搜档网
当前位置:搜档网 › 专题复习解三角形与平面向量

专题复习解三角形与平面向量

专题复习解三角形与平面向量
专题复习解三角形与平面向量

1.三角形的有关公式:

(1)在△ABC 中:sin(A +B )= ,sin

A +B

2

= (2)正弦定理:

(3)余弦定理: _____________________________________________________________________ (4)面积公式:S =12ah a =12ab sin C =1

2r (a +b +c )(其中r 为三角形内切圆半径).

2.平面向量的数量积

a ·

b = .特别地,a 2=a·a =|a|2,|a|=a 2.当θ为锐角时,a ·b >0,且a·b >0是θ为锐

角的必要非充分条件;当θ为钝角时,a·b <0,且a·b <0是θ为钝角的必要非充分条件.

3.b 在a 上的射影为|b |cos_θ. 4.平面向量坐标运算

设a =(x 1,y 1),b =(x 2,y 2),且a≠0,b≠0,则:(1)a·b = ;(2)|a |= ,a 2

=|a |2

= ; (3)a ∥b ?a =λb ? =0;(4)a ⊥b ?a ·b =0?|a +b |=|a -b |? =0.

(5)若a 、b 的夹角为θ,则cos θ= = . 5.△ABC 中向量常用结论

(1)PA →+PB →+PC →=0?P 为△ABC 的 ; (2)PA →·PB →=PB →·PC →=PC →·PA →

?P 为△ABC 的 ;

(3)向量λ? ?????AB →|AB →

|+AC →|AC →|(λ≠0)所在直线过△ABC 的 ;(4)|PA →|=|PB →|=|PC →|?P 为△ABC 的 . 考点一 解三角形

例 1-1设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3,C =π

4,则△ABC 的面积为( )A .1

33 +1 C .1-3

3

-1 例 1-2△ABC 中,已知3b =23a sin B ,角A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 例 1-3若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形

C .一定是钝角三角形

D .可能是锐角三角形,也可能是钝角三角形

变式训练【1-1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =

3

2

,且b

【1-2】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .不确定 【1-3】在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( ) A .5 或37

例 1-4已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n = sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →

)=18,求边c 的长.

变式训练 【1-4】 (2015·兰州诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a

3cos A

c

sin C .

(1)求A 的大小; (2)若a =6,求b +c 的取值范围.

【1-5】 (2014·黄冈模拟)△ABC 的外接圆的直径为1,三个内角A 、B 、C 的对边为a 、b 、c ,m =(a ,cos B ),

n =(cos A ,-b ),a ≠b ,已知m ⊥n .(1)求sin A +sin B 的取值范围;(2)若abx =a +b ,试确定实数x 的取值范

围.

例 1-5如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度;(2)求sin α的值.

变式训练【1-6】如图,游客从某旅游景区的景点A C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀

速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =3

5

.

(1)求索道AB 的长;

(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短

(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内

考点二 平面向量

例 2-1已知正三角形ABC 的顶点A (3,1),B (33,1),顶点C 在第一象限,若点M (x ,y )在△ABC 的内部或边界,则z =OA →·OM →取最大值时,3x 2+y 2

有( )

A .定值52

B .定值82

C .最小值52

D .最小值50

例 2-2如图所示,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →

的值是________.

例 2-3如图在等腰直角△ABC 中,点O 是斜边BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、

N ,若AB →=mAM →,AC →=nAN →

,则mn 的最大值为( )

B .1

C .变式训练【2-1】设a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ·b =(a 1,a 2)·(b 1,b 2)=(a 1b 1,a 2b 2).已知m =? ????2,12,n =? ???

?π3,0,点P (x ,y )在y =sin

x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ·OP →+n (其中O 为坐标原点),则y =f (x )的最大值为________.

【2-2】在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →

|的最小值为

32

,则|CO →

|的最小值为______.

易错题在△ABC 中,sin A +cos A =2

2

,AC =2,AB =3,求tan A 的值和△ABC 的面积.

