉内通入净化气体以提高石墨化制品的纯度的过程叫通气提纯。通气石墨化炉与一般石墨化炉略有区别,通气石墨化炉需要在炉底放置数排表面钻有小孔的石墨管,净化气体通过石墨管向上滲入炉芯,炉外供气系统由高压储气瓶,流量计、管道、控制阀门等组成。 一般在石墨化炉温达到1800±50℃,首先向炉内通入氮气,在1900±50℃时通入氯气,此时不能通入氟。因为在这一温度区域内会生成四氟化碳,使制品受损。在2350±50℃时通入五氟乙烷与氯气共吹。炉子停电后还要继续通净化气体,目的是防止杂质气体反方向向炉芯扩散。石墨化炉温降至2000℃以下,要用氮气吹洗炉芯,把残留在炉内的净化气体驱除干净,以便于出炉操作和保障人身安全。在高温下通氮应注意可能发生剧毒的氰酸((HCH)或氰化物)。 在石墨化过程中,通入净化气体可以使产品的灰分残留总量降低到0.01%以下,因此,通入净化气体是降低杂质灰分的最有效方法。 1、采用单侧通气,通气管布置图如下:

2、气体来源说明:氯气来自钢瓶氯气;高纯氮气来自管网氮气,五氟乙烷来自瓶装。 3、石墨炉具体通气工艺: 石墨化炉供气采用同一管道供气,氯气单独供气的流量区间在10~60kg/h的区间,氮气单独供气的流量区间在15~18kg/h;五氟乙烷单独供气流量区间在10~60kg/h。氯气和五氟乙烷同时供气的流量最大流量50kg/h。 所有的气体实际供应压力≤0.05Mpa。 计量:氯气和五氟乙烷以重量计量;氮气换算成标方后以流量计计量。 4、借鉴方案:流程及简述 A、气瓶钢制平台,使吨装氯气,氟里昂钢瓶就位,方便于管件的连接,使钢瓶按要求到送气位置。 B、流量控制和调节、校正系统,设备为氯气系统和氟里昂系统各一组,系统主要包括数量计量记录仪,转子流量显示装置,调节阀连接件等。 C、钢瓶除霜和气体释放调节系统。

高纯石墨的原材料及生产工艺简介

高纯石墨的原材料及生产工艺简介 1.原材料石油焦、针状焦、煤沥青 (1)、石油焦:是石油渣油、石油沥青经焦化后得到的可燃固体产物,黑色多空。主要元素为碳,灰分含量很低。石油焦属于易石墨化碳一类,石油焦在化工、冶金中广泛应用,是生产人造石墨制品及电解铝用碳素制品的主要原材料。 石油焦按热处理温度分为:生焦和煅烧焦2种。前者由延迟焦化所得的石油焦,含有大量灰分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业在碳素厂进行。 石油焦按硫分的高低区分,可分为高硫焦(含硫%以上)、中硫焦(含硫)、和低硫焦(含硫%以下)三种。人造石墨生产一般使用低硫焦。 (2)、针状焦 针状焦是外观具有明显纤维纹理,热膨胀系数特别低和容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒。在偏光显微镜下可观察到各项异性的纤维状结构,因而称之为针状焦。 针状焦物理机械性制的各项异性十分明显,平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数小,抗热震性能好。 针状焦分为以石油油渣为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。(3)、煤沥青 煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而融化,密度为克每平方厘米。(g/cm3)按其软化点的高低分为低温、中温和高温三种。中温沥青的产量为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青的软化点、甲苯不溶物、结焦值和煤沥青流变性等。 煤沥青在他素工业中作为粘结剂和浸渍剂使用,其性能对碳素制品生产工艺和产品质量品质影响极大。粘结剂沥青一般使用软化点适中、结焦值高的中温或中温改质沥青,浸渍剂使用软化点较低、流变性好的中温沥青。 2.制作工艺 (1)、煅烧 碳质原料在高温下进行热处理,排除所含水分和挥发分,并相应提高原料理化性能的生产工序称为煅烧。一般碳质原料采用燃气及自身挥发分作为热源进行煅烧,最高温度为1250℃-1350℃。 ①、煅烧使碳质原料的组织结构和物理化学性能发生深刻变化,主要体现在提高了焦炭的密度、机械强度和导电性,提高了焦炭的化学稳定性和抗氧化性能,为后续工序奠定了基础。煅烧设备主要有罐式煅烧炉、回转窑和电煅烧炉。煅烧质量控制指标是石油焦真密度不小于cm3,电阻率不大于550μΩ.m,针状焦真密度不小于cm3,电阻率不大于500μΩ.m。 ②、原料的破碎处理和配料 在配料之前,须对大块煅后石油焦和针状焦进行中碎、磨粉、筛分处理 中碎:通常是将50mm左右的物料通过颚式破碎机、锤式破碎机等破碎设备进一步破碎到配料所需的

