搜档网
当前位置:搜档网 › 指数函数与对数函数单元测试题

指数函数与对数函数单元测试题

指数函数与对数函数单元测试题
指数函数与对数函数单元测试题

指数函数和对数函数一选择题

1.下列函数中,值域是(0,+∞)的函数是()

A.

1

2x

y B.y=2x-1 C.y=2x+1 D.y=(

1

2)

2-x

2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成()

A.511个B.512个

C.1 023个D.1 024个

3.如果函数y=(a x-1)-1

2

的定义域为(0,+∞)那么a的取值范围是()

A.a>0 B.01 D.a≥1

4.函数y=a|x|(0

A.a>b>c B.b>a>c C.b>c>a D.c>b>a 6.函数y=a x在[0,1]上的最大值与最小值的和为3,则a等于()

A.1

2B.2 C.4 D.

1

4

7.在同一平面直角坐标系中,函数f(x)=ax与指数函数g(x)=a x的图象可能是()

8. 如果

log 5log 50a b >>,那么a 、b 间的关系是(

)

A 01a b <<<

B 1a b <<

C 01b a <<<

D 1b a << 9. 已知01,1a b <<<-,则函数+x y a b =的图象必定不经过( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限 10. 与函数y =x 有相同图象的一个函数是( ) A

y = B log a x

y a = (0a >,且0)a ≠

C

2/y x x = D log x a y a =(0a >,且0)a ≠

12已知函数log (2)a y ax =-在(1,1)-上是x 的减函数,则a 的取值范围是( ) A (0,2) B (1,2) C (1,2] D [2,)+∞

13已知函数122

()log (2log )f x x =-的值域是(,0)-∞,则它的定义域是( )

A {|2}x x <

B {|02}x x <<

C {|04}x x <<

D {|24}x x <<

14已知函数2

0.5()log (3)f x x ax a =-+在区间[2,)+∞是减函数,则实数a 的取值范围是(

)

A (,4]-∞

B [4,)+∞

C (4,4]-

D [4,4]-

15 设

1

37

x

=,则 ( )

A .-2

B .-3

C .-1

D .0

16. 函数2

()lg(32)f x x x =-+的定义域为E ,函数()lg(1)lg(2)g x x x =-+-的定义域为F ,

则 ( )

A =E F φ?

B E F =

C E F ?

D

E

F ? 17. 有下列命题:(1)若

()()f x f x -=,则函数()y f x =的图象关于y 轴对称;(2)若

()()f x f x -=-,则函数()y f x =的图象关于原点对称;(3) 函数()y f x =与 ()

y f x =-的图象关于x 轴对称;(4)函数()y f x =与函数()x f y =的图象关于直线y x =对称 。其中真命题是 ( )

A (1)(2)

B (1)(2)(3)

C (1)(3)(4)

D (1)(2)(3)(4) 18. 已知1112

2

2

log log log b a c <<,则( )

A .c

a

b

222>>B .c b a

222>> C .a b c 222>> D .b

a c 222>>

19.

函数2()lg(31)f x x =

++的定义域是 ( )

A.1(,)

3-+∞ B.

1(,1)3- C. 11(,)33- D. 1(,)3-∞- 二 填空题

1.指数函数y =f (x )的图象过点(-1,1

2),则f [f (2)]=________. 2.当x ∈[-1,1]时,函数f (x )=3x -2的值域为__________.

3.已知x >0时,函数y =(a 2-8)x 的值恒大于1,则实数a 的取值范围是________. 4.(09·江苏文)已知a =5-1

2,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________.

5. 计算:113

0211()4(2)()924

----?-+- =_________.

6. y =

的定义域是______ 。

7. 方程3log (21)1x -=的解=x ________。

三 解答题

1.判断函数f(x)=

x

2x-1

x

2的奇偶性.

