搜档网
当前位置:搜档网 › 谷胱甘肽荧光探针的研究进展

谷胱甘肽荧光探针的研究进展

谷胱甘肽荧光探针的研究进展
谷胱甘肽荧光探针的研究进展

第46卷第7期2018年4月广 州 化 工

Guangzhou Chemical Industry

Vol.46No.7Apr.2018

谷胱甘肽荧光探针的研究进展

*

石 磊1,2,黄 玲3,龚盛昭1,2

(1广东轻工职业技术学院轻化工技术学院,广东 广州 510300;2广东省绿色日用化工工程技术研究中心,广东 广州 510300;3佛山市安安美容保健品有限公司,广东 佛山 528099)

摘 要:谷胱甘肽在生物体的许多生理过程中发挥着重要作用,所以细胞内谷胱甘肽含量的检测对细胞功能研究和病理分

析都具有重要的意义三以荧光探针为基础的荧光分析法因其操作简便二灵敏度高和专一性强等优点而备受大家关注,并且有机小分子荧光探针还可以应用于活体细胞和生物体的成像技术三本文主要综述了近年来谷胱甘肽荧光探针的研究现状,并按照谷胱甘肽与探针识别基团的识别机理分类阐述,同时对谷胱甘肽荧光探针的未来发展趋势进行了展望三

关键词:谷胱甘肽二荧光探针二识别机理二检测 

中图分类号:O657.3

 文献标志码:A

文章编号:1001-9677(2018)07-0023-06

*

基金项目:广东轻工职业技术学院人才类项目(项目编号:KYRC2017-0031)三第一作者:石磊(1985-),男,博士,讲师,主要从事荧光探针的合成与应用三通讯作者:龚盛昭三

Research Progress on Fluorescent Probes for Glutathione *

SHI Lei 1,2,HUANG Ling 3,GONG Sheng -zhao 1,2

(1School of Chemical Engineering and Technology,Guangdong Industry Polytechnic,Guangdong Guangzhou 510300;2Guangdong Engineering Technical Research Center for Green Household Chemicals,Guangdong Guangzhou 510300;

3Foshan Anan beauty &Health products Co,Ltd,Guangdong Foshan 528099,China)Abstract :Glutathione plays an important role in many physiological processes of life system,and the detection of glutathione in cell is significant for the research of cell function and pathological analysis.Fluorometric analysis based on fluorescent probes has attracted much attention due to its advantages,such as simple operation,high sensitivity and specificity.Moreover,the organic fluorescent probes could also be applied to bioimaging technology for living cells and organisms.The research progress on glutathione fluorescent probes was introduced and classified according to the recognition mechanism between glutathione and recognition groups of probes,and the developing trends of fluorescent probes for glutathione were prospected.

Key words :glutathione;fluorescence probe;recognition mechanism;detection

谷胱甘肽(Glutathione,缩写GSH)是一种含有巯基二氨基和γ-酰胺键的三肽,主要由谷氨酸二半胱氨酸和甘氨酸组成三谷胱甘肽是细胞内一种重要的调节代谢物质;它不仅能够清除体内的过氧化物及其他自由基,促进肝脏酶活性二解毒和维持红细胞膜完整性等作用,同时还具有维持DNA 的生物合成和细胞免疫等多种生理功能[1-2]因此,检测生物体中的GSH 含量对于一些疾病的预防二研究和治疗都具有十分重要的作用,故而引起了诸多科研工作者的高度关注[3-4]三

相比于分光光度法二色谱法二毛细管电泳法二电化学法等传统检测方法,以荧光探针为基础的荧光分析法具有测试简单二选择性高二响应时间短等优点三更重要的是,荧光探针还能应用于生物体内的实时监测和生物成像研究,故而被广泛应用于生物医学二分析化学和化学生物学等诸多领域[5-6]三