石墨化

1 直流石墨化炉 直流石墨化炉(DC graphitization furhace) 以炭素焙烧品和电阻料为炉芯,通入直流电,生产人造石墨制品的一种电阻炉。由于炉芯的电阻(主要是电阻料的电阻),电流流过时电能即转变为热能,而将炭素焙烧品加热到2000~3000℃的高温,完成石墨化过程而成为人造石墨。它与交流石墨化炉都同属于艾奇逊炉。 简史20世纪60年代,直流石墨化技术在欧美发达国家开始发展起来,它与交流石墨化炉比较,具有容量大、产品质量好、能耗低等显著优点,因而引起世界各国的普遍兴趣和关注。中国直流石墨化炉的起步稍晚。1972年10月北京炭紊厂用3000kV?A整流变压器配9m 的炉子首先应用在生产上,与交流炉相比,不仅送电时间短,而且节电25%以上。1973年1月南通炭素厂用13500kV?A整流变压器配18m的炉子投入生产后,也取得了缩短通电时间20h,电耗降到4000kW?h/t以下的成绩。1975年9月吉林炭素厂16000kV?A的大直流和石家庄石墨电极厂的3340kV?A直流炉同时投产。截止到1986年中国原来拥有的13.6万kV?A的交流石墨化炉,只占当年石墨化炉总装机容量的27%。而直流石墨化炉,装机容量达到了17.5万kV?A,占73%。使中国石墨化技术水平上了一个新台阶。 炉子结构及特点直流石墨化炉和交流石墨化炉除了供电设备不同外,炉子本体的结构完全一样。直流石墨化炉的供电设备由三相交流主调和一变压器及相应的整流设备组成。 以直流电的方式向炉子供电具有如下优点:(1)由于采用的供电变压器是三相的,对电网不会产生三相负荷不平衡的影响。可以增大变压器的容量,可强化石墨化工艺,增大石墨化炉容量。(2)整个供电线路上的功率因数较高,达到0.9以上,对电能的有效利用率得到提高。 (3)直流电没有交变磁场和电感损失,也没有表面效应及l临近效应等电的损失,电效率较高。 石墨化过程的强化直流石墨化炉供电条件的改善为强化石墨化过程创造了条件。由于电网对使用变压器的容量没有限制,可以采用大功率的变压器和整流机组,直流电的损失小,利用率高,所以炉芯可以得到更多的电能。如以适当大小的炉芯相配合,单位体积的功率达到160kW/m3(比交流炉大60%)以上,电流密度达到2.0A/cm2(比交流炉大100%) 以上,具备了这样的条件,就可以实现快速送电,使石墨化的温度在较短的时间内达到2700℃(比交流炉提高约400℃)。由于送电时间缩短,便可以提高炉子产能,降低石墨化的电耗,一般可降到4000kW?h/t以下(比交流炉降低约20%),石墨化温度的提高,使石墨化进行得更完全,因此提高了产品质量。总之,在直流石墨化炉上可以实现大功率、高电密、快曲线的操作,使石墨化生产达到高产、优质、节电的目标,这便是石墨化过程的强化。以16000kV?A的直流石墨化炉与5000kV?A的交流石墨化炉为例.其技术经济指标见表。 石墨化过程的强化,除了在设备上要采用大容量的整流变压机组,炉子的长度和炉芯面积要适当增加并与变压器匹配外,在工艺操作上还要采取如下措施:(1)采用低电阻率的电阻料

球形石墨及高纯石墨生产工艺

球形石墨及高纯石墨生产工艺4.1原材料条件 球形石墨及高纯石墨生产的主要原料是鳞片石墨干精矿,是天然鳞片石墨经选矿后成品,符合石墨牌号LG(-)147-95,粒度为100目筛下物,含碳量95%(高碳范围)。 生产球形石墨及高纯石墨(各为10000t/a)时,年需要LG(-)147-95石墨干精矿44238t。 4.2产品方案 根据要求石墨干精矿经过加工形成球形石墨后需要进行高温及高温化学提纯形成高纯成分。高纯石墨则采用石墨干精矿直接进行高温及高温化学提纯形成高纯石墨。其产品方案如下表: 序号产品名称 年产量 (t/a) 含碳量(%) 需要原料量 (t/a) 备注 1 球形石 墨 初始产 品 11060 95 33178 石墨干精矿最终产 品 10000 99.9,99.99 11060 球形石墨初始 产品 2 高纯石墨10000 99.9,99.99 11060 石墨干精矿 为确保球形石墨初始产品颗粒为球形,应采取如下方式: 限于原料粒度为(-)147mm,确定球形石墨初始产品粒度为d50=30mm,碳含量95%。石墨粉料的平均颗粒大小用体积累积值达50%的值表示,可用激 光衍射法得出,其平均粒径在10μm-40μm之间。 确保石墨颗粒为球形,可采用比表面积法进行测定。单位质量(体积)的样本中所有的颗粒表面积和所有颗粒体积和,得出总面积S,总体积V。则可得出 比表面积值。SSA=S/V,球形颗粒质量(体积)比表面积值SSA=6/9ds。 生产球形石墨需要在相应严格的检验制度下进行。其产品率约在35%左右。 其余经加工、检验不合格的产品,可作为冶金工业的增炭剂,或作为其他行业的 原料。但在生产球形石墨过程中成为废弃物料。 生产的初始产品球形石墨和部分石墨干精矿,经过在纯化炉高温提纯后,可成为高纯球形石墨及高纯石墨成品。 4.3生产工艺流程 生产工艺流程如下框图: (1)球形石墨 石墨干精矿粗碎、分级修整、分级磁选、分级高温纯化分散包装

