搜档网
当前位置:搜档网 › 历年高考数学压轴题集锦精选

历年高考数学压轴题集锦精选

历年高考数学压轴题集锦精选
历年高考数学压轴题集锦精选

历年高考数学压轴题集锦

1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点

A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点.

(1)求椭圆的方程及离心率;

(2)若0OP OQ ?=u u u r u u u r

,求直线PQ 的方程;

(3)设AP AQ λ=u u u r u u u r

(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明

FM FQ λ=-u u u u r u u u r

. (14分)

2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f . (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式. (2) 证明)(x f 是偶函数. (3) 试问方程01

log )(4

=+x

x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由.

3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2

2=-+y x . (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g 交轨迹E 于G (x 1,y 1)、H (x 2,y 2)两点,求证:x 1x 2 为定值;

(3) 过轨迹E 上一点P 及S 的最小值.

4.以椭圆2

22y a

x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试判断并推证能

作出多少个符合条件的三角形.

5 已知,二次函数f (x )=ax 2

+bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0.

(Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点;

(Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围.

6 已知过函数f (x )=12

3++ax x 的图象上一点B (1,b )的切线的斜率为-3. (1) 求a 、b 的值;

(2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立;

(3) 令()()132

++--=tx x x f x g .是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有最大值1?

7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→

→?PN PM 的等比中项.

(1) 求动点P 的轨迹方程,并指出方程所表示的曲线;

(2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程. 8.已知数列{a n }满足a

a a

a b a a a a a a a n n

n n n n +-=+=>=+设,2),0(32211 (1)求数列{b n }的通项公式;

(2)设数列{b n }的前项和为S n ,试比较S n 与

8

7

的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称.

(Ⅰ)求双曲线C 的方程;

(Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;

(Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程.

10. )(x f 对任意R x ∈都有.2

1)1()(=

-+x f x f (Ⅰ)求)21(f 和)( )1

(

)1(N n n

n f n f ?-+的值. (Ⅱ)数列{}n a 满足:n a =)0(f +)1()1

()2()1(f n

n f n f n f +-+++ΛΛ,数列}{n a 是等差数列吗?请给予证明;

(Ⅲ)令.1632,,1

442

232221n

S b b b b T a b n n n n n -

=++++=-=

ΛΛ 试比较n T 与n S 的大小. 11.

:如图,设OA 、OB 是过抛物线y 2=2px 顶点O 的两条弦,且OA

→·OB →=0,求以OA 、OB 为直径的两圆的另一个交点P 的轨迹.(13分)

12.知函数f (x )=log 3(x 2-2mx +2m 2

+9m2-3)的定义域为R

(1)求实数m 的取值集合M ;

(2)求证:对m ∈M 所确定的所有函数f (x )中,其函数值最小的一个是2,并求使函数值等于2的m 的值和

x 的值.

13.设关于x 的方程2x 2

-tx-2=0的两根为),(,βαβα<函数f(x)=.1

42+-x t

x (1). 求f()()βαf 和的值.

(2).证明:f(x)在[],βα上是增函数. (3).对任意正数x 1、x 2,求证:βαα

ββα-<++-++2)()(

2

1212121x x x x f x x x x f

14.已知数列{a n }各项均为正数,S n 为其前n 项的和.对于任意的*

n N ∈,都有()2

41n n S a =+. I 、求数列{}n a 的通项公式.

II 、若2n n tS ≥对于任意的*

n N ∈恒成立,求实数t 的最大值.

15.( 12分)已知点H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足

HP ·PM =0,PM =-

2

3

MQ , (1)当点P 在y 轴上移动时,求点M 的轨迹C ;

(2)过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 为等边三角形,求x 0的值.

16.(14分)设f 1(x )=

x

+12,定义f n +1 (x )=f 1[f n (x )],a n =2)0(1)0(+-n n f f ,其中n ∈N *

.

(1) 求数列{a n }的通项公式;

(2)若T 2n =a 1+2a 2+3a 3+…+2na 2n ,Q n =1

44422+++n n n n ,其中n ∈N *

,试比较9T 2n 与Q n 的大小.

17. 已知→

a =(x,0),→

b =(1,y ),(→

a +3→

b )⊥(→

a –3→

b ).

(I ) 求点P (x ,y )的轨迹C 的方程;

(II ) 若直线L :y=kx+m(m ≠0)与曲线C 交于A 、B 两点,D (0,–1),且有 |AD|=|BD|,试求m 的

取值范围.

18.已知函数)(x f 对任意实数p 、q 都满足()()(),f p q f p f q +=?1(1).3

f =且

(1)当n N +∈时,求)(n f 的表达式;

(2)设),()

(+∈=N n n nf a n 求证:1

3

;4n

k k a =<∑

(3)设1(1)

(),,()

n

n n k k nf n b n N S b f n +=+=

∈=∑试比较11

n

k k

S =∑

与6的大小. 19.已知函数),10(log )(≠>=a a x x f a 且若数列:),(),(,221a f a f …,

)(42),(*∈+N n n a f n 成等差数列.

(1)求数列}{n a 的通项n a ;

(2)若}{,10n a a 数列<<的前n 项和为S n ,求n n S ∞

→lim ;

(3)若)(,2n n n a f a b a ?==令,对任意)(,1

t f

b N n n -*

>∈都有,求实数t 的取值范围.

20.已知△OFQ 的面积为.,62m FQ OF =?且

(1)设θ的夹角与求向量FQ OF m ,646<<正切值的取值范围; (2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),2)14

6

(

,||c m c OF -==, 当||OQ 取得最小值时,求此双曲线的方程.

(3)设F 1为(2)中所求双曲线的左焦点,若A 、B 分别为此双曲线渐近线l 1、l 2上的动

点,且2|AB|=5|F 1F|,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线.

21、已知函数13)(2

++=bx x x f 是偶函数,c x x g +=5)(是奇函数,正数数列{}n a 满足

11211=+-+=++)a a a (g )a a (f ,a n n n n n n

① 求{}n a 的通项公式;

②若{}n a 的前n 项和为n S ,求n n S ∞

→lim .