近年来,基于谷胱甘肽的荧光探针得到了迅猛发展;若按照谷胱甘肽与荧光探针识别基团的识别机理进行分类,可以将

其分为加成反应取代反应和还原反应三本文主要综述了近年来谷胱甘肽荧光探针的设计合成与应用进展,并分类阐述如下三

1 加成反应

加成反应是利用GSH 中具有亲核性的巯基与不饱和双键(主要是碳碳双键)发生加成反应,使得探针的荧光发射光谱发生变化,从而实现对检测对象的识别与检测三

1.1 马来酰亚胺类

自Kanaoka [7]首次报道了以马来酰亚胺作为生物硫醇识别基团的荧光探针以来,基于马来酰亚胺的香豆素二BODIPY二喹啉二萘酐等[8-10]荧光探针陆续涌现出来,并成功应用于生物体内GSH 的选择性识别(图1)三然而,按此原理构建的大部分荧光探针对半胱氨酸(Cys)二同型半胱氨酸(Hcy)和GSH 均有响应,很难对这三者进行区分;仅少许报道是例外三其中,

荧光比率探针及其应用研究进展

7 前 言 荧光比率技术是荧光分析中的一项重要技术。该技术在生物染色剂中,可被紫外线或蓝紫光(短波长光)激发而发射荧光的染料,称为荧光染料(荧光色素)。可被长波长光激发,这些荧光色素常称为荧光探针。荧光探针通常用于固定组织和细胞的染色,以及或活细胞中的应用, 此外还包括应用于体内荧光探针。 分子荧光探针按用途分类包括离子探针、极性探针、粘度探针、PH值探针、膜荧光探针、细胞活性探针、细胞器探针、位点特异性荧光探针等等。探针通过与分析物(如生命金属离子)进行结合后,引起荧光特性发生变化,通过测定荧光的激发波长、发射波长、荧光强度、峰位、荧光寿命、荧光量子产率和各向异性等,获得相关信息。 荧光方法测定中,荧光探针在与反应物结合后,出现激发或发射光谱移位的探针,可使用在两个不同波长测定的荧光强度比率进行测定,称为比率测量。因为通过二个选择性的波长的荧光强度变化可作为定量的依据, 通常指在波长范围内有荧光强度明显的变化。同普通荧光探针相比,比率测量探针可以被分为两部分。 一种是荧光比率效果是通过原来荧光谱的迁移。通常,这些迁移的背景是荧光探针激发态的电子转移。它被激发通过改变发色团同周围分子或原子交互作用的能量改变(溶剂化显色迁移),同外部电场的交互作用(电致显色迁移)和在发色团中的双电弛豫(双电弛豫迁移)。 另外一种结合探针,荧光谱包括2个或更多的谱带。通常,是这些谱带相对强度的改变,激发态同荧光探针发色团反应。这些反应在不连续的能量状态。 荧光比率探针及其应用研究进展 杨柳* ,郭成海,张国胜 (防化研究院第四研究所,北京 102205) 摘要 本文介绍了荧光比率探针,包括阳离子探针、阴离子探针、pH值探针、极性探针、氧化性和分子的比率测量探针的应用及近几年的研究进展。关键词 荧光分析,比率测量 *作者简介:杨柳(1975-),男,助理研究员,博士研究生,E-mail:yangliujinjin@sina.com 所以在初始和产物状态都随着能量转移而发射荧光。 荧光比率测定法可消除光漂白和探针负载和留存及设备因素(照明稳定性)引起的数据的失真。如阴离子探针可通过有机离子载体从细胞排除,如AM酯可被P糖蛋白多药载体排出荧光比率测定法可减少探针渗漏对实验结果的影响。探针与离子结合后,出现激发或发射光谱移位的探针可使用在两个不同波长测定的荧光强度比率校准,可克服由于离子浓度的变化而造成的荧光信号人工假象。 Bright等(1989)发现比率测量减少或消除几种决定因素的变化对测量荧光强度的影响,包括探针浓度、激发光的光路长度、激发强度、和检测效率。消除的人工假象包括光漂白、探针渗漏、细胞厚度、探针在细胞内(区室化作用引起)或不同细胞群之间(负载效率差异造成)的不均匀分布。 比率测量探针已经应用于不同的测量领域:离子探针(阳离子探针Ca2+、Mg2+,Zn2+,Ag+等)阴离子探针(Cl-,CN-,F-等),膜探针、活性氧和一氧化氮探针,极性探针、PH值探针等等。 1应用比率测量的阳离子探针: 各种各样的阳离子在生命活动中起重要的作用, 如构成细胞和生物体某些结构的重要成分,参与并调节生物体的代谢活动等,荧光方法通常用来测定阳离子在生物体不同组织的含量和分布。阳离子比率测量探针也在不断发展。 1.1 Ca2+检测的比率测量探针: 探针与Ca2+结合后出现光谱移位的探针可进行比率测量。主要包括:Fura-2、双- Fura-2、Fura-4F、Fura-5F、Fura-6F、 indo-1、indo-5F、mag-Fura-2