[解析]∵2x-1≠0,∴x≠0,定义域{x∈R|x≠0} 2.求下列函数的定义域和值域

3 求下列函数的定义域和值域

(1)

2

1

2

()log(4)

f x x x

=-(2)

21

1

()3

x

x

f x

+

-

=

4 求下列函数的单调区间

(1)

2

4

1

()()

2

x x

f x-

=(2)32

1

()log

f x

x

=

5 已知函数()log (1)(01)x

a f x a a =-<< (1)求()f x 的定义域;(2) 讨论()f x 的单调性。

6.已知,32

12

1=+-

x x 求32

12

32

3++++--x x x x 的值.

7.求函数y=33

22++-x x 的定义域、值域和单调区间.

《指数函数和对数函数》测试题和答案解析

指数函数与对数函数单元测试(含答案) 一、选择题: 1、已知(10)x f x =,则(5)f =( ) A 、510 B 、10 5 C 、lg10 D 、lg 5 2、对于0,1a a >≠,下列说法中,正确的是( ) ①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 3、设集合2 {|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T I 是 ( ) A 、? B 、T C 、S D 、有限集 4、函数22log (1)y x x =+≥的值域为( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 5、设 1.50.90.4812314,8,2y y y -??=== ???,则( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 6、在(2)log (5)a b a -=-中,实数a 的取值范围是( ) A 、52a a ><或 B 、2335a a <<<<或 C 、25a << D 、34a << 7、计算()()22lg 2lg52lg 2lg5++?等于( ) A 、0 B 、1 C 、2 D 、3 8、已知3log 2a =,那么33log 82log 6-用a 表示是( ) A 、52a - B 、2a - C 、23(1)a a -+ D 、231a a -- 9、若21025x =,则10x -等于( ) A 、15 B 、15- C 、150 D 、1625

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

精选《指数函数和对数函数》单元测试考试题(含答案)

2019年高中数学单元测试试题 指数函数和对数函数 (含答案) 学校:__________ 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题 1.若log a 2b >1 D . b >a >1(1992山东理 7) 2.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为1 2 ,则a =( ) A B .2 C . D .4(2007全国1) 3.生物学指出:生态系统中,在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级.在H 1→H 2→H 3这个生物链中,若能使H 3获得10kj 的能量,则需H 1提供的能量为______________. 4.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有 )()1()1(x f x x xf +=+,则)2 5 (f 的值是 A. 0 B. 21 C. 1 D. 2 5 5.有下列命题: ○ 1log (0,1)a N b a a =>≠与(0,1)b a N a a =>≠是同一个关系式的两种不同表达形式; ○ 2对数的底数是任意正数;

○ 3若(0,1)b a N a a =>≠,则log a N a N =一定成立; ○ 4在同底的条件下,log a N b =与b a N =可以互相转化. 其中,是真命题的是 ( ) A .○1○2 B .○2○4 C .○1○2○3 D .○1○3○4 6.设函数f (x )=1-x 2+log 12(x -1),则下列说法正确的是 ( ) (A )f (x )是增函数,没有最大值,有最小值 (B )f (x )是增函数,没有最大值、最小值 (C )f (x )是减函数,有最大值,没有最小值 (D )f (x )是减函数,没有最大值、最小值 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 7.若关于x 的方程:0212 =--+x x kx 有两个不相等的 实数解,则实数k 的取值范围 . ?? ? ???- 0,21 8.方程x x 28lg -=的根)1,(+∈k k x ,k ∈Z ,则k = . 9.若2lg (x -2y )=lg x +lg y ,则x y 的值为 10.求下列函数的定义域: (1)1 2x y =; (2)y = 11.)23(log 2 2 1+-=x x y 的定义域是_______ . 12.已知函数f (x )=log 2(x 2-a x +3a ),对于任意x ≥2,当△x >0时,恒有f (x +△x )>f (x ), 则实数a 的取值范围是 ▲ . 13.函数122 x y -=是由函数1()4 x y =经过怎样的变换得到的?