22、直角梯形ABCD 中∠DAB =90°,AD ∥BC ,AB =2,AD =23,BC =2

1

.椭圆C 以A 、B 为焦点且经过点D .

(1)建立适当坐标系,求椭圆C 的方程; (2)若点E 满足EC 2

1

=

,问是否存在不平行AB 的直线l 与椭圆C 交于M 、N 两点且||||NE ME =,若存在,求出直线l 与AB 夹角的范围,若不存在,说明理由.

23、.设函数,2

41

)(+=

x x f

(1)求证:对一切)1()(,x f x f R x -+∈为定值; (2)记*),()1()1

()2()1()0(N n f n

n f n f n f f a n ∈+-++++=K 求数列}{n a 的通项公式及前n

项和.

24. 已知函数)(x f 是定义在R 上的偶函数.当X ≥0时, )(x f =1

72++-x x x

.

(I) 求当X<0时, )(x f 的解析式;

(II)

试确定函数y =)(x f (X ≥0)在[)+∞,1的单调性,并证明你的结论.

(III) 若21≥x 且22≥x ,证明:|)(1x f -)(2x f |<2.

25、已知抛物线x y 42

=的准线与x 轴交于M 点,过M 作直线与抛物线交于A 、B 两点,若线段AB 的垂直平分线与X 轴交于D (X 0,0) ⑴求X 0的取值范围.

⑵△ABD 能否是正三角形?若能求出X 0的值,若不能,说明理由.

26、已知□ABCD ,A (-2,0),B (2,0),且∣AD ∣=2 ⑴求□ABCD 对角线交点E 的轨迹方程.

⑵过A 作直线交以A 、B 为焦点的椭圆于M 、N 两点,且∣MN ∣=

23

8

,MN 的中点到Y 轴的距离为3

4

,求椭圆的方程. ⑶与E 点轨迹相切的直线l 交椭圆于P 、Q 两点,求∣PQ ∣的最大值及此时l 的方程.

27.(14分)(理)已知椭圆)1(12

22>=+a y a

x ,直线l 过点A (-a ,0)和点B (a ,ta )

(t >0)交椭圆于M.直线MO 交椭圆于N.(1)用a ,t 表示△AMN 的面积S ; (2)若t ∈[1,2],a 为定值,求S 的最大值.

28.已知函数f (x )= bx+c

x+1 的图象过原点,且关于点(-1,1)成中心对称.

(1)求函数f (x )的解析式;

(2)若数列{a n }(n ∈N*)满足:a n >0,a 1=1,a n +1= [f (an)]2,求数列{a n }的通项公式a n ,并证

明你的结论.

30、已知点集},|),{(n m y y x L ?==其中),1,1(),1,2(+=-=b n b x m 点列),(n n n b a P 在L 中,1P 为L 与y 轴的交点,等差数列}{n a 的公差为1,+∈N n .

(1)求数列}{n a ,}{n b 的通项公式; (2)若),2(|

|5

1≥?=

n P P n c n n 求)(lim 21n n c c c +++∞→Λ;

(3)若),()

2()

12()(+∈??

?=-==N k k n b k n a n f n n 是否存在+∈N k 使得),(2)11(k f k f =+若存在,求出k

的值;若不存在,请说明理由.

21.经过抛物线24y x =的焦点F 的直线l 与该抛物线交于A 、B 两点. (12分)

(1)若线段AB 的中点为(,)M x y ,直线的斜率为k ,试求点M 的坐标,并求点M 的轨迹方程

(2)若直线l 的斜率2k >,且点M 到直线340x y m ++=的距离为1

5

,试确定m 的取值范围.

1(1

)解:由题意,可设椭圆的方程为(22

212x y a a +=>.

由已知得,

().

222

22a c a c c c ?-=?

?=-??

解得2a c = 所以椭圆的方程为22

162

x y +=

,离心率3e =

. (2)解:由(1)可得A (3,0).

设直线PQ 的方程为()3y k x =-.由方程组,()22

162

3x y y k x ?+

=???=-?

得()222231182760k x k x k +-+-=,依题意()212230k ?=->

,得33

k <<

. 设(,),(,)1122P x y Q x y ,则21221831k x x k +=+, ① 2122276

31

k x x k -=+. ②

由直线PQ 的方程得(),()112233y k x y k x =-=-.于是

()()[()]22121212123339y y k x x k x x x x =--=-++. ③ ∵0OP OQ ?=u u u r u u u r

,∴12120x x y y +=. ④

由①②③④得251k =

,从而()533

k =. 所以直线PQ

的方程为30x --=

或30x -=

(3,理工类考生做)证明:(,),(,)112233AP x y AQ x y =-=-u u u r u u u r

.由已知得方程组

(),,

,

.

121

22211

22

223316

216

2x x y y x y x y λλ-=-??=???+=???+=? 注意1λ>,解得251

2x λλ

-=

因(,),(,)1120F M x y -,故

(,)((),)1121231FM x y x y λ=--=-+-u u u u r (,)(,)121122y y λλλλ--=-=-.

而(,)(,)2221

22FQ x y y λλ

-=-=u u u r ,所以FM FQ λ=-u u u u r u u u r .