细菌中谷胱甘肽的研究进展

中国医药导报2018年4月第15卷第12期 CHINA MEDICAL HERALD Vol.15No.12April 2018 ·综述· 谷胱甘肽(glutathione ,GSH)广泛分布于多种生 物体内[1]。在细菌领域,主要存在于革兰阴性菌和部分革兰阳性菌中,包括蓝藻细菌和变形菌门[2]。GSH 是细菌体内最主要的、含量最丰富的含巯基的小分子肽。1888年首次从酵母中分离出天然型GSH 起[3],GSH 的研究就没有中断。在1921年,Hopkins 第一次将其作为化合物进行了分离,并命名为谷胱甘肽[4];1929年, GSH 的三肽结构被证实[5],这为进一步合成并研究GSH 的生物作用打下了基础。 GSH 在细菌中的分布溶度通常较高,0.1~ 10mmol /L 不等,但它在细胞内的总量分布却并不均 匀。通常情况下,大多数的GSH 都分布于细胞质中,含量大约占到了总量的90%[6]。GSH 既能通过二硫键的形成来阻止蛋白质的氧化,也能通过作为GPx 的底物,抑制脂质的过氧化,从而起到抗氧化的作用[7]。除 了抗氧化作用,GSH 在细菌细胞内还起了诸多其他作 用:例如抵抗渗透压[8]、对细胞内钾离子通道活性调控[9]、对毒性物质的抵抗等[10]。本综述将从GSH 在细 菌中的生物合成、细胞体内含量的平衡及其在细菌中的主要作用三个方面进行概述。1GSH 的合成 通常情况下,细菌能够在体内自发的合成GSH,以维持其含量。GSH 合成过程可分为两步: (1)(2) GSH 的合成过程由ATP 水解提供能量,此过程 中涉及到了两种酶的催化:γ-谷氨酰半胱氨酸合成酶(γ-glutamate-cysteine ligase,GCS)及谷胱甘肽合酶(glutathione synthetase,GS)[11]。首先,一个谷氨酸分子(L-Glu)和一个半胱氨酸(L-Cys)分子通过GCS 催化生成γ-谷氨酰半胱氨酸(γ-Glu-Cys)[12];之后后者与 一个甘氨酸分子(Gly)在谷胱甘肽合酶的作用下,结合形成GSH [13]。通常来说,γ-谷氨酰半胱氨酸合成酶和谷胱甘肽合酶分别由gshA 基因与gshB 基因编码形 成[2];但研究发现,在一些革兰阳性菌, 如肠球菌、链球 细菌中谷胱甘肽的研究进展 李成龙1 刘向红1 吴也可2 1.电子科技大学医学院,四川成都 610054;2.成都中医药大学临床医学院,四川成都 610072 [摘要]谷胱甘肽(GSH)广泛存在于革兰阴性菌和部分革兰阳性菌中,是其中含量最丰富的含巯基小分子肽。部分细菌可在体内直接合成GSH,也有部分细菌可从外界获得GSH。GSH 在细菌体内参与代谢中的氧化还原反应,并通过酶促反应维持体内的平衡。而这种平衡在细菌面对生长过程中来自环境和自身代谢所造成的高氧、高渗透压、药物、金属离子等各种变化时,能够直接或间接的发挥抵抗作用。本文将就GSH 在细菌中的合成、代谢平衡及主要的作用进行综述。 [关键词]谷胱甘肽;细菌;稳态;抗氧化[中图分类号]R446 [文献标识码]A [文章编号]1673-7210(2018)04(c)-0021-04 Research Progress of Glutathione in Bacteria LI Chenglong 1LIU Xianghong 1WU Yeke 2 1.School of Medicine,University of Electronic Science and Technology,Sichuan Province,Chengdu 610054,China; 2.School of Clinical Medicine,Chengdu University of of TCM,Sichuan Province,Chengdu 610072,China [Abstract]Glutathione is a small molecule peptide that is one of the most abundant thiols present in gram-negative bacteria and most gram -positive bacteria.Some bacteria can synthesis glutathione directly,some may acquire glu?tathione form external environment.Bacteria encounter various stress conditions from the environment and their own metabolites,such as oxidative stress,osmotic stress and other stresses coming from chlorine compounds,metal ions and so on.Glutathione can protects the bacterial cells from these stress damage directly or indirectly.This article is to re? view the synthesis,metabolic balance and main roles of Glutathione in bacteria.[Key words]Glutathione;Bacteria;Homeostasis;Antioxidant [基金项目]国家自然科学基金青年项目(81500818)。[作者简介]李成龙(1988-),男,博士;研究方向:口腔微生物。[通讯作者]吴也可(1987-),男,博士;研究方向:口腔微生物,口腔生物力学。 21