等静压石墨的应用发展及生产工艺简介

等静压石墨的应用、发展及生产工艺简介 摘要:本文概括了等静压石墨的特性及主要用途,并对其国内外发展状况作了简单描述。结合部分等静压石墨科研文献及生产专利,对其生产工艺进行了介绍。 关键词:等静压石墨特性用途生产工艺 等静压石墨是上世纪40年代发展起来的一种新型石墨材料,具有一系列优异的性能。等静压石墨的耐热性好,在惰性气氛下,随着温度的升高,其机械强度反而升高,在2500℃左右时达到最高值;与普通石墨相比,结构精细致密,而且均匀性好;热膨胀系数很低,具有优异的抗热震性能;各向同性、耐化学腐蚀性强、导热性能和导电性能良好;具有优异的机械加工性能。正是由于具有这一系列的优异性能,等静压石墨在化工、半导体、电气、冶金、机械、核能及宇航等领域得到广泛应用,而且,随着科学技术的发展,应用领域还在不断扩大。 1.等静压石墨的主要用途 1.1 太阳能电池及半导体晶片用石墨 在太阳能、半导体行业中,大量使用等静压石墨,制作单晶直拉炉热场石墨部件,多晶硅熔铸炉用加热器,化合物半导体制造用加热器、坩埚等部件。近年来,太阳能光伏发电发展迅猛,光伏产业中的单晶硅和多晶硅生产对石墨需求量巨大。目前,单晶、多晶硅产品均朝大型化、高端化发展,对等静压石墨也有了更高的要求,即:更大规格、更高强度、更高纯度。 1.2 核石墨 等静压石墨具有中等的力学性能,特别出色的高温力学性能,导热系数大,线膨胀系数低。在高温气冷堆中,主要用作反射剂、慢化剂及活性区结构材料,同核燃料一道构成核燃料组件。在400~1200℃的温度下,受高能γ射线和快中子的放射线,时间长达数年之久,容易造成辐照损伤,从而改变石墨的结构和性质,所以要求材料的石墨化度高、各向同性度好、组成均一、弹性模量低。目前,我国只能生产少量的高温气冷反应堆用核石墨,主要还是依赖进口。

石墨与石墨制品生产新工艺,石墨生产新技术,石墨质量验收标准规范实务全书

石墨与石墨制品生产新工艺、新技术及质量验收标准规范实务全书 作者:编委会 出版社:当代中国出版社2008年8月出版 册数规格:全四卷+1CD 16开精装 定价:¥998元 优惠价:¥430元 详细目录 第一篇石墨生产新工艺新技术 第一章石墨生产新工艺新技术概述 第二章柔性石墨生产新工艺新技术 第三章氟化石墨生产新工艺新技术 第四章胶体石墨生产新工艺新技术 第五章不透性石墨生产新工艺新技术 第六章其他石墨生产新工艺新技术 第二篇石墨制品生产新工艺新技术概论 第一章石墨制品生产新工艺新技术概述 第二章石墨制品生产用原材料

第三章煅烧新工艺新技术 第四章破碎和筛分新工艺新技术 第五章混捏新工艺新技术 第六章压型新工艺新技术 第七章焙烧新工艺新技术 第八章浸渍新工艺新技术 第九章石墨化新工艺新技术 第十章机械化新工艺新技术 第三篇电工用石墨制品生产新工艺新技术 第一章电工用电刷生产新工艺新技术 第二章电接点用石墨制品生产新工艺新技术第三章石墨电阻及发热材料生产新工艺新技术第四章电信工程石墨制品生产新工艺新技术第五章电用石墨电极生产新工艺新技术 第六章电工用其他石墨制品生产新工艺新技术第四篇冶金工业用石墨制品生产新工艺新技术第一章石墨化电极生产新工艺新技术 第二章高功率石墨电极生产新工艺新技术 第三章抗氧化石墨电极生产新工艺新技术 第四章石墨化块生产新工艺新技术 第五章石墨坩埚生产新工艺新技术 第六章石墨模生产新工艺新技术