练习题

1.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2 2.在△ABC 中,若sin 2

A +sin 2

B

C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形

D .不能确定 3.在△ABC 中,AB =2,AC =3,AB →·BC →

=1,则BC =( ) C .2 2

4.锐角△ABC 中,若A =2B ,则a b

的取值范围是( )

A .(1,2)

B .(1,3)

C .(2,2)

D .(2,3) 5.如图,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为( )

6.如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为75°、30°,此时气球的高是60 m ,则河流的宽度BC 等于( )

A .240(3-1) m

B .180(2-1) m

C .120(3-1) m

D .30(3+1) m

7.记max{x ,y }=?????x ,x ≥y ,y ,x

????y ,x ≥y ,x ,x

,|a -b |2

}≤|a |2

+|b |

2

D .max{|a +b |2,|a -b |2}≥|a |2+|b |2

8.如图为函数f (x )=3sin(ωx +φ)(ω>0)的部分图象,B ,C 分别为图象的最高点和最低点,若AB →·BC →=|AB →

|2

,则ω=( )

9.设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且a cos B -b cos A =35c ,则tan A

tan B 的值为______.

10.在△ABC 中,内角A 、B 、C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-1

4,

则a 的值为________.

11.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为 30°,则此山的高度CD =________m.

12.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2

. (1)求b 的值; (2)求△ABC 的面积.

13.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ; (2)若a =7,b =2,求△ABC 的面积.

14.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ?

??

??π4+A =2. (1)求sin 2A sin 2A +cos 2A 的值; (2)若B =

π

4,a =3,求△ABC 的面积.

15.已知向量m =(cos x ,-1),n =? ????sin x ,-32,f (x )=(m -n )·m . (1)求函数f (x )的单调递增区间; (2)锐角△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,其面积S =3,f ?

????A -π8=-24,a =3,求b +c 的值.

平面向量与解三角形

第八单元平面向量与解三角形 (120分钟150分) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.锐角△ABC的三内角A、B、C所对边的长分别为a、b、c,若2c sin B=b,则角C的大小为 A.B.C.D. 解析:由正弦定理得2sin B==,∴sin C=,∴C=. 答案:A 2.若向量u=(3,-6),v=(4,2),w=(-12,-6),则下列结论中错误的是 A.u⊥v B.v∥w C.w=u-3v D.对任一向量,存在实数a,b,使=a u+b v 解析:因为u·v=0,所以u⊥v,显然w∥v,因为u与v不共线,所以对任意向量,存在实数a,b,使=a u+b v. 答案:C 3.在△ABC中,B=,三边长a,b,c成等差数列,且ac=6,则b的值是 A.B.C.D. 解析:因为2b=a+c,由余弦定理得b2=a2+c2-2ac cos B=(a+c)2-3ac,化简得b=. 答案:D 4.在△ABC中,AB=4,∠ABC=30°,D是边BC上的一点,且·=·,则·等于 A.—4 B.0 C.4 D.8 解析:由·=·,得·(-)=·=0,即⊥,所以||=2,∠BAD=60°,所以 ·=4×2×=4. 答案:C 5.在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为 A.B.C.D.-

解析:cos C==≥=,当且仅当a=b时等号成立. 答案:C 6.设A(a,1),B(2,b),C(4,3)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则 a与b满足的关系式为 A.5a-4b=3 B.4a-3b=5 C.4a+5b=14 D.5a+4b=14 解析:由与在方向上的投影相同,可得·=·?(a,1)·(4,3)=(2,b)·(4,3),即4a+3=8+3b,4a-3b=5. 答案:B 7.在△ABC内,角A,B,C的对边分别是a,b,c,若b sin B+a sin A=c sin C,c2+b2-a2=bc,则B等于 A.B.C.D. 解析:因为c2+b2-a2=bc,所以cos A==,所以cos A=,A=, 因为b sin B+a sin A=c sin C,所以b2+a2=c2,所以C=,B=. 答案:A 8.已知向量a=(x-1,2),b=(4,y),其中x>1,y>0,若a∥b,则log2(x-1)+log2y等于 A.1 B.2 C.3 D.4 解析:∵a∥b,则=,∴(x-1)y=8,∴log2(x-1)+log2y=log2(x-1)y=log28=3. 答案:C 9.在△ABC中,若(a+b+c)(a+b-c)=3ab且sin C=2sin A cos B,则△ABC是 A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.直角三角形 解析:因为(a+b+c)(a+b-c)=3ab,所以a2+b2-c2=ab,cos C==,所以C=,因为sin C=2sin A cos B,所 以c=2a·,得a=b,所以△ABC是等边三角形. 答案:B 10.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是