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

荧光探针汇总

1.Fluo-3 AM (钙离子荧光探针) 原理Fluo-3 AM是一种可以穿透细胞膜的荧光染料。Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离 的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2.Mag-fura-2 AM(钙离子荧光探针) 原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。Fura-2可以和钙离子结合,结合 钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会 导致荧光减弱。这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内 的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗 漏,细胞厚度差异等一些误差因素。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长为340nm和380nm 发射波长510nm (蓝色) 备注仪器滤光片不适用 3Fluo-4-AM (钙离子荧光探针) 原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。所以用氩 激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。由于Fluo 4与钙离子的亲和力 和Fluo 3近似,所以使用上和Fluo 3也基本相同 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长494nm 发射波长516nm (绿色) 备注用激光器激发时荧光强度强,因此不推荐 4.DCFH-DA (活性氧荧光探针) 原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长485nm 发射波长520nm (绿色) 备注推荐使用 5.DHR 123 (活性氧荧光探针) 原理本身无荧光, 在超氧化酶存在时可被过氧化氢(H2O2)氧化, 转变成发射绿色荧光的罗丹明123 (Rhodamine 123), 因此广泛应用于检测细胞内活性氧(ROS), 如过氧化物, 次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6.RhodamineI23 (线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515 ~ 575nm (绿色) 生理意义检测线粒体膜电位