第七章冶金工业用其他石墨制品生产新工艺新技术 第五篇机械工业用石墨制品生产新工艺新技术 第一章机械工业用石墨制品生产新工艺新技术概述 第二章石墨轴承生产新工艺新技术 第三章石墨活塞环生产新工艺新技术 第四章石墨密封环生产新工艺新技术 第五章石墨防爆板生产新工艺新技术 第六章石墨摩擦片生产新工艺新技术 第七章石墨润滑剂生产新工艺新技术 第八章机械工业用其他石墨制品生产新工艺新技术 第六篇化工用石墨制品生产新工艺新技术 第一章不透性石墨材料生产新工艺新技术 第二章不透性石墨换热设备生产新工艺新技术 第三章不透性石墨制品反应与吸收设备生产新工艺新技术 第四章氯碱工业用石墨阳极生产新工艺新技术 第五章电渗析用石墨电极生产新工艺新技术 第七篇原子能、金刚石、火箭及其他工业用石墨制品生产新工艺新技术 第一章原子能用石墨制品生产新工艺新技术 第二章金刚石用石墨制品生产新工艺新技术 第三章火箭用石墨制品生产新工艺新技术 第四章其他工业用石墨制品生产新工艺新技术

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

发展内热串接石墨化工艺的必要性

发展内热串接石墨化工艺的必要性 1 从石墨化工艺发展过程看“内串”的必然趋势 石墨化是人造石墨的关键工序之一,人造石墨制品的物理化学性质、生产成本都与石墨化工序有直接关系,所以人们付出了大量的精力和财力去研究解决石墨化工序问题。随着生产实践经验的积累和科学技术的进步,石墨化工艺也有了长足的发展,从小容量的交流石墨化、大功率直流石墨化,一直到当今的内热串接石墨化(简称内串)工艺。我国石墨化工艺大体经历了三个发展阶段。 (1)小容量交流石墨化工艺为初期阶段。在这一阶段各炭素厂一般均采用交流石墨化炉完成石墨化工序生产。设备容量在5000kVA;输出电流在40kA左右。后期有的厂家将设备增容到8820kVA;输出电流在80kA。生产实践中该石墨化工艺有许多弊病,且很难解决。如电损热损大,单耗高,效率低,炉芯温度低,产品质量不佳,功率因数低,三相不平衡等。人们虽然想了不少的补救措施,如采用低压补偿提高设备效率,进而提高炉芯温度;工艺上由传统的卧式装炉改为立式装炉;送电曲线逐渐加快,送电时间由80多h改为65~75h等,使产品用电单耗有所下降,产量也有所提高,但没有办法彻底解决交流炉所存在的问题。在这段时间,我国的电炉钢产量不多,电炉容量也相对较小,对电极质量要求不太高,加之原料资源比较丰富,质量也很好,特别是油页岩釜式焦对石墨化炉温要求不高,一般石墨化炉均可满足。但到70年代,用户对电极质量要求日趋严格。另外,石油工业的发展,焦化工艺发生了变化,由延迟焦取代釜式焦,对石墨化炉的温度要求越来越高。现有的装备和工艺方法已经满足不了生产的要求,必须寻找提高炉温的措施。此时新的石墨化供电机组应运而生。 (2)直流石墨化机组的兴起和发展为石墨化工艺发展的第二阶段。从1976年开始,交流石墨化炉在我国逐渐被淘汰,取而代之的是直流石墨化机组和强化石墨化工艺。在这二十几年的发展中,人们采用了大容量整流机组为石墨化炉供电,创造出了“两高一快”的工艺方法,即高功率、高电密、快曲线的强化石墨化新工艺,取得了明显的成就,促进了炭素生产 从表1中可以看出,采用直流石墨化机组对石墨制品的产量、质量、综合能源利用率和效益都较交流石墨化炉有明显提高。在这期间,人们重点解决了两大问题,一是装备,二是强化石墨化工艺。 新的装备主要是大容量的有载调压整流变压器与大功率变流技术的结合,构成了直流供电机组,为石墨化炉供电。直流供电机组容量由小变大,多级有载调压、主调合一、高压直降,采用适合石墨化工艺特点的双反星形整流电路,实现同相逆并联。整流元件也由200A 增大到3000A,每臂并联元件大为减少,加之采用一些其他有利提高功率因数的措施,使得大容量直流供电机组较好地满足了石墨化炉的工艺要求。特别在最近几年,人们不断重视直流石墨化机组与石墨化炉匹配的技术问题,有了一套比较完整的匹配方案。在石墨化工艺方