第十一章三角形全章教学设计

三角形的边

检测练习一、如图,在三角形ABC中, (1)AB+BC AC AC+BC AB AB+AC BC (2)假设一只小虫从点B出发,沿三角形的边爬到点C, 有路线。路线最近,根据是:, 于是有:(得出的结 论)。 (3)下列下列长度的三条线段能否构成三角形,为什么? ①3、4、8 ②5、6、11 ③5、6、10 研读三、认真阅读课本认真看课本( P64例题,时间:5分钟) 要求:(1)、注意例题的格式和步骤,思考(2)中为什么要分情况讨论。 (2)、对这例题的解法你还有哪些不理解的? (3)、一边阅读例题一边完成检测练习三。 检测练习二 9、一个等腰三角形的周长为28cm.①已知腰长是底边长的3倍,求各边的长; ②已知其中一边的长为6cm,求其它两边的长.(要有完整的过程啊!) 解: (三)在研读的过程中,你认为有哪些不懂的问题? 四、归纳小结 (一)这节课我们学到了什么?(二)你认为应该注意什么问题? 五、强化训练 【A】组 1、下列说法正确的是 (1)等边三角形是等腰三角形 (2)三角形按边分类课分为等腰三角形、等边三角形、不等边三角形 (3)三角形的两边之差大于第三边 (4)三角形按角分类应分锐角三角形、直角三角形、钝角三角形 其中正确的是() A、1个 B、2个 C、3个 D、4个 2、一个不等边三角形有两边分别是 3、5另一边可能是() A、1 B、2 C、3 D、4 3、下列长度的各边能组成三角形的是() A、3cm、12cm、8cm B、6cm、8cm、15cm 、3cm、5cm D、6.3cm、6.3cm、12cm 【B】组 4、已知等腰三角形的一边长等于4,另一边长等于9,求这个三角形的周长。 5、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是多少? 【C】组(共小1-2题) 6、已知三角形的一边长为5cm,另一边长为3cm.则第三边的长取值范围是。 小方有两根长度分别为5cm、8cm的游戏棒,他想再找一根,使这三根游戏棒首尾相连能搭成一个三角形. (1)你能帮小方想出第三根游戏棒的长度吗?(长度为正整数) (2)想一想:如果已知两边,则构成三角形的第三边的条件是什么?

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

解三角形全章教案(整理)

数学5 第一章 解三角形 第1课时 课题: §1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? B C Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的 定 义 , 有 sin a A =, sin b B =,又s i n 1c C == , A 则sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得sin sin c b C B = , b a 从而 sin sin a b A B = sin c C = A c B

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中数学解三角形和平面向量

高中数学解三角形和平面向量试题 一、选择题: 1.在△ABC 中,若a = 2 ,23b =,0 30A = , 则B 等于( B ) A .60o B .60o 或 120o C .30o D .30o 或150o 2.△ABC 的内角A,B,C 的对边分别为a,b,c ,若c =2,b =6,B =120o ,则a 等于( D ) A .6 B .2 C .3 D .2 3.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c, 且2=a ,A=45°,2=b 则sinB=( A ) A . 1 2 B .22 C . 3 2 D .1 4.ABC ?的三内角,,A B C 的对边边长分别为,,a b c ,若5 ,22 a b A B ==,则cos B =( B ) A . 53 B .54 C .55 D .5 6 5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( C ) A .0 90 B .0 60 C .0 120 D .0 150 6.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为(D ) A. 6 π B. 3π C.6π或56 π D. 3π或23 π 7. 在△ABC 中, b a B A =--cos 1cos 1,则△AB C 一定是( A ) A. 等腰三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形 8.在ABC ?中,角A 、B 、C 所对应的边分别为a 、b 、c ,若角A 、B 、C 依次成等差数列,且a=1, ABC S b ?=则,3等于( C ) A. 2 B. 3 C. 2 3 D. 2 9.已知锐角△ABC 的面积为33,BC=4,CA=3则角C 大小为( B ) A 、75° B 、60° C 、45° D 、30° 10.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为( A ) A. 3 400 米 B. 33400米 C. 2003米 D. 200米 11.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得0 120ABC ∠=,则A,C 两地 的距离为( D )。 A. 10km B. 103km C. 105km D. 107km 12.已知M 是△ABC 的BC 边上的中点,若向量AB =a ,AC = b ,则向量AM 等于( C ) A . 21(a -b ) B .21(b -a ) C .21( a +b ) D .1 2 -(a +b ) 13.若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ=则λ等于( B ) A 、1 B 、2 C 、3 D 、4 14.已知平面向量),2(),2,1(m -==,且∥,则32+=( C ) A .(-2,-4) B. (-3,-6) C. (-4,-8) D. (-5,-10) 15. 已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为 ( C ) A 、17 B 、18 C 、19 D 、20 16.(2,1),(3,),(2),a b x a b b x ==-⊥r r r r r 若向量若则的值为 ( B ) A .31-或 B.13-或 C .3 D . -1 17. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( B ) (A ) 6π (B )4π (C )3π (D )π12 5 183 =b , a 在 b 方向上的投影是2 3 ,则 b a ?是( B ) A 、3 B 、 29 C 、2 D 、2 1 19.若||1,||2,a b c a b ===+r r r r r ,且c a ⊥r r ,则向量a r 与b r 的夹角为( C ) (A )30° (B )60° (C )120° (D )150°