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

(完整版)指数函数和对数函数单元测试题及答案

指数函数和对数函数单元测试题 一选择题 1 如果,那么a、b间的关系是【】 A B C D 2 已知,则函数的图象必定不经过【】 A第一象限 B第二象限 C第三象限D第四象限 3 与函数y=x有相同图象的一个函数是【】 A B,且 C D,且 4 已知函数的反函数为,则的解集是【】 A B C D 5已知函数在上是x的减函数,则a的取值范围是【】 A B C D 6 已知函数的值域是,则它的定义域是【】 A B C D 7已知函数在区间是减函数,则实数a的取值范围是【】 A B C D 8 已知,则方程的实数根的个数是【】 A1 B 2 C 3D 4 9 函数的定义域为E,函数的定义域为F,则【】 A B C D 10有下列命题:(1)若,则函数的图象关于y轴对称;(2)若,则函数的图象关于原点对称;(3)函数与的图 象关于x轴对称;(4)函数与函数的图象关于直线对称。其中真命题是【】 A(1)(2) B(1)(2)(3)C(1)(3)(4) D (1)(2)(3)(4)

二填空题 11函数的反函数是______ 。12 的定义域是______ 。 13 函数的单调减区间是________。 14 函数的值域为R,则实数a的取值范围是__________. 三解答题 1 求下列函数的定义域和值域 (1)(2) 2 求下列函数的单调区间 (1)(2) 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。 4 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

参考答案 一选择题BADBC BCBDD 二填空题11121314或 三解答题 1 求下列函数的定义域和值域 (1)(2) 定义域定义域 值域值域且 2 求下列函数的单调区间 (1)(2) 减区间,增区间减区间, 3 已知函数 (1)求的定义域;(2)讨论的单调性;(3)解不等式。解(1),又,所以,所以定义域。 (2)在上单调增。 (3),,即 ,所以,所以解集 2 已知函数 (1)证明:在上为增函数;(2)证明:方程=0没有负数根。

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

基本初等函数单元测试题(含答案)免费共享

数学周练试题(三) 一、选择题:(每题5分,共50分) 1、对于0,1a a >≠,下列说法中,正确的是................................( ) ①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =。 A 、①②③④ B 、①③ C 、②④ D 、② 2、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是.......... ( ) A 、? B 、T C 、S D 、有限集 3、函数22log (1)y x x =+≥的值域为.......................................( ) A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞ 4、设1.50.90.4812314,8,2y y y -??=== ???,则....................................( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、123y y y >> 5、已知3log 2a =,那么33log 82log 6-用a 表示是...........................( ) A 、52a - B 、2a - C 、23(1)a a -+ D 、2 31a a -- 6、当1a >时,在同一坐标系中, 函数x y a -=与log x a y =的图象是图中的...................( ) 7、若函数()l o g (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( ) A B C 、14 D 、12

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

指数函数练习题

指数函数练习题

指数与指数函数练习题 姓名 学号 (一)指数 1、化简[ 3 2 ) 5(-] 4 3的结果为 ( ) A .5 B .5 C .-5 D .-5 2、将 3 2 2-化为分数指数幂的形式为 ( ) A .2 12- B .3 12- C .2 1 2-- D . 6 52- 3. 3 334)2 1 ()21()2()2(---+-+----的值 ( ) A 4 3 7 B 8 C -24 D -8 4(a, b 为正数)的结果是_________. 5、 3 2 1 41()6437 ---+-=__________.