荧光探针研究新进展

《生物工程进展》2000,Vol.20,No.2 荧光探针研究新进展 章晓波 徐 洵 (国家海洋局第三海洋研究所,厦门 361005) 摘要 自从Southern(1975)首次进行DNA探针杂交后,至今核酸分子杂交已成为分子生物学的最基本方法。Matthews和Kricka[1]总结了各种杂交方法,将其归为两大类:一是异相杂交(hetero2 geneous assay)即固相杂交,目的核酸结合于不溶性支持物上;二是同相杂交(homogeneous assay)即液相杂交,一般同时使用两个探针。为了检测杂交,寡核苷酸探针需要标记,探针的标记物有放射性同位素和非放射性标记物。固相杂交常使用放射性同位素,荧光素是一种非放射性标记物,它能检测到的DNA浓度比吸收减色测定方法所需DNA浓度低100-1000倍[2],在同相杂交中广泛用于探针的标记。最近,荧光探针研究获得了新的进展,Tyagi和Krammer(1996)建立了一种新的荧光探针-分子信标探针,并得到许多应用,我们实验室也开展了这方面的研究。本文拟对荧光探针的研究进展作一综述。 关键词 荧光探针 分子信标探针 荧光PCR 1 常规荧光探针 固相杂交中,探针非特异结合于支持物表面,降低了灵敏度。Heller等(1982)以及Heller和Morri2 son(1985)[3]最早进行了同相杂交试验,同相杂交不需支持物,减少了固定目的DNA及除去未杂交探针等操作。他们的试验中使用了两个探针,这两个探针分别与目标DNA的两个相邻区域互补,第1探针在3′末端标记,第2探针在5′末端标记,根据标记物的光谱特性,使第1标记物为第2标记物的能量供体。当探针与目标DNA杂交时,二探针彼此靠近,光吸收或化学反应激发供体标记物,通过能量转移引起受体标记物的激发,这样,第1标记物发射光的减少以及(或)第2标记物发射光的增加标志着目标DNA的存在。 后来Morris on等[3]扩展了这一方法,他们使用的两个探针互补且相应于目标DNA上同一碱基序列,一个探针在5′末端标记荧光素,另一互补探针在3′末端标记荧光素发射的淬灭剂芘丁酸(pyrenebutyrate)或磺基若丹明101(sulforhodamine101)。无目标DNA 时,两探针结合,荧光素的能量转移至淬灭剂,不产生荧光。存在目标DNA时,探针与目标DNA之间竞争杂交,由于探针与目标DNA的结合,在494-496nm 光照下,产生荧光,目标DNA浓度越高,荧光信号越强,最低可检测到4pM的目标DNA,此方法得到一些应用[2,4,5]。Cardullo等[4]在应用Morris on方法的同时,提出在两个互补探针的5′末端分别标记荧光素和四甲若丹明(T etramethylrhodamine),因为荧光共振能量转移(fluorescence res onance energy trans ferr FRET)的效率随供体和受体之间距离的-6次方而减少,当两者相距20个核苷酸(70!)即产生不明显的能量转移,因此此方法中所使用的探针长度较短,特异性降低。 2 分子信标探针 同相杂交一般同时采用两个标记探针,Tyagi 和Kramer(1996)[6]首次建立了分子信标探针(molecular beacon probe),在同一寡核苷酸探针的5′末端标记荧光素、3′末端标记淬灭剂(DABCY L)。分子信标探针能形成发夹结构,探针的噜扑环与目的DNA碱基互补,噜扑环两侧为与目的DNA无关的碱基互补的臂。无目的DNA时,探针形成发夹结构,荧光素靠近淬灭剂,荧光素接受的能量通过共振能量转移至淬灭剂,DABCY L吸收能量后以热量形式消失,结果不产生荧光。当探针遇到目的DNA 分子时,形成一个比两臂杂交更长也更稳定的杂交,探针自发进行构型变化,便两臂分开,荧光素和淬灭剂随之分开,此时在紫外照射下,荧光素产生荧光。 影响分子信标探针构型变化的参数主要有[6]:臂长、臂序列GC含量、噜扑环长度和溶液盐浓度,尤其是二价阳离子如Mg2+对两臂形成的杂交茎有较强的稳定作用,在Mg2+存在条件下,4~12个核 41

荧光探针汇总

精心整理 1. Fluo-3AM (钙离子荧光探针) 原理Fluo-3AM 是一种可以穿透细胞膜的荧光染料。Fluo-3AM 的荧光非常弱,进入细胞后可以 被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2. Mag-fura-2AM (钙离子荧光探针) 原理Fura-2AM 是一种可以穿透细胞膜的荧光染料。Fura-2 AM 进入细胞后可以被细胞内的酯 3 4. 成5. 原理本身无荧光,在超氧化酶存在时可被过氧化氢(H2O2)氧化,转变成发射绿色荧光的罗丹明 123(Rhodamine123),因此广泛应用于检测细胞内活性氧(ROS),如过氧化物,次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6. RhodamineI23(线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料,能够迅速被活线粒体摄取,而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515~575nm (绿色) 生理意义检测线粒体膜电位