石墨坩埚生产工艺概述

石墨网 https://www.sodocs.net/doc/1b2499911.html, 石墨坩埚生产概述 石墨坩埚,是以结晶形天然石墨为主体原料,可塑性耐火粘土作粘结剂,经与不同类型熟料配合而制成的主要应用于冶炼特种合金钢、熔化有色金属及其合金的耐火石墨坩埚。就产品的性能、用途而言,石墨坩埚是耐火材料的一个组成部分。 坩埚可分为石墨坩埚、粘土坩埚和金属坩埚三大类。在石墨坩埚中,又有普型石墨坩埚与异型石墨坩埚及高纯石墨坩埚三种。各种类型的石墨坩埚,由于性能、用途和使用条件不同,所用的原料、生产方法、工艺技术和产品型号规格也都有所区别。 石墨坩埚的主体原料,是结晶形天然石墨。故它保持着天然右墨原有的各种理化特性。 即:具有良好的热导性和耐高温性,在高温使用过程中,热膨胀系数小,对急热、急冷具有一定抗应变性能。对酸,碱性溶液的抗腐蚀性较强,具有优良的化学稳定性。 坩埚的型号规格较多,在应用时不受生产规模、批量大小和熔炼物质品种的限制,可任意选择,适用性较强,并可保证被熔炼物质的纯度。 石墨坩埚,因具有以上优良的性能,所以在冶金、铸造、机械、化工等工业部门,被广泛用于合金工具钢的冶炼和有色金属及其合金的熔炼。并有着较好的技术经济效果。 坩埚的种类大体分为三大类:第一类炼铜坩埚,其规格“号”,;第二类为炼铜合金坩埚,特圆形有100个号,圆形有100个号,第三种炼钢用的坩埚,有100个号。 坩埚规格(大小),通常是用顺序号大小表示的,1号坩埚具有能熔化1000g 黄铜的容积,其重量为180g。坩埚在熔炼不同金属或合金时熔化量计算,可以坩埚的容重规格号,乘上相应金属和合金系数。 坩埚的生产原料,可概括为三大类型。一是结晶质的天然石墨,二是可塑性的耐火 粘土,三是经过煅烧的硬质高岭土类骨架熟料。近年来,开始采用耐高温的合成材料,如:碳化硅、氧化铝金刚砂及硅铁等做坩埚的骨架熟料。这种熟料对提高坩埚产品质量,增强坩埚密度和机械强度有着显著效果。 坩埚的成型,有三种方法,较原始古老的成型方法是手塑成型。第二种是旋塑成型法第三种是压型成型法.

新型石墨化炉技术

※串接石墨化炉(lengthwise graphitization furnace) 一种直接把电流通入串接起来的焙烧制品,利用制品本身的电阻使电能转为热能,将制品石墨化的一种电阻炉。简史这种炉型也称卡斯特纳炉,是HY.Castner于1896年首先发明,并获得专利的,其基本原理是将焙烧电极卧放在炉内,按其轴线串接成行,然后固定在两根导电电极之间,为减少热损失,在焙烧电极周围覆盖了保温料。通电后,电流直接流向电极,依靠其本身的电阻发热,并迅速升温,仅10h左右即可达到石墨化需要的温度,使生产周期大为缩短。串接式炉在送电过程中,电流在电极内分布均匀,从而使得电极在升温时,表里的温差很小,虽然高速升温,却不会导致制品开裂,使得缩短生产周期成为可能,同时由于不依靠电阻料来传递热量,当然也没有这部分的热量消耗,仅这两项,构成了串接式炉比艾奇逊炉更为节能的基础,并且还具有生产操作采用自动化控制,改善劳动条件等优点。尽管串接式炉在工艺方法上比艾奇逊炉优越,但由于炉子结构本身存在的技术难题,因而在相当长的时期内,世界各国的工业性生产上受到制约,远不如艾奇逊炉得到广泛的应用和发展。到l974年,前联邦德国西格里公司宣布了对串接式炉新的专利申请,1980年美国大湖炭素公司在美建成内串式石墨化车间,1978年前联邦德国KHD公司宣布他们的单排v形串接炉试验成功,可以将产品投放市场,其基本参数是:石墨化温度可生产的电极直径炉内电极排成行的长度生产周期输入的直流电流输入的直流电压电压控制范围一次电压频率电流密度电耗从以上的成果来看,串接式炉已具有和艾奇逊炉相抗衡的实力。 ※新型石墨化炉技术 新型石墨化炉技术改造工程项目是生产大规格超高功率石墨电极关键项目, 本项目是对公司现有的第2组石墨化炉进行改造,解决大型炭素制品石墨化工艺问题。 我国炭素生产石墨化工艺主要使用有近百年历史的艾奇逊式石墨化炉, 该炉结构简单,虽然公司已先后将交流炉改为直流炉,但是这种石墨化炉是一种温度不均匀的加热炉,炉芯各处温差较大,造成同一炉产品的理化指标波动较大。在通地加热期间70%的热能用于加热电阻炉、保温料、炉头、炉尾砌体上,造成通地时间长, 热损失大,炉体热效率只有30%,达不到石墨化过程的最高温度,石墨化工艺成品电耗高达5624kWh/t。该工艺存在着产品质量低、能耗高等缺点,尤其不适应生产大规格石墨制品。本项目拆除部分原有石墨化车间,新建5157.8m2厂房,引进吸收国外先进工艺技术和关键设备,采用世界先进水平的内热串接石墨化技术,解决大规格制品在石墨化过程中应力集中易开裂问题,提高石墨化内在质量和成品率;新建一组新型石墨化炉,包括保温料加工部、保温料真空吸料天车、电极端部处理装置、石墨化制品检测装置。本项目采用的新型卡斯特纳炉完全利用装入半成品的自身电阻加热, 不用电阻料,只有保温料,电流轴向通入使电极本身发热而产生高温,温升速度快,石墨化温度高达3000度以上,石墨化炉通电时,同一炉产品通过的电流相同, 通电后温度基本相同,因此石墨化程度好、裂纹少、成品率高。石墨化电耗从吨产品4500kWh降低到3000kWh左右。通过对比分析,串接石墨化的热效率高达49%,比艾奇逊式石墨化炉高出一倍。本项目实施后石墨化质量指标能超过《YB4090-92超高功率石墨电极行业标准》,达到国际先进水平,填补国内空白。内串石墨化工艺所用原、辅料、电力国内资源丰富,完全能够满足需要。