高中数学必修5第一章解三角形全章教案整理

课题: §1.1.1正弦定理 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中, 角与边的等式关系。 从而在直角三角形ABC 中,sin sin sin a b c A B C == 思考:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B =, C 同理可得 sin sin c b C B =, b a 从而sin sin a b A B =sin c C = A c B 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin a b A B =sin c C =等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C 从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b =。 一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。 例1.在?ABC 中,已知045A =,075B =,40a =cm ,解三角形。 例2.在?ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形(复习课)教学设计

解三角形(专题课)教学设计 一、教材分析 本节课是高中数学课本必修5第一章《解三角形》,而在本章中,学生应该在已有的知识基础上,通过对任意三角形的边角关系的探究,发现并掌握三角形中的边长与角度之间的关系数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。本章知识是初中解直角三角形的继续,通过本章内容的学习,学生能够系统地掌握解任意三角形的完整实施。可以从数量的角度认识三角形,使三角形成为研究几何问题的重要工具。是中学许多数学知识的交汇点,如向量、平面几何、三角函数、解析几何、立体几何等。 二、学情分析 学生已经学习并掌握了任意角及任意角的三角函数,诱导公式、三角恒等变换、正余弦定理等相关的知识。学习本节内容是对以上知识内容的综合应用,尤其是对正弦定理与余弦定理的熟练运用。通过解三角形的方法解决有关的实际问题,可以培养学生的数学应用意识,提高学生运用数学知识解决实际问题的能力,使学生逐渐形成数学的思维方式去解决问题、认识世界的意识。 三、教学目标 知识与技能:引导学生准确理解正弦定理、余弦定理、三角形面积公式,会对正余弦定理会进行简单的变形;引导学生通过观察,推导,比较等出一些结论,如射影定理,三角形边角之间的关系;会运用所学知识解三角形以及与三角形有关的实际问题。 过程与方法:引导学生通过观察,推导,比较,由特殊到一半归纳出正余弦定理以及三角形面积公式等结论。培养学生的创新意识,观察能力,总结归纳的逻辑思维能力。让学生通过学习能体会用向量作为数形结合的工具,将几何问题转化为代数问题的数学思想方法。 情感态度与价值观:面向全体学生,创造平等的教学氛围,进行高效课堂教学,激情教育,通过学生之间,师生之间的交流与讨论、合作与评价,调动学生的主动性和积极性,让学生体验学习数学的的乐趣,感受成功的喜悦,增强学生学好数学的信心,激发学生学习的兴趣。 四、教学重难点 重点:正弦定理、余弦定理的内容及基本应用。 难点:正弦定理、余弦定理的内容及基本应用;正余弦定理的变形应用;用所学知识解决解三角形问题的题型归纳总结。 五、课堂结构设计 根据教材的内容和编排的特点,为更好有效地突出重点,攻破难点,以学生的发展为本,遵照学生的认知规律,本节主要以教师为主导,学生为主体,交流讨论,互助学习为主线的指导思想,采用“6+1”高效课堂教学模式,在教师的启发引导下,学生通过独立自主思考探究、同学之间相互交流讨论合作学习为前提,以“熟练运用正余弦定理解三角形”为基本