备注正在使用 7.Hoechst33342(DNA荧光探针) 原理Hoechst33342是一种可对DNA染色的细胞核染色试剂,常用于细胞凋亡检测。Hoechst 染料可透过细胞膜在聚AT序列的富集区域的小沟处与DNA结合并对DNA染色而发出强 烈的蓝色荧光。 生理意义标记双链DNA 激发波长355nm发射波长465nm(蓝色) 备注正在使用 8.FDA 原理FDA可透过细胞膜并作为荧光素积蓄在活细胞内。 生理意义反映细胞膜完整性和细胞活力 9.PI( 倍。 10.EB 11.DAPI 20 12.CalceinAM 原理Calcein-AM由于在Calcein(钙黄绿素)的基础上加强了疏水性,因此能够轻易穿透活细胞膜。当其进入到细胞质后,酯酶会将其水解为Calcein(钙黄绿素)留在细胞内,发出强绿色 荧光,且细胞毒性很低,适合用于活细胞染色。 生理意义检测细胞膜完整性 激发波长494nm发射波长517nm(绿色) 备注跟FDA功能类似,细胞毒性很低,可以长时间标记细胞,但价格比较贵 13.BCECF-AM(pH荧光探针) 原理BCECF-AM是一种可以穿透细胞膜的荧光染料,BCECF-AM没有荧光,进入细胞后被细胞内的酯酶水解成BCECF,从而被滞留在细胞内。BCECF在适当的pH值情况下可以被激发 形成绿色荧光。 生理意义检测细胞内pH

基于EET机理比率型荧光探针的研究进展

有机化学 Chinese Journal of Organic Chemistry ARTICLE * E-mail: yuhaibo@https://www.sodocs.net/doc/8014341323.html, Received September 23, 2014; revised November 18, 2014; published online December 2, 2014. Project supported by the National Natural Science Foundation of China (21302080). Program Funded by Liaoning Province Education Administration (L2014010). 国家自然科学基金(No.21302080),辽宁省教育厅科研项目(No.L2014010)资助项目. DOI: 10.6023/cjo201409036 研究论文 基于EET 机理比率型荧光探针的研究进展 陈忠林a 李红玲a 韦驾a 肖义b 于海波a ,* (a 辽宁大学 环境学院 沈阳 110036) (b 大连理工大学 精细化工国家重点实验室 大连 116024) 摘要 激发态能量转移(Excitation Energy Transfer, EET )作为一类重要的光物理现象,被广泛用于比 率型荧光探针和分子灯标的设计以及DNA 检测等多个领域。影响EET 效率的两个重要因素是供受体间的空间距离和光谱交盖,通过调节供受体间的空间距离或光谱重叠程度来调控能量转移过程,实现对目标客体的双波长比率检测。本文综述了基于不同供受体荧光团的EET 体系、供受体间的连接方式对能量转移效率的影响,以及通过调控供受体间光谱重叠程度或空间距离,获得识别不同客体的比率型荧光探针,并对EET 机理的比率型荧光探针的设计以及未来在生物成像和医学检测等领域的应用进行了展望。 关键词 荧光探针; 激发态能量转移; F?rster 能量转移; 比率型荧光探针; 荧光发色团 Recent Progress in Ratiometric Fluorescent Probes Based on EET Mechanism Chen Zhonglin a Li Hongling a Wei Jia a Xiao Yi b Yu Haibo a * (a College of Environmental Sciences, Liaoning University, Shenyang) (b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian) Abstract Excitation Energy Transfer (EET) is one of the vital photophysical phenomenons, which is wide-ly used in many applications, such as the design of ratiometric fluroesent probes, molecular beacon and DNA analysis, and so on. The process of energy transfer from donor to acceptor can be regulated by two factors: the spatial distance between donor and acceptor, and the spectral overlaps between donor’s emission and acceptor’s absorption, which results that there is a wide variety in the ratio at two different wavelengths of ratiometric fluo-rescent probes. In this review, noticeable EET systems with different donor fluorophore, connection form and energy transfer efficiency between donor and acceptor, and the modulation of spatial distance or spectral overlap are summarized. Finally, as a promising tool, the future developing prospects of EET fluorescent probes in bioi-maging and medical diagnostics are discussed and highlighted. Keywords Fluorescent probe, Excitation energy transfer, F?rster resonance energy transfer, Ratiometric probe, Fluorophore 随着荧光显微成像技术和时间分辨技术的迅速发展,基于超分子化学和有机染料的荧光探针现已成为研究生物学和医学领域相关问题的重要工具。荧光探针在与目标客体相互作用过程中荧光信号会发生改变,借助于荧光信号的变化,荧光探针能够对目标客体进行实时在线的检测或监测,并被广泛用于分析化学,生物化学,医学和环境监测等多个领域[1]。荧光探针主要有三种类型:淬灭型、增强型和比率型。由于增强型荧光探针在与目标客体作用后,荧光输出信号增强,在荧光显微成像中比淬灭型荧光探针更为灵敏,故增强型荧光探针是目前荧光探针领域设计的主流[2]。 与增强型荧光探针相比,比率型荧光探针在定量检测方面具有明显的优势,近些年来,比率型荧光探针的设计