石墨换热器维护及制造资料

石墨换热器 1.不透性石墨加工制造工艺 不透性石墨设备及其元件的加工制造工艺,随设备结构的不同而异。不透性石墨的机械加工性能与铸铁相似,它比铸铁硬度小,一般采用金属切削工具就能进行加工。由于石墨本身的强度较差、性脆。一般采用两次浸渍和两次加工的方法,以提高其强度,保证加工精度。因此石墨材料及其任何制品和元件,在任何搬运过程中,要做到轻搬轻放,严禁乱仍乱摔,严禁用金属锤敲打,在必须敲打的场合,应采用带有橡皮的木槌敲打。 1.1材料的选择 制作不透性石墨设备国内目前主要以人造石墨为主,在制造过程中,由于高温焙烧而逸出挥发物,以致形成许多细致的孔隙,有时会产生裂纹,孔隙率过大势必在浸脂时浸脂数量过大,制造的产品传热会较差。国外采用压型石墨的也较多。 1.2材料的拼接 当零件的最大尺寸超过石墨毛坯的最大尺寸时,石墨件需要进行拼接,在石墨块拼接过程中,将粘结面进行仔细的精加工,甚至磨光,使粘结面充分接触,而粘结剂匀且薄,从而获得良好的粘结效果。1.3换热设备的制造 1.3.1制造工艺

列管式换热器制造工艺流程 1.3.2组装 组装方法目前有两种。一种是将管板、管束、折流板等在支架上用粘结剂粘成一体,然后待粘结剂固化后再装进钢壳体内,通常称之为壳外组装。另一种是直接在壳体内试装后用粘结剂在壳体内粘结。换热面积大于200m2,一般均采用壳内组装。 管壳式换热器组装流程 2.石墨换热设备简介 2.1管壳式石墨换热器简介 目前世界上制造石墨换热器的厂家并不多,世界上有影响的公司是德国的西格里公司和法国的卡朋罗兰公司;国内有大连振兴石墨防腐设备厂和沈阳化工机械厂等。国外公司都采用浸渍石墨化管,管子

艾奇逊石墨化炉的节能

略谈艾契逊石墨化炉的节能 曹君虎 (兰州海龙新材料科技股份有限公司,甘肃兰州,730084) 前言 碳----石墨制品的生产需要消耗大量的能源,能耗的费用约占炭素制品生产成本的30%~40%。而炭素生产过程中的石墨化工序,又是能源消耗的大户,其电耗要占制品生产总电耗的70%左右。据有关资料介绍,石墨化温度达到3000K时,1吨焙烧品的石墨化理论电耗为1360kwh。目前国内炭素制品生产石墨化电耗通常是4000~5500 kwh/t,是理论电耗的3~4倍。因此降低炭素生产石墨化电耗一直是工程技术人员十分重视的研究课题,也是炭素制品生产企业降低成本,提高效益的关键所在。石墨化炉是炭素制品生产的关键设备之一,也是耗能最大的设备之一。自从1895年,艾奇逊在美国获得了一个关于生产石墨制品的专利以来,以艾奇逊原则为基础的艾奇逊式电阻炉广泛应用于碳--石墨制品的石墨化生产,虽然这种方法具有设备简单,操作方便的优点,但其通电周期长,热效率也很低,仅有30%左右,制品的石墨化电耗高,和艾奇逊石墨化炉相比,内热串接石墨化炉的主要优点有:(1)加热温升快,从开始通电至达到石墨化高温只需7—16小时;(2)电耗低,以同样品种,同一规格制品作比较,每吨石墨化品的耗电量比艾奇逊石墨化炉节省30%左右;(3)制品石墨化程度均匀;(4)不用电阻料,降低了生产成本。显然,内热串接石墨化炉的许多优点是艾契逊石墨化炉无法比拟的,虽然目前国内也有企业采用内热串接石墨化工艺生产碳一石墨制品,但内热串接石墨化炉