2 ①f(x)=12--k x (2k ≦x ≦2k+2, k ∈Z) ②略 ⑶方程在[1,4]上有4个实根

3 ①x 2

=4y ②x 1x 2=-4 ⑶P(±2,1) S MIN =7

4 .解:因a >1,不防设短轴一端点为B (0,1)

设BC ∶y =kx +1(k >0) 则AB ∶y =-

k

1

x +1 把BC 方程代入椭圆, 是(1+a 2k 2

)x 2

+2a 2

kx =0

∴|BC |=2222

121k a k a k ++,同理|AB |=2

222

21a

k a k ++ 由|AB |=|BC |,得

k 3-a 2k 2+ka 2-1=0

(k -1)[k 2

+(1-a 2

)k +1]=0 ∴k =1或k 2

+(1-a 2

)k +1=0

当k 2

+(1-a 2)k +1=0时,Δ=(a 2

-1)2

-4

由Δ<0,得1<a <3

由Δ=0,得a =3,此时,k =1

故,由Δ≤0,即1<a ≤3时有一解 由Δ>0即a >3时有三解 5 解:依题意,知a 、b ≠0

∵a >b >c 且a +b +c =0

∴a >0且c <0

(Ⅰ)令f (x )=g (x ), 得ax 2

+2bx +c =0.(*)

Δ=4(b 2-ac )

∵a >0,c <0,∴ac <0,∴Δ>0

∴f (x )、g (x )相交于相异两点 (Ⅱ)设x 1、x 2为交点A 、B 之横坐标 则|A 1B 1|2

=|x 1-x 2|2

,由方程(*),知

|A 1B 1|2

=2

2224)(444a

ac

c a a ac b -+=- 22

24()a c ac a

=

++ 24()1(**)c

c a

a ??=++????

∵0

20a b c a c a b ++=??+>?

>?,而a >0,∴

2c

a

>- ∵020a b c a c c b

++=??+

12

c a <- ∴122

c a -<

<- ∴4[(

a c )2+a

c

+1]∈(3,12) ∴|A 1B 1|∈(3,23) 6、解:(1)()x f

'

=ax x 232+

依题意得k=()1'

f =3+2a=-3, ∴a=-3

()1323+-=∴x x x f ,把B (1,b )代入得b=()11-=f

∴a=-3,b=-1 (2)令()x f

'

=3x 2

-6x=0得x=0或x=2

∵f (0)=1,f (2)=23

-3×22

+1=-3 f (-1)=-3,f (4)=17 ∴x ∈[-1,4],-3≤f (x )≤17

要使f (x )≤A -1987对于x ∈[-1,4]恒成立,则f (x )的最大值17≤A -1987 ∴A ≥2004.

(1) 已知g (x )=-(

)

tx x tx x x x +-=++-+-3

22

31313 ∴()t x x g +-=2

'

3

∵0<x ≤1,∴-3≤-3x 2

<0, ① 当t >3时,t -3x 2

>0,()0'

>x g 即

∴g (x )在]1.0(上为增函数,

g (x )的最大值g (1)=t -1=1,得t=2(不合题意,舍去) ② 当0≤t ≤3时, ()t x x g +-=2

'

3

令()x g '

=0,得x=

3

t 列表如下:

x

(0,

3t ) 3

t ]1,3

(

t ()x g '

+ 0 - g (x )

极大值

g (x )在x=3t 处取最大值-3

3???

? ??t +t 3t =1 ∴t=3427=2233

<3

t

3

∴x=

3

t <1 ③当t <0时,()t x x g +-=2

'

3<0,∴g (x )在]1.0(上为减函数, ∴g (x )在]1.0(上为增函数,

∴存在一个a=2

2

33,使g (x )在]1.0(上有最大值1.

7、解:(1)设动点的坐标为P (x,y ),则H (0,y ),()0,x PH -=→

,→

PM =(-2-x,-y )

PN =(2-x,-y )

∴→

PM ·→

PN =(-2-x,-y )·(2-x,-y )=2

2

4y x +-

x PH =→

由题意得∣PH ∣2=2·→

PM ·→

PN 即(

)2

22

42y

x x +-=

即14

82

2=+y x ,所求点P 的轨迹为椭圆 (2)由已知求得N (2,0)关于直线x+y=1的对称点E (1,-1),则∣QE ∣=∣QN ∣

双曲线的C 实轴长2a=10=≤-=-ME QE QM QN QM (当且仅当Q 、E 、M 共线时取“=”),此时,实轴长2a 最大为10

所以,双曲线C 的实半轴长a=

2

10

又2

3,221222=-=∴==

a c

b NM

c Θ

∴双曲线C 的方程式为12

3252

2=-y x 8.(1)1

21-=

n n b

(2)08

12

11161

81)21212121161(81)212121(872441684=--=-+?+?+<-++++=-K K n

S

9.解:(Ⅰ)设双曲线C 的渐近线方程为y=kx ,则kx-y=0

∵该直线与圆1)2(22

=-

+y x 相切,

∴双曲线C 的两条渐近线方程为y=±x .…………………………………………2分

故设双曲线C 的方程为122

22=-a

y a x .

又双曲线C 的一个焦点为 )0,2( ∴222=a ,12

=a .

∴双曲线C 的方程为12

2

=-y x .………………………………………………4分

(Ⅱ)由??

?=-+=1

1

2

2y x mx y 得022)1(2

2=---mx x m .

令22)1()(2

2

---=mx x m x f

直线与双曲线左支交于两点,等价于方程f(x)=0在)0,(-∞上有两个不等实根.

因此?????????

>--<->?012

01202

2

m

m m 解得21<

,1(

2

2m m m --,

∴直线l 的方程为)2(2

21

2

+++-=

x m m y .………………………………6分

令x=0,得8

17)41(22

22222+

--=++-=

m m m b . ∵)2,1(∈m , ∴)1,22(8

17

)4

1

(22

+-∈+

--m ∴),2()22,(+∞---∞∈Y b .………………………………………………8分 (Ⅲ)若Q 在双曲线的右支上,则延长2QF 到T ,使||||1QF QT =, 若Q 在双曲线的左支上,则在2QF 上取一点T ,使||||1QF QT =.

根据双曲线的定义2||2=TF ,所以点T 在以)0,2(2F 为圆心,2为半径的圆上,即点T 的轨迹方程是

)0(4)2(22≠=+-x y x ①…………………………………………10分

由于点N 是线段T F 1的中点,设),(y x N ,),(T T y x T .

则???

????=-=222T

T y y x x ,即???=+=y y x x T T 222.