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

2015届高考数学(理)二轮练习:三角函数、解三角形、平面向量(含答案)

三角函数、解三角形、平面向量 1.α终边与θ终边相同(α的终边在θ终边所在的射线上)?α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等. 任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=y x (x ≠0),三角函数值只与 角的大小有关,而与终边上点P 的位置无关. [问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 答案 -1 5 2.同角三角函数的基本关系式及诱导公式 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin α cos α . (3)诱导公式记忆口诀:奇变偶不变、符号看象限 [问题2] cos 9π 4 +tan ???-7π6+sin 21π的值为___________________________. 答案 22-3 3 3.三角函数的图象与性质 (1)五点法作图; (2)对称轴:y =sin x ,x =k π+π 2 ,k ∈Z ;y =cos x ,x =k π,k ∈Z ; 对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,????k π+π2,0,k ∈Z ;y =tan x ,????k π 2,0,k ∈Z . (3)单调区间: y =sin x 的增区间:????-π2+2k π,π 2+2k π (k ∈Z ), 减区间:??? ?π2+2k π,3π 2+2k π (k ∈Z );

必修5第一章《解三角形》全章教案

数学5 第一章 解三角形 课题: §1.1.1 正弦定理 授课类型:新授课 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。 情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。 ●教学重点 正弦定理的探索和证明及其基本应用。 ●教学难点 已知两边和其中一边的对角解三角形时判断解的个数。 ●教学过程 Ⅰ.课题导入 如图1.1-1,固定?ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。 A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。能否 用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课 [探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在Rt ?ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A 则 sin sin sin a b c c A B C = = = b c 从而在直角三角形ABC 中, sin sin sin a b c A B C = = C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图1.1-3,当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B = , C 同理可得 sin sin c b C B = , b a

高考中《解三角形》题型归纳

1 《解三角形》题型归纳 【题型归纳】 题型一正弦定理、余弦定理的直接应用 例1ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin 2B A C +=. (1)求cos B (2)若6a c +=,ABC ?面积为2,求b . 【答案】(1)15 cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin 2B B =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15 cos 17B =. (2)由15cos 17B =得8sin 17B =,故1 4 sin 217ABC S ac B ac ?==. 又2ABC S ?=,则17 2ac =. 由余弦定理及6a c +=得22222cos ()2(1cos ) b a c ac B a c ac B =+-=+-+17 15 362(14217=-??+=. 所以2b =. 【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出 例2ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =.【答案】π3【解析】1 π 2sin cos sin cos sin cos sin()sin cos 23B B A C C A A C B B B =+=+=?=?= .

2【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。 【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。 例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23 π,则S △ABC =________.【答案】34 【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B =π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34 .【易错点】大边对大角,应注意角的取值范围 【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。题型二利用正弦定理、余弦定理判定三角形的形状 例1在ABC ?中,角,,A B C 的对边分别为,,a b c ,且,,A B C 成等差数列 (1)若2b c ==,求ABC ?的面积 (2)若sin ,sin ,sin A B C 成等比数列,试判断ABC ?的形状 【答案】(1)32(2)等边三角形 【解析】(1)由A ,B ,C 成等差数列,有2B =A +C (1) 因为A ,B ,C 为△ABC 的内角,所以A +B +C =π.(2) 得B =3π, b 2=a 2+ c 2-2accosB (3)所以3 cos 44)32(22πa a -+=解得4=a 或2-=a (舍去)所以323 sin 2421sin 21=??==?πB ac s ABC (2)由a ,b ,c 成等比数列,有b 2=ac (4) 由余弦定理及(3),可得b 2=a 2+c 2-2accosB =a 2+c 2-ac 再由(4),得a 2+c 2-ac =ac ,即(a -c )2=0。因此a =c 从而A =C (5) 由(2)(3)(5),得A =B = C =3 π