现在还不能完全取代艾契逊石墨化炉,艾奇逊石墨化炉仍然是碳---石墨制品生产的主要热工设备之一。因此,充分发挥艾奇逊石墨化炉的潜力,降低其石墨化生产过程中的能源消耗,对于炭素制品生产企业来说,也是降低生产成本,提高经济效益的有效手段之一。 1 艾奇逊石墨化炉的能量平衡 由于奇契逊石墨化炉是现行炭素工业石墨化生产的主要炉型,弄清楚艾契逊石墨化炉的电热效率和能量平衡,对于碳一石墨制品的石墨化生产和石墨化炉的节能有着十分重要的作用。根据能量守恒定律,对于由电能转化为热能达到加热石墨制品的艾奇逊石墨化炉,可以从理论上由电能的数值计算出各个时刻石墨化炉芯内的温度,但是仅由焦耳---楞次定律Q= 0.24I2RT还不能完全求出炉芯内的温度。因为,电阻热除了加热炉芯制品,升高炉芯温度之外,还有很大一部分热量通过各种途径散失掉了。 那么,总电能有多少用于加热炉芯?升高炉芯温度的能量是多少?通过各种途径散失的能量是多少?由能量守恒定律得知,这三者是平衡的。即Q总=Ql+Q2 Q 总——通电时间内供给炉内的能量; Q1 ——炉内吸收的能量; Q2 ——炉子散失的能量。 1.1 电平衡 艾奇逊石墨化炉是以电作能源的工业电阻炉,在石墨化生产过程中,全部设备(包括变压器、石墨化炉)的电效率变化很大,石墨化开始通

石墨电极生产工艺的设计说明

论文题目:石墨电极生产工艺的研究 摘要 石墨电极,主要以石油焦、针状焦为原料,煤沥青作结合剂,经煅烧、配料、混捏、压型、焙烧、石墨化、机加工而制成,是在电弧炉中以电弧形式释放电能对炉料进行加热熔化的导体,以及在石墨电极生产过程中影响石墨电极质量的因素,并对如何提高石墨电极的质量提出了建议,指出了原材料质量的重要性,提出了添加炭纤维改善电极强度;改进电极接头形状,减少接头故障提高电极寿命。 关键词:石墨电极,煅烧;配料,混捏,压型,焙烧,石墨化,机加工

The research of Graphite electrodes production technology abstract Graphite electrodes, primarily petroleum coke, needle coke, coal tar pitch as binder, calcined, ingredients, kneading, pressing, baking, graphite, machined and made to arc in electric arc furnace in the form of release electrical energy to heat the charge materials melt conductor, and graphite electrode production process factors affect the quality of graphite electrodes, graphite electrodes and how to improve the quality of recommendations, points out the importance of quality raw materials, by adding the carbon fiber to improve the electrode strength; improved electrode connector shape, reduce joint failure to improve electrode life. Keywords: graphite electrode; calcined; ingredients; kneading; profiling; roasting; graphite; machining

石墨电极的生产工艺处理步骤和质量预期指数的及消耗基本知识

目录 一、石墨电极的原料及制造工艺 二、石墨电极的质量指标 三、电炉炼钢简介及石墨电极的消耗机理 石墨电极的原料及制造工艺 ●石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、 焙烧、浸渍、石墨化、机械加工等一系列工艺过程生产出来的一种耐高温石墨质导电材料。石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。生产石墨电极的原料有石油焦、针状焦和煤沥青 ●石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主 要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。 ●石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所 得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。 ●石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中硫焦(含 硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生

产一般使用低硫焦生产。 ●针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一 种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性的纤维状结构,因而称之为针状焦。 ●针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有 良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。 ●针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料 生产的煤系针状焦。 ●煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温 下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。 ●煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产 工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、QI低、流变性能好的中温沥青。 ● ●

石墨化加工外委合同

石墨化加工外委合同 甲方(委托方): 乙方(加工方): 甲乙双方本着共同发展、互惠互利的原则,经双方共同协商,就甲方委托乙方进行电极焙烧品石墨化及机加工一事,达成如下协议: 一、委托内容 甲方委托乙方在2017年8至9月份,对直径350毫米普通功率电极一次焙烧品115吨(结算以实际到货入炉量为准)进行石墨化加工。 二、加工质量要求 1、甲方提供的电极焙烧坯自身的裂纹、弯曲、变形、杂质、孔洞、分层、掉块及焙烧坯交付之前的断裂、碰损等由甲方负责。 2、石墨化加工合格率(产品氧化、打断、碰损、电阻率不合格由乙方负责,产品横裂、弯曲、变形、内裂等由甲方负责)≥97%,产品合格率按月出炉总支数计算。 三、质量检验标准及原则 1、甲方提供的电极焙烧品的检验标准和原则: (1)外型质量的验收执行YB/T099—2005标准。 (2)普通功率电极焙烧品本体电阻率≤45Ωm。