代入①并整理得点N 的轨迹方程为12

2

=+y x .)2

2

(-

≠x ………………12分 10 解:(Ⅰ)因为2

1)21()21()211()21(=

+=-+f f f f .所以41

)21(=f .……2分

令n x 1=

,得21)11()1(=-+n f n f ,即2

1

)1()1(=-+n n f n f .……………4分 (Ⅱ))1()1

(

)1

()0(f n

n f n

f f a n +-+++=Λ 又)0()1

()1()1(f n

f n n f f a n +++-+=Λ………………5分 两式相加

2

1

)]0()1([)]1()1([)]1()0([2+=+++-+++=n f f n n f n f f f a n Λ.

所以N n n a n ∈+=

,4

1

,………………7分 又41

414111=+-++=

-+n n a a n n .故数列}{n a 是等差数列.………………9分 (Ⅲ)n

a b n n 4

1

44=-=

2

2221n n b b b T +++=Λ

)1

31211(16222n

++++

=Λ ])

1(1

3212111[16-++?+?+

≤n n Λ………………10分 )]1

11()3121()211(1[16n

n --++-+-+=Λ………………12分

n S n

n =-=-=16

32)12(16

所以n n S T ≤……………………………………………………………………14分 11.设直线OA 的斜率为k ,显然k 存在且不等于0

则OA 的方程为y =kx

由???y =kx y2=2px

解得A (2p k2,2p

k )

……4分

又由,知OA ⊥OB ,所以OB 的方程为y =-1

k x

由?????y =-1k x

y2=2px

解得B (2pk 2,-2pk ) ……4分

从而OA 的中点为A '(p k2,p k ),OB 的中点为B '(pk 2

,-pk )

……6分

所以,以OA 、OB 为直径的圆的方程分别为

x 2+y 2-

2px k2-2py

k

=0 ……① x 2+y 2-2pk 2x +2pky =0 ……②

……10分 ∵P (x ,y )是异于O 点的两圆交点,所以x ≠0,y ≠0

由①-②并化简得y =(k -1

k )x ……③

将③代入①,并化简得x (k 2

+1k2

-1)=2p ……④

由③④消去k ,有x 2+y 2

-2px =0

∴点P 的轨迹为以(p ,0)为圆心,p 为半径的圆(除去原点). ……13分

12.(1)由题意,有x 2-2mx +2m 2

+9m2-3

>0对任意的x ∈R 恒成立

所以△=4m 2-4(2m 2

+9m2-3)<0

即-m 2

-9

m2-3

<0

∴(m2-3

2

)2+27

m2-3

>0

由于分子恒大于0,只需m 2

-3>0即可 所以m <-3或m >3 ∴M ={m |m <-3或m >3}

……4分

(2)x 2-2mx +2m 2+9m2-3=(x -m )2+m 2+9m2-3≥m 2

+9m2-3

当且仅当x =m 时等号成立.

所以,题设对数函数的真数的最小值为m 2

+9m2-3

……7分

又因为以3为底的对数函数为增函数 ∴f (x )≥log 3(m 2

+9

m2-3

)

∴当且仅当x =m (m ∈M )时,f (x )有最小值为log 3(m 2

+9

m2-3

) ……10分

又当m ∈M 时,m 2

-3>0

∴m 2+9m2-3=m 2

-3+9m2-3

+3≥2

(m2-3)·9

m2-3

+3=9

当且仅当m 2

-3=9m2-3

,即m =±6时,

log 3(m 2+

9m2-3)有最小值log 3(6+9

6-3

)=log 39=2 ∴当x =m =±6时,其函数有最小值2.

13.解析:(1).,由根与系数的关系得,.1,2

-==

+αββαt

).16(2

1

1682)(2414)(222

2++-=+-==-+-=+-=

∴t t t t t f ααβαβααααα 同法得f().16(2

1

)2t t -+=

β

(2).证明:Θf /

(x)=

,)1()

22(2)1(2)4()1(42

22222+---=+--+x tx x x x t x x 而当x ],[βα∈时, 2x 2-tx-2=2(x-,0))(≤-βαx 故当x ],[βα∈时, f /

(x)≥0, ∴

函数f(x)在[],βα上是增函数.

(3).证明:

,0)(,0)(2

1121212122121<+-=-++>+-=-++x x x x x x x x x x x x x x βαββααβαβα

ββαα<++<

∴2121x x x x , 同理βα

βα<++<2

121x x x x .

).()()(),()(

)(21212121αα

βββαβαf x x x x f f f x x x x f f -<++-<-<++<∴故

又f().()(

)2

121ββ

ααf x x x x f <++<两式相加得:

),()()()(

)]()([2

1212121αβα

ββααβf f x x x x f x x x x f f f -<++-++<--

即).()()()(

2

1212121αβα

ββαf f x x x x f x x x x f -<++-++

而由(1),f(αββα2)(,2)-=-=f 且f()()()()αβαβf f f -=-,

∴ βαα

ββα-<++-++2)()(

2

1212121x x x x f x x x x f .

14(I)2

111144(1), 1.S a a a ==+∴=Q 当2n ≥时,()()2

2

1144411n n n n n a S S a a --=-=+-+,

()22112n n n n a a a a --∴+=-,又{a n }各项均为正数,12n n a a -∴-=.数列{}n a 是等差数列, 2 1.n a n ∴=- (II) 2

n S n =,若2n

n tS ≥对于任意的*

n N ∈恒成立,则22min n t n ??≤????

.令22n

n b n =,.当3

n ≥时,221222(1)1(1)21n n b n n n n n

b n n n ++-+==>+++.又12382,1,9b b b ===,∴{}228min min 9

n n b n ??==????.∴ t 的最

大值是8

9

.

15.(1)设点M 的坐标为(x ,y ),由PM =-

23,得P (0,-2

y ),Q (3x

,0), 2分

由HP ·PM =0,得(3,-

2y )(x ,2

3y )=0,又得y 2=4x , 5分

由点Q 在x 轴的正半轴上,得x >0,

所以,动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.