专题复习解三角形与平面向量

专题复习 解三角形与平面向量 1.三角形的有关公式: (1)在△ABC 中:sin(A +B )= ,sin A +B 2 = (2)正弦定理: (3)余弦定理: _____________________________________________________________________ (4)面积公式:S =12ah a =12ab sin C =1 2 r (a +b +c )(其中r 为三角形内切圆半径). 2.平面向量的数量积 a · b = .特别地,a 2=a·a =|a|2,|a|=a 2.当θ为锐角时,a ·b >0,且a·b >0是θ为锐角的必要非充分条件;当θ为钝角时,a·b <0,且a·b <0是θ为钝角的必要非充分条件. 3.b 在a 上的射影为|b |cos_θ. 4.平面向量坐标运算 设a =(x 1,y 1),b =(x 2,y 2),且a≠0,b≠0,则:(1)a·b = ;(2)|a |= ,a 2=|a |2= ; (3)a ∥b ?a =λb ? =0;(4)a ⊥b ?a ·b =0?|a +b |=|a -b |? =0. (5)若a 、b 的夹角为θ,则cos θ= = . 5.△ABC 中向量常用结论 (1)PA →+PB →+PC →=0?P 为△ABC 的 ; (2)PA →·PB →=PB →·PC →=PC →·PA → ?P 为△ABC 的 ; (3)向量λ? ?? ???AB →|AB → |+AC →|AC →|(λ≠0)所在直线过△ABC 的 ;(4)|PA →|=|PB →|=|PC →|?P 为△ABC 的 . 考点一 解三角形 例 1-1设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3,C =π 4,则△ABC 的面积为( )A .1 + 33 +1 C .1-3 3 -1 例 1-2△ABC 中,已知3b =23a sin B ,角A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 例 1-3若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形 D .可能是锐角三角形,也可能是钝角三角形 变式训练【1-1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A = 3 2 ,且b

高考真题_三角函数与解三角形真题(加答案)

全国卷历年高考三角函数及解三角形真题归类分析 三角函数 一、三角恒等变换(3题) 1.(2015年1卷2)o o o o sin 20cos10cos160sin10- =( ) (A ) (B (C )12- (D )12 【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=1 2 ,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 2.(2016年3卷)(5)若3 tan 4 α= ,则2cos 2sin 2αα+=( ) (A)6425 (B) 4825 (C) 1 (D)1625 【解析】由3tan 4α=,得34sin ,cos 55αα==或34 sin ,cos 55αα=-=-,所以 2161264 cos 2sin 24252525 αα+=+?=,故选A . 考点:1、同角三角函数间的基本关系;2、倍角公式. 3.(2016年2卷9)若π3 cos 45α??-= ???,则sin 2α= (A ) 7 25 (B )15 (C )1 5 - (D )725 - 【解析】∵3cos 45πα??-= ???,2ππ 7sin 2cos 22cos 12425ααα????=-=--= ? ????? ,故选D . 二、三角函数性质(5题) 4.(2017年3卷6)设函数π ()cos()3 f x x =+,则下列结论错误的是() A .()f x 的一个周期为2π- B .()y f x =的图像关于直线8π 3 x =对称 C .()f x π+的一个零点为π6x = D .()f x 在π (,π)2 单调递减 【解析】函数()πcos 3f x x ? ?=+ ?? ?的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2?? ??? 上先递减后递增,D 选项错误,故选D.

第11章三角形全章教案资料

第十一章三角形 教材内容 本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。 三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用. 教学目标 〔知识与技能〕 1、理解三角形及有关概念,会画任意三角形的高、中线、角平分线; 2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形; 3、会证明三角形内角和等于1800,了解三角形外角的性质。 4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。 5、理解平面镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用它们进行简单的平面镶嵌设计。 〔过程与方法〕 1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯; 2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。 〔情感、态度与价值观〕 1、体会数学与现实生活的联系,增强克服困难的勇气和信心; 2、会应用数学知识解决一些简单的实际问题,增强应用意识; 3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 重点难点 三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。 课时分配 11.1与三角形有关的线段……………………………………… 2课时 11.2 与三角形有关的角………………………………………… 2课时 11.3多边形及其内角和………………………………………… 2课时 本章小结………………………………………………………… 2课时