6、 ) 3 1 ()3)((65 613 1212132b a b a b a ÷-=__________。 (二)指数函数 一. 选择题: 1. 函数x y 24-=的定义域为 ( ) A ),2(+∞ B (]2,∞- C (]2,0 D [)+∞,1 2. 下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B 2 y x = C 3x y = D x y 5.0= 3.某种细菌在培养过程中,每20分钟分裂一次(一个分 裂为两个)。经过3个小时,这种细菌由1个可繁殖成( ) 511 .A 个 512 .B 个 1023 .C 个 1024 .D 个 ax x f =)(x a x g =)(的图

增,则该厂到2010年的产值(单位:万元)是( ) n a A +1(.%13 ) n a B +1(.%12 ) n a C +1(.%11 ) n D -1(9 10 . %12 ) 二. 填空题: 1、已知)(x f 是指数函数,且25 5 )23(=-f ,则=)3(f 2、 已知指数函数图像经过点P(1,3)-,则(2)f = 3、 比较大小12 2- 1 3 2- , 0.32()3 0.22 ()3 , 0.31.8 1 4、 3 1 1 2 13,32,2-?? ? ??的大小顺序有小到大依 次 为 _________ 。 5、 设10<x x x x a a 成立的x 的集合是 6、 函数 y = 7、 函数 y = 8、若函数1 41 )(++=x a x f 是奇函数,则a =_________ 三、解答题:

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

中职数学基础模块上册第四单元指数函数与对数函数练习题1

第4章单元检测题 一,选择题 1,下列命题中正确的是( ) A -a 一定是负数 B 若a <0则2)(a -=-a C 若a <0时,∣a 2∣=-a 2 D a <0 2 a a =1 2,把根式a a -为分数指数幂是( ) A (-a )2 3 B -(-a )2 3 C a 2 3 D - a 2 3 3,[(-2)2 ] 21-的结果是( ) A -2 B -22 C 2 2 D 2 4,下列函数中不是幂函数的是( ) A y=x B y=x 3 C y=2x D y=x 1- 5,幂函数y=x a 一定过(0,0 ),(1.1),(-1,1),(-1,-1)中的( )点 A 1 B 2 C 3 D 4 6,函数y=1-x a 的定义域是(-∞,0],则a 的取值范围是( ) A (0,+∞) B (1,+∞) C (0,1) D (-∞,1)∪(1,+∞) 7,已知f(x)的定义域是(0,1),则f (2x )的定义域是( ) A (0,1) B (1,2) C ( 2 1 ,1) D (0,+∞) 9,某人第一年7月1日到银行存入一年期存款m 元,设年利率为r ,到第四年7月1日取回存款( ) A m (1+r )3 B m+(1+r )3 C m (1+r )2 D m (1+r )4 10,下列四个指数式①(-2)3 =-8 ② 1n =1 (n R ∈) ③ 32 1-= 3 3 ④ a b =N 可以写出对数式的个数是( ) A 1 B 2 C 3 D 0 11, 3 2 98log log =( )

A 32 B 1 C 2 3 D 2 12,关于log 102 3 和log 103 2两个实数,下列判断正确的是( ) A 它们互为倒数 B 它们互为相反数,C 它们的商是D 它们的积是0 13,设5x 10log =25,则x 的值等于( ) A 10 B ±10 C 100 D ±100 14,已知x=1+2,则log 46 2--x x 等于( ) A 0 B 21 C 45 D 2 3 15,设lgx 2=lg (12-)-lg (12+),则x 为( ) A 12+ B -(12+) C 12- D ±(12-) 16,若log )1()1(++x x =1,则x 的取值勤范围是( ) A (-1,+∞) B (-1,0)∪(0,+∞) C (-∞,-1)∪(-1,+∞) D R 17,如果log 2 1a <1,那么a 的取值范围是( ) A 0<a <21 B a >1 C 0<a <2 1 或a >1 D a > 2 1 且a ≠1 18,下列式子中正确的是( ) A log a ) (y x -=log a x -log a y B y a x a log log =log x a -log y a C y a x a log log =log y x a D log a x -log a y = log y x a 19下列各函数中在区间(0,+∞)内为增函数的是( ) A y=( 21)x B y=log x 2 C y=log x 2 1 D y=x 1- 20,若a >1在同一坐标系中,函数y=a x -和y=log x a 的图像可能是( )