6分

(2)设直线l :y =k (x +1),其中k ≠0,代入y 2

=4x ,得k 2x 2

+2(k 2

-2)x +k 2

=0,① 7分

设A (x 1,y 1),B (x 2,y 2),

则x 1,x 2是方程①的两个实根,∴x 1+x 2=-2)

2(2k k 2-,x 1x 2=1,

所以,线段AB 的中点坐标为(2

22k

k -,k 2

),

8分

线段AB 的垂直平分线方程为y -k 2=-k 1

(x -2

22k

k -), 9分

令y =0,x 0=

22k +1,所以点E 的坐标为(22

k

+1,0) 因为△ABE 为正三角形,所以点E (

2

2

k +1,0)到直线AB 的距离等于23|AB |,

而|AB |=2

212

21)()(y y x x -+-=2

214k k -·2

1k +,

10分

所以,2

4132k k -=k

k 2

12+,

11分

解得k =±23,得x 0=311.

12分

16.(1)f 1(0)=2,a 1=

2212+-=4

1

,f n +1(0)=f 1[f n (0)]=)0(12n f +,

a n +1=2)0(1)0(11+-++n n f f =2

)

0(121

)0(11

++-+n n f f =)0(24)0(1n n f f +-=-212)0(1)0(+-n n f f =-2

1a n ,

4分

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

高中数学数列压轴题练习(江苏)详解

高中数学数列压轴题练习(江苏)及详解 1.已知数列是公差为正数的等差数列,其前n项和为,且? , (Ⅰ)求数列的通项公式; (Ⅱ)数列满足, ①求数列的通项公式; ②是否存在正整数m,,使得,,成等差数列?若存在,求出m,n的值;若不存在,请说明理由. 解:(I)设数列的公差为d,则 由?,,得, 计算得出或(舍去). ; (Ⅱ)①,, , , 即,,, ,

累加得:, 也符合上式. 故,. ②假设存在正整数m、,使得,,成等差数列, 则 又,,, ,即, 化简得: 当,即时,,(舍去); 当,即时,,符合题意. 存在正整数,,使得,,成等差数列. 解析 (Ⅰ)直接由已知列关于首项和公差的方程组,求解方程组得首项和公差,代入等差数列的通项公式得答案; (Ⅱ)①把数列的通项公式代入,然后裂项,累加后即可求得数列的通项公式;

②假设存在正整数m、,使得,,成等差数列,则 .由此列关于m的方程,求计算得出答案. 2.在数列中,已知, (1)求证:数列为等比数列; (2)记,且数列的前n项和为,若为数列中的最小项,求的取值范围. 解:(1)证明:, 又, ,, 故, 是以3为首项,公比为3的等比数列 (2)由(1)知道,, 若为数列中的最小项,则对有 恒成立, 即对恒成立 当时,有; 当时,有?; 当时,恒成立,

对恒成立. 令,则 对恒成立, 在时为单调递增数列. ,即 综上, 解析 (1)由,整理得:.由, ,可以知道是以3为首项,公比为3的等比数列; (2)由(1)求得数列通项公式及前n项和为,由为数列中的最小项,则对有恒成立,分类分别求得 当时和当的取值范围, 当时,,利用做差法,根据函数的单调性,即可求得的取值范围. 3.在数列中,已知,,,设 为的前n项和. (1)求证:数列是等差数列; (2)求;

历年高考数学真题(全国卷整理版)43964

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 普通高等学校招生全国统一考试 一、选择题 1、 复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A =,B ={1,m} ,A B =A, 则m= A 0 B 0或3 C 1 D 1或3 3 椭圆的中心在原点,焦距为 4 一条准线为x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=为CC 1的中点,则直线AC 1与平面BED 的距离为 D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则 (A) (B ) (C) (D)

(7)已知α为第二象限角,sinα+sinβ =,则cos2α= (A) (B ) (C) (D) (8)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2= (A)1 4(B) 3 5 (C) 3 4 (D) 4 5 (9)已知x=lnπ,y=log52, 1 2 z=e,则 (A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x (10) 已知函数y=x2-3x+c的图像与x恰有两个公共点,则c= (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1 (11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有 (A)12种(B)18种(C)24种(D)36种 (12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=7 3。动点P从 E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为 (A)16(B)14(C)12(D)10 二。填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上。 (注意:在试题卷上作答无效) (13)若x,y 满足约束条件则z=3x-y的最小值为_________。 (14)当函数取得最大值时,x=___________。 (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________。 (16)三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等, BAA1=CAA1=50° 则异面直线AB1与BC1所成角的余弦值为____________。 三.解答题: (17)(本小题满分10分)(注意:在试卷上作答无效) △ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c。

2014年高考数学压轴题(理科)

2014年包九中数学压轴模拟卷一(理科) (试卷总分150分 考试时间120分钟) 第Ⅰ卷 (选择题 共60分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中只有一项是符合题目要求的. 1.已知全集{2}x M x y ==,集合2{|lg(2)}N x y x x ==-,则M N =( ) A .(0,2) B .),2(+∞ C .),0[+∞ D .),2()0,(+∞?-∞ 2. 在复平面内,复数311z i i =--,则复数z 对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.关于直线m ,n 与平面 α,β,有下列四个命题: ①m ∥α,n ∥β 且 α∥β,则m ∥n ; ②m ⊥α,n ⊥β 且 α⊥β,则m ⊥n ; ③m ⊥α,n ∥β 且 α∥β,则m ⊥n ; ④m ∥α,n ⊥β 且 α⊥β,则m ∥n . 其中真命题的序号是( ). A .①② B .②③ C .①④ D .③④ 4.已知)(x g 为三次函数cx ax x a x f ++=233 )(的导函数,则函数)(x g 与)(x f 的图像可能是( ) 5.已知数列12463579{}1(),18,log ()n n n a a a n N a a a a a a ++=+∈++=++满足且则等于( ) A .2 B .3 C .—3 D .—2 6.执行右面的程序框图,如果输出的是341a =,那么判断框( ) A .4?k < B .5?k < C .6?k < D .7?k < 7. 根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓 度在20—80 mg/100ml (不含80)之间,属于酒后驾车,处暂扣一个月以上 三个月以下驾驶证,并处200元以上500元以下 罚款;血液酒精浓度在80mg/100ml (含80)以 上时,属醉酒驾车,处十五日以下拘留和暂扣三 个月以上六个月以下驾驶证,并处500元以上 2000元以下罚款. 据《法制晚报》报道,2013年8月15日至8