(3)甲方发到乙方的产品,由乙方在厂内进行验收交货最终电极焙烧坯质量以 乙方检验为准。 (4)在石墨化装炉前乙方检验发现的不合格焙烧坯不予装炉,乙方应及时与甲 方协商处理。若甲方要求装炉,甲方需书面通知乙方,乙方方可装炉,此部分电极石墨化合格率由甲方负责。 2、乙方加工的石墨化坯检验标准及原则 (1)电极理化指标参照YB/T4088-2000,普通功率石墨化坯比电阻≤8.5Ωm。 超过8.5Ωm的部分双方协商解决。 (2)由乙方对加工后的石墨化坯进行检验,检验数据报与甲方,甲方对产品质量有异议,应在收到货物十日内以书面形式告知乙方,由甲乙双方派人共同检验,若有异议双方协商解决,否则以乙方检验结果为准。 (3)按月进行统计计算合格率,如果出现整批或整炉废品,甲乙双方共同分析, 确认和区分具体成因,若因甲方提供的电极焙烧坯自身原因导致的,由甲方承担责任;若是由乙方加工工艺造成的,由乙方承担责任。 (4)甲方电极焙烧坯电阻率高于本协议规定的,乙方在甲方书面形式确认后可 以在一定范围内进行石墨化加工,但加工所增加的电量按1.5倍电价由甲方承担,超过的用电量以乙方实际记录为准。 (5)乙方首次为甲方进行加工的产品,石墨化结果不计合格率和电阻率。 四、石墨化加工费用 1、加工单价:普通功率电极石墨化加工费:4000元/吨(含税)。

等静压石墨的应用发展及生产工艺简介

等静压石墨的应用发展及生产工艺简介 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

等静压石墨的应用、发展及生产工艺简介 摘要:本文概括了等静压石墨的特性及主要用途,并对其国内外发展状况作了简单描述。结合部分等静压石墨科研文献及生产专利,对其生产工艺进行了介绍。 关键词:等静压石墨特性用途生产工艺 等静压石墨是上世纪40年代发展起来的一种新型石墨材料,具有一系列优异的性能。等静压石墨的耐热性好,在惰性气氛下,随着温度的升高,其机械强度反而升高,在2500℃左右时达到最高值;与普通石墨相比,结构精细致密,而且均匀性好;热膨胀系数很低,具有优异的抗热震性能;各向同性、耐化学腐蚀性强、导热性能和导电性能良好;具有优异的机械加工性能。正是由于具有这一系列的优异性能,等静压石墨在化工、半导体、电气、冶金、机械、核能及宇航等领域得到广泛应用,而且,随着科学技术的发展,应用领域还在不断扩大。 1.等静压石墨的主要用途 太阳能电池及半导体晶片用石墨 在太阳能、半导体行业中,大量使用等静压石墨,制作单晶直拉炉热场石墨部件,多晶硅熔铸炉用加热器,化合物半导体制造用加热器、坩埚等部件。近年来,太阳能光伏发电发展迅猛,光伏产业中的单晶硅和多晶硅生产对石墨需求量巨大。目前,单晶、多晶硅产品均朝大型化、高端化发展,对等静压石墨也有了更高的要求,即:更大规格、更高强度、更高纯度。 核石墨

等静压石墨具有中等的力学性能,特别出色的高温力学性能,导热系数大,线膨胀系数低。在高温气冷堆中,主要用作反射剂、慢化剂及活性区结构材料,同核燃料一道构成核燃料组件。在400~1200℃的温度下,受高能γ射线和快中子的放射线,时间长达数年之久,容易造成辐照损伤,从而改变石墨的结构和性质,所以要求材料的石墨化度高、各向同性度好、组成均一、弹性模量低。目前,我国只能生产少量的高温气冷反应堆用核石墨,主要还是依赖进口。 电极石墨 石墨无熔点,是电的良导体,抗热震性好,是极佳的电火花加工电极材料。普通石墨材料,为粗颗粒结构低密度各向异性石墨,不能满足电火花加工的需求,而等静压石墨电极结构均匀、致密、加工精度高,可以满足这方面的要求。 连续铸造结晶器石墨及模具石墨 主要用于连续铸造结晶器与超硬材料生产用能耐高温、高压的模具材料。等静压石墨由于它的微粒子结构、较高的机械强度、均匀的热传导,使连铸与模压的产品表面光滑,内在质量高,使用寿命长,是结晶器的最佳材料。而且对于大型烧结材料,模具壁的厚度应尽可能薄,必须使用强度很高的细结构各向同性石墨。 其它用途 在炭刷、机械密封、触轮的集电板等处使用,要求加工精度的同时,高润滑性和高导电性是极其重要的。普通石墨材料,需要用树脂、金属进行浸渍处理,以提高强度和气密性,但在耐腐蚀和耐高温性能上限制其使用范围。等静压石墨摩擦系数低、导热性能好,常用作轴承、机械密封用密封环、活塞环等滑动摩擦材料。此外,等静压石墨还用于

相关主题