必修五解三角形题型归纳

一. 构成三角形个数问题 1在ABC中,已知a x,b 2,B 45°,如果三角形有两解,则x的取值范围是( ) A. 2 x 2 2 B. x 2,2 C . 2 x 2 D. 0x2 2 ?如果满足ABC 60 , AC 12 , BC k的厶ABC恰有一个,那么k的取值范围是 3.在ABC中,根据下列条件解三角形,其中有两个解的是() A* CJ =S J =J = 45=B. a = 60 ;b -= 81; B = = 60°+J C” a —7 > b —5j八眇 D ?。二14 , b - 20, "4亍二. 求边长问题 4.在ABC 中,角A, B,C所对边a,b,c,若a 3,C1200,ABC的面积S 15血4 则c() A. 5 B .6 C . V39D7 5.在△ ABC 中,a1,B 450,S ABC 2,则b = 三. 求夹角冋题 6.在ABC中,ABC -,AB4V2, BC 3,则sin BAC( ) v'10V103^10<5 A. 10 B5 C . 10D5

7 .在厶ABC 中,角A , B , C 所对的边分别a,b,C,S 为表示△ ABC 的面积,若 1 2 2 2 bcosA csinC, S (b c a ),则/ B=( 4 B . 60° C . 45° D . 30° 四. 求面积问题 &已知△ ABC 中,内角A , B, C 所对的边长分别为 a,b,c .若 a ZbcosAB -, c 1 ,则 △ ABC 的面积等于 ( ) g 6 4 2 9.锐角 ABC 中,角A 、B 、C 的对边分别是a 、b 、 1 c ,已知 cos2C - 4 ([)求 sinC 的值; (□)当 a 2, 2si nA si nC 时,求 b 的长及 ABC 的面积. 10?如图,在四边形 ABCD 中,AB 3,BC 7.3,CD 14, BD 7, BAD 120 a cosB A. 90° (1 )求AD 边的长; (2)求ABC 的面积.

用平面向量解三角形问题

第五编 平面向量、解三角形 §5.1 平面向量的概念及线性运算 基础自测 1.下列等式正确的是 (填序号). ①a +0=a ②a +b =b +a ③+≠0 ④=++ 答案 ①②④ 2.如图所示,在平行四边行ABCD 中,下列结论中正确的是 . ①= ②+= ③-= ④+=0 答案 ①②④ 3.(20082广东理,8)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若=a ,=b ,则= . 答案 3 2a +31b 4.若ABCD 是正方形,E 是DC 边的中点,且AB =a ,AD =b ,则= . 答案 b -2 1a 5.设四边形ABCD 中,有=2 1 ,且||=||,则这个四边形是 . 答案 等腰梯形 例1 给出下列命题 ①向量的长度与向量的长度相等; ②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③两个有共同起点并且相等的向量,其终点必相同; ④两个有共同终点的向量,一定是共线向量; ⑤向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上; ⑥有向线段就是向量,向量就是有向线段. 其中假命题的个数为 . 答案 4 例2 如图所示,若四边形ABCD 是一个等腰梯形, AB ∥DC ,M 、N 分别是DC 、AB 的中点,已知=a , =b , =c ,试用 a 、 b 、 c 表示,, +. C D

∵MN =MD ++AN , ∴=-21,=-,=2 1 , ∴MN = 21a -b -2 1c . +CN =+MN +CM +MN =2MN =a -2b -c . 例3 设两个非零向量a 与b 不共线, (1)若=a +b ,=2a +8b ,=3(a -b ), 求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. (1)证明 ∵=a +b ,=2a +8b ,=3(a -b ), ∴=+=2a +8b +3(a -b ) =2a +8b +3a -3b =5(a +b )=5. ∴、共线, 又∵它们有公共点B , ∴A 、B 、D 三点共线. (2)解 ∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b . ∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2 -1=0. ∴k =±1. 例4 (14分)如图所示,在△ABO 中,=4 1 , = 2 1 ,AD 与BC 相交于点M ,设=a ,=b .试 用a 和b 表示向量. 解 设OM =m a +n b , 则=-=m a +n b -a =(m -1)a +n b . =-= 21-=-a +2 1b . 又∵A 、M 、D 三点共线,∴AM 与AD 共线. ∴存在实数t ,使得=t , 即(m -1)a +n b =t (-a +2 1 b ). 4分 ∴(m -1)a +n b =-t a + 2 1 t b . ?? ???=-=-21t n t m ,消去t 得:m -1=-2n . 即m +2n =1. ① 6分 ∴

相关主题