高中数学压轴题试卷整合

2017届北京市海淀区高三下学期期中考试数学理卷 18.已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <. (Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由; (Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围. 19.已知椭圆G :2 212 x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点. (Ⅰ)若直线l 的斜率为1,求直线OM 的斜率; (Ⅱ)是否存在直线l ,使得2||||||AM CM DM =?成立?若存在,求出直线l 的方程;若不存在,请说明理由. 西城区高三统一测试 18.(本小题满分13分) 已知函数21()e 2 x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-. (Ⅰ)求直线l 的方程(用0x 表示); (Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值. 19.(本小题满分14分) 如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 为椭圆C 的右焦点.(,0)A a -,||3AF =. (Ⅰ)求椭圆C 的方程; (Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O 且平行于AP 的直线与直线4x =交于点E .求证:ODF OEF ∠=∠.

2017年南通市高考数学全真模拟试卷一 13.已知角,αβ满足tan 7tan 13 αβ=,若2sin()3αβ+=,则sin()αβ-的值为. 14.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O ,其中,x y 分别为点O 到两个顶点的向量.若将点O 到正六角星12个顶点的向量都写成ax by +的形式,则a b +的最大值为. 18.已知椭圆:C 22 31mx my +=(0)m > 的长轴长为,O 为坐标原点. (1)求椭圆C 的方程和离心率. (2)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且点P 在y 轴的右侧.若BA BP =,求四边形OPAB 面积的最小值. 19.已知函数32()f x ax bx cx b a =-++=(0)a >. (1)设0c =. ①若a b =,曲线()y f x =在0x x =处的切线过点(1,0),求0x 的值; ②若a b >,求()f x 在区间[0,1]上的最大值. (2)设()f x 在1x x =,2x x =两处取得极值,求证:11()f x x =,22()f x x =不同时成立. 13.1 5 -14.5 18.(1)由题意知椭圆:C 22 111 3x y m m +=, 所以21a m =,213b m =,

历年高考真题(数学文化)

历年高考真题(数学文化) 1.(2019湖北·理)常用小石子在沙滩上摆成各种形状研究数, 如他们研究过图1中的1, 3, 6, 10, …, 由于这些数能表示成三角形, 将其称为三角形数;类似地, 称图2中的1, 4, 9, 16…这样的数为正方形数, 下列数中既是三角形数又是正方形数的是( ) A.289 B.1024 C.1225 D.1378 2.(2019湖北·文)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 A .1升 B .6667升 C .4447升 D .3337 升 3.(2019湖北·理)《九章算术》“竹九节”问题:现有一根9节的竹子, 自上而下各节的容积成等差数列, 上面4节的容积共3升, 下面3节的容积共4升, 则第5节的容积为 升. 4.(2019?湖北)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数, 以十六乘之, 九而一, 所得开立方除之, 即立圆径, “开立圆术”相当于给出了已知球的体 积V , 求其直径d 的一个近似公式 3 916V d ≈.人们还用过一些类似的近似公式.根据π =3.14159…..判断, 下列近似公式中最精确的一个是( ) A. 3 916V d ≈ B.32V d ≈ C.3157300V d ≈ D.31121V d ≈ 5.(2019?湖北)在平面直角坐标系中, 若点P (x , y )的坐标x , y 均为整数, 则称点P 为格点.若一个多边形的顶点全是格点, 则称该多边形为格点多边形.格点多边形的面积记为S , 其内部的格点数记为N , 边界上的格点数记为L .例如图中△ABC 是格点三角形, 对应的S=1, N=0, L=4. (Ⅰ)图中格点四边形DEFG 对应的S , N , L 分别是________; (Ⅱ)已知格点多边形的面积可表示为c bL aN S ++=其中a , b , c 为常数.若某格点多边形对应的N=71, L=18, 则S=________(用数值作答). 6.(2019?湖北)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土, 这是我国现存最早的有系统的数学典籍, 其中记载有求“囷盖”的术:置如其周, 令相乘也, 又以高乘之, 三十六成一, 该术相当于给出了由圆锥的底面周长L 与高h , 计算其体积

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

2020年高考数学压轴题系列训练含答案及解析详解4

第 1 页 共 16 页 第 1 页 共 2020年高考数学压轴题系列训练含答案及解析详解4 1.(本小题满分14分) 已知f(x)= 2 22 +-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)= x 1 的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范 围;若不存在,请说明理由. 本小题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨 论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分. 解:(Ⅰ)f '(x)=222)2(224+-+x x ax = 2 22) 2() 2(2+---x ax x , ∵f(x)在[-1,1]上是增函数, ∴f '(x)≥0对x ∈[-1,1]恒成立, 即x 2-ax -2≤0对x ∈[-1,1]恒成立. ① 设?(x)=x 2-ax -2, 方法一: ?(1)=1-a -2≤0,

— 2 — ① ? ?-1≤a ≤1, ?(-1)=1+a -2≤0. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. 方法二: 2a ≥0, 2 a <0, ①? 或 ?(-1)=1+a -2≤0 ?(1)=1-a -2≤0 ? 0≤a ≤1 或 -1≤a ≤0 ? -1≤a ≤1. ∵对x ∈[-1,1],f(x)是连续函数,且只有当a=1时,f '(-1)=0以及当a=-1时,f ' (1)=0 ∴A={a|-1≤a ≤1}. (Ⅱ)由 2 22 +-x a x =x 1,得x 2-ax -2=0, ∵△=a 2 +8>0 ∴x 1,x 2是方程x 2-ax -2=0的两非零实根, x 1+x 2=a ,

历年高考数学真题(全国卷整理版)

历年高考数学真题(全国卷整理版)