还原型谷胱甘肽的研究及应用进展

还原型谷胱甘肽的研究及应用 王嘉怿 (教师教育学院生物师范 22120907) 摘要:谷胱甘肽(glutathione,GSH)是人类细胞中自然合成的一种肽,由谷氨酸、半胱氨酸和甘氨酸组成,其中还原型谷胱甘肽是主要的活性状态。近年来,随着对GSH的不断了解,GSH的临床应用也日益广泛。在当前的研究基础上,对GSH的研究继续深入,其应用必将取得进一步的发展。 关键词:谷胱甘肽还原型临床应用 1.引言 谷胱甘肽是哺乳动物细胞中重要的非蛋白硫氢化合物,由谷氨酸、半胱氨酸和甘氨酸组成,含有巯基。其中还原型谷胱甘肽是主要的活性状态,具有许多重要的生理功能。其巯基在对内源性和外源性化合物的排毒和抗氧化过程中起着非常重要的作用,从而维持细胞内的氧化还原状态。人体内的许多生化反应都是酶催化反应,这些酶大部分以巯基作为活性基团,巯基的状态决定了酶活性的激活与抑制。GSH是这些酶在体内的天然激活剂,在自由基的反应中,GSH更多的是作为细胞内的自然抗氧化剂发挥作用。国外在GSH治疗肝、肾损害及糖尿病辅助治疗的报道较多,近年随着国内对GSH研究的不断深入,应用也日益广泛。 2. GSH的作用机制 GSH作为一种细胞内重要的调节代谢物质,其既是甘油醛磷酸脱氢酶的辅基,又是乙二醛酶及丙糖脱氢酶的辅酶,参与体内三羧酸循环及糖代谢,并能激活多种酶,从而促进糖、脂肪及蛋白质代谢,能影响细胞的代谢过程,可通过巯基与体内的自由基结合,使之转化成容易代谢的酸类物质从而加速自由基的排泄,同时还可对抗自由基对重要脏器的损害。对于贫血、中毒或组织炎症造成的全身或局部低氧血症患者,可减轻细胞损伤,促进修复。通过转甲基及转丙氨基反应,GSH还能保护肝脏的合成作用,有解毒、灭活激素等功能,并促进胆酸代谢,有利于消化道吸收脂肪及脂溶性维生素。GSH是非酶性抗氧化剂,通过巯基氧化—还原态的转换,作为可逆的供氧体,主要在细胞内的水相提供氧化保护。Haddad等研究发现,GSH参与了脂多糖诱导的细胞因子转录的调节及I-KB/NF-KB 信号通路的调节。Armstrong等发现GSH含量的降低是一种潜在的凋亡早期激活信号,随后产生的氧自由基促使细胞发生凋亡。 3. GSH的临床应用 3.1 在肝损害中的应用 病毒性肝炎、药物性肝损伤、脂肪肝、手术损伤等因素,可导致肝细胞内GSH耗竭或合成减少,各种氧化自由基增加。当体内GSH的浓度低于临界值,各类GSH依赖酶系失活,对氧化自由基的防护减弱,自由基通过生物膜的脂质过氧化作用,引起肝细胞膜、线粒体膜、溶酶体膜损害,并直接造成肝细胞巯基酶类