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()() P A B P A P B +=+ 2 4S R π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 3 3 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 普通高等学校招生全国统一考试 一、 选择题 1、 复数131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. m },B ={1,m} ,A U B = A, 则m= A 0或 3 B 0或 3 C 1或3 D 1或3 3 椭圆的中心在原点,焦距为 4 一条准线为

x=-4 ,则该椭圆的方程为 A 216x +212y =1 B 212 x +28 y =1 C 28 x +24 y =1 D 212 x +24 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 (5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为 (A)100101 (B) 99 101 (C) 99100 (D) 101100 (6)△ABC 中,AB 边的高为CD ,若 a ·b=0,|a|=1,|b|=2,则 (A) (B ) (C) (D) (7)已知α为第二象限角,sin α+sin β3则cos2α= (A) 5 (B ) 5 (C) 5 5(8)已知F1、F2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF1|=|2PF2|,则cos ∠F1PF2=

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考数学压轴题秒杀

第五章压轴题秒杀 很多朋友留言说想掌握秒杀的最后一层。关于秒杀法的最难掌握的一层,便是对于高考数学压轴题的把握。压轴题,各省的难度不一致,但毫无疑问,尤其是理科的,会难倒很多很多很多人。 不过,压轴题并不是那般神秘难解,相反,出题人很怕很怕全省没多少做出来的,明白么?他很怕。那种思想,在群里面我也说过,在这里就不多啰嗦了。 想领悟、把握压轴题的思路,给大家推荐几道题目。 全是数学压轴题,且是理科(09的除山东的外我都没做过,所以不在推荐范围内)。 08全国一,08全国二,07江西,08山东,07全国一 一年过去了,很多题目都忘了,但这几道题,做过之后,虽然一年过去了,可脉络依然清晰。都是一些可以秒杀的典型压轴题,望冲击清华北大的同学细细研究。 记住,压轴题是出题人在微笑着和你对话。 具体的题目的“精”,以及怎么发挥和压榨一道经典题目的最大价值,会在以后的视频里面讲解的很清楚。 不过,我还是要说一下数列压轴题这块大家应该会什么(难度以及要求依次增高)\ 1:通项公式的求法(不甚解的去看一下以前的教案,或者问老师,这里必考。尤其推荐我押题的第一道数列解答题。) 2.:裂项相消(各种形式的都要会)、迭加、迭乘、错位相减求和(这几个是最基本和简单的数列考察方式,一般会在第二问考) 3:数学归纳法、不等式缩放 基本所有题目都是这几个的组合了,要做到每一类在脑中都至少有一道经典题想对应才行哦。 开始解答题了哦,先来一道最简单的。貌似北京的大多挺简单的。 这道题意义在什么呢?对于这道题在高考中出现的可能性我不做解释,只能说不大。意义在于,提醒大家四个字,必须必须必须谨记的四个字:分类讨论!!!!!!! 下面07年山东高考的这道导数题,对分类讨论的考察尤为经典,很具参考性,类似的题目在08、09、10年高考题中见了很多。 (22)(本小题满分14分) 设函数f(x)=x2+b ln(x+1),其中b≠0. (Ⅰ)当b> 时,判断函数f(x)在定义域上的单调性; (Ⅱ)求函数f(x)的极值点; (Ⅲ)证明对任意的正整数n,不等式ln( )都成立. 这道题我觉得重点在于前两问,最后一问..有点鸡肋了~ 这道题,太明显了对吧?

2011到2016历年高考数学真题

参考公式:如 果事件A、B互斥,那么球的表面积公式P(A B ) P(A)P(B) S 4R2 如果事件A、B相互独立,那么P(A B)P(A)P(B) 其中R表示球的半径球的体积公式 如果事件A在一次试验中发生的概率是p,那么V 3 4 R3 n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径 P(k)C n k n p k(1p)n k(k 0,1,2,…n) 2012年普通高等学校招生全国统一考试 一、选择题 1、复数 13i 1i = A2+I B2-I C1+2i D1-2i 2、已知集合A={1.3.m},B={1,m},A B=A,则m= A0或3B0 或3C1或3D1或3 3椭圆的中心在原点,焦距为4一条准线为x=-4,则该椭圆的方程为x2y2x2y2 A+=1 B+=1 1612128 x2y2x2y2 C+=1D+=1 84124 4已知正四棱柱ABCD-A B C D中,AB=2,CC= 11111与平面BED的距离为22E为CC的中点,则直线AC 1 1 A2B3C2D1 (5)已知等差数列{a}的前n项和为S,a =5,S=15,则数列 n n55 的前100项和为 (A)100 101 (B) 99 101 (C) 99101 (D) 100100 (6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则

(A) (B ) (C) (D) 3 (7)已知α 为第二象限角,sin α +sin β = ,则 cos2α = (A) - 5 3 (B ) - 5 5 5 9 9 3 (8)已知 F1、F2 为双曲线 C :x 2-y 2=2 的左、右焦点,点 P 在 C 上,|PF1|=|2PF2|,则 cos ∠F1PF2= 1 3 3 4 (A) 4 (B ) 5 (C) 4 (D) 5 1 (9)已知 x=ln π ,y=log52, ,则 (A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x (10) 已知函数 y =x 2-3x+c 的图像与 x 恰有两个公共点,则 c = (A )-2 或 2 (B )-9 或 3 (C )-1 或 1 (D )-3 或 1 (11)将字母 a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同, 则不同的排列方法共有 (A )12 种(B )18 种(C )24 种(D )36 种 7 (12)正方形 ABCD 的边长为 1,点 E 在边 AB 上,点 F 在边 BC 上,AE =BF = 。动点 P 从 E 出发沿直线喜爱那个 F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入 射角,当点 P 第一次碰到 E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10 二。填空题:本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中横线上。 (注意:在试题卷上作答无效) (13)若 x ,y 满足约束条件 (14)当函数 则 z=3x-y 的最小值为_________。 取得最大值时,x=___________。 (15)若 的展开式中第 3 项与第 7 项的二项式系数相等,则该展开式中 的系数为 _________。 (16)三菱柱 ABC-A1B1C1 中,底面边长和侧棱长都相等, BAA1=CAA1=50° 则异面直线 AB1 与 BC1 所成角的余弦值为____________。 三.解答题: (17)(本小题满分 10 分)(注意:在试卷上作答无效) △ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,已知 cos (A-C )+cosB=1,a=2c ,求 c 。 3 (C) (D) z=e 2 3

上海历年高考数学压轴题题选

历年高考数学压轴题题选 (2012文) 23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 对于项数为m 的有穷数列{}n a ,记{}12max ,,...,k k b a a a =(1,2,...,k m =),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5 (1)若各项均为正整数的数列{}n a 的控制数列为2,3,4,5,5,写出所有的{}n a (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C -++=(C 为常数,1,2,...,k m =),求证:k k b a =(1,2,...,k m =) (3)设100m =,常数1,12a ?? ∈ ??? ,若(1)22 (1) n n n a an n +=--,{}n b 是{}n a 的控制数列, 求1122()()b a b a -+-+100100...()b a +- (2012理) 23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分 对于数集{}121,,,...,n X x x x =-,其中120...n x x x <<<<,2n ≥,定义向量集{} (,),,Y a a s t s X t X ==∈∈,若对任意1a Y ∈,存在2a Y ∈,使得120a a ?=,则称X 具有性质P ,例如{}1,1,2-具有性质P (1)若2x >,且{}1,1,2,x -具有性质P ,求x 的值 (2)若X 具有性质P ,求证:1X ∈,且当1n x >时,11x = (3)若X 具有性质P ,且11x =、2x q =(q 为常数),求有穷数列12,,...,n x x x 的通项公式

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

(完整word版)高中数学压轴题系列——导数专题——双变量问题(2).docx

高中数学压轴题系列——导数专题——双变量问题( 2) 1.(2010?辽宁)已知函数 f (x ) =( a+1)lnx+ax 2 +1 (1)讨论函数 f (x )的单调性; (2)设 a <﹣ 1.如果对任意 x 1,x 2∈( 0,+∞),| f ( x 1)﹣ f ( x 2)| ≥ 4| x 1﹣ x 2 | ,求 a 的取值范围. 解:(Ⅰ )f (x )的定义域为( 0,+∞) . . 当 a ≥0 时, f ′(x )> 0,故 f ( x )在( 0,+∞)单调递增; 当 a ≤﹣ 1 时, f ′( x )< 0,故 f ( x )在( 0, +∞)单调递减; 当﹣ 1< a <0 时,令 f ′( x ) =0,解得 . 则当 时, f'( x )> 0; 时, f' ( x )< 0. 故 f (x )在 单调递增,在 单调递减. (Ⅱ)不妨假设 x 1≥ 2,而 <﹣ ,由( Ⅰ)知在( 0, ∞)单调递减, x a 1 + 从而 ? x 1, 2∈( , ∞), | f ( 1)﹣ ( 2) ≥ 4| x 1﹣ 2 | x 0 + x f x | x 等价于 ? x 1, 2∈( , ∞), f ( 2 ) 2 ≥ ( 1 ) 1 ① x 0 + x +4x f x +4x 令 g ( x )=f ( x ) +4x ,则 ①等价于 g (x )在( 0,+∞)单调递减,即 . 从而 故 a 的取值范围为(﹣∞,﹣ 2] .( 12 分) 2.( 2018?呼和浩特一模)已知函数 f (x ) =lnx , g ( x ) = ﹣ bx (b 为常数). (Ⅰ)当 b=4 时,讨论函数 h (x )=f (x )+g (x )的单调性; (Ⅱ) b ≥2 时,如果对于 ? x 1,x 2∈( 1, 2] ,且 x 1≠ x 2,都有 | f (x 1)﹣ f ( x 2)| <| g (x 1)﹣ g (x 2) | 成立,求实数 b 的取值范围. 解:( 1)h ( x )=lnx+ x 2﹣bx 的定义域为( 0,+∞),当 b=4 时, h ( x )=lnx+ x 2 ﹣4x , h'(x )= +x ﹣4= , 令 h'(x ) =0,解得 x 1 ﹣ , 2 ,当 ∈( ﹣ , 2+ )时, ′( )< , =2 x =2+ x2 h x 0 当 x ∈( 0, 2﹣ ),或( 2+ ,+∞)时, h ′(x )> 0, 所以, h (x )在∈( 0, 2﹣ ),或( 2+ ,+∞)单调递增;在( 2﹣ , 2+ )单调递减; (Ⅱ)因为 f ( x )=lnx 在区间( 1,2] 上单调递增,

历年全国卷高考数学真题大全解析版

全国卷历年高考真题汇编 三角 1(2017全国I 卷9题)已知曲线1:cos C y x =,22π:sin 23C y x ? ? =+ ?? ? ,则下面结论正确的是() A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6 个单位长度,得到曲线2C B .把1 C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π 12 个单位长度,得到曲线2C C .把1C 上各点的横坐标缩短到原来的12 倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π 12 个单位长度,得到曲线2C 【答案】D 【解析】1:cos C y x =,22π:sin 23? ?=+ ?? ?C y x 【解析】首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理. 【解析】πππcos cos sin 222??? ?==+-=+ ? ???? ?y x x x .横坐标变换需将1=ω变成2=ω, 【解析】即112 πππsin sin 2sin 2224??????=+???????? ?→=+=+ ? ? ?????? ?C 上各坐短它原y x y x x 点横标缩来 【解析】2ππsin 2sin 233??? ??? →=+=+ ? ???? ?y x x . 【解析】注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+ x 平移至π 3 +x , 【解析】根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π 12 2 (2017全国I 卷17题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的 面积为2 3sin a A . (1)求sin sin B C ; (2)若6cos cos 1B C =,3a =,求ABC △的周长. 【解析】本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用. 【解析】(1)∵ABC △面积2 3sin a S A =.且1sin 2S bc A = 【解析】∴ 21 sin 3sin 2 a bc A A = 【解析】∴22 3sin 2 a bc A =

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

相关主题