谷胱甘肽荧光探针的研究进展

第46卷第7期2018年4月广 州 化 工 Guangzhou Chemical Industry Vol.46No.7Apr.2018 谷胱甘肽荧光探针的研究进展 * 石 磊1,2,黄 玲3,龚盛昭1,2 (1广东轻工职业技术学院轻化工技术学院,广东 广州 510300;2广东省绿色日用化工工程技术研究中心,广东 广州 510300;3佛山市安安美容保健品有限公司,广东 佛山 528099) 摘 要:谷胱甘肽在生物体的许多生理过程中发挥着重要作用,所以细胞内谷胱甘肽含量的检测对细胞功能研究和病理分 析都具有重要的意义三以荧光探针为基础的荧光分析法因其操作简便二灵敏度高和专一性强等优点而备受大家关注,并且有机小分子荧光探针还可以应用于活体细胞和生物体的成像技术三本文主要综述了近年来谷胱甘肽荧光探针的研究现状,并按照谷胱甘肽与探针识别基团的识别机理分类阐述,同时对谷胱甘肽荧光探针的未来发展趋势进行了展望三 关键词:谷胱甘肽二荧光探针二识别机理二检测  中图分类号:O657.3  文献标志码:A 文章编号:1001-9677(2018)07-0023-06 * 基金项目:广东轻工职业技术学院人才类项目(项目编号:KYRC2017-0031)三第一作者:石磊(1985-),男,博士,讲师,主要从事荧光探针的合成与应用三通讯作者:龚盛昭三 Research Progress on Fluorescent Probes for Glutathione * SHI Lei 1,2,HUANG Ling 3,GONG Sheng -zhao 1,2 (1School of Chemical Engineering and Technology,Guangdong Industry Polytechnic,Guangdong Guangzhou 510300;2Guangdong Engineering Technical Research Center for Green Household Chemicals,Guangdong Guangzhou 510300; 3Foshan Anan beauty &Health products Co,Ltd,Guangdong Foshan 528099,China)Abstract :Glutathione plays an important role in many physiological processes of life system,and the detection of glutathione in cell is significant for the research of cell function and pathological analysis.Fluorometric analysis based on fluorescent probes has attracted much attention due to its advantages,such as simple operation,high sensitivity and specificity.Moreover,the organic fluorescent probes could also be applied to bioimaging technology for living cells and organisms.The research progress on glutathione fluorescent probes was introduced and classified according to the recognition mechanism between glutathione and recognition groups of probes,and the developing trends of fluorescent probes for glutathione were prospected. Key words :glutathione;fluorescence probe;recognition mechanism;detection 谷胱甘肽(Glutathione,缩写GSH)是一种含有巯基二氨基和γ-酰胺键的三肽,主要由谷氨酸二半胱氨酸和甘氨酸组成三谷胱甘肽是细胞内一种重要的调节代谢物质;它不仅能够清除体内的过氧化物及其他自由基,促进肝脏酶活性二解毒和维持红细胞膜完整性等作用,同时还具有维持DNA 的生物合成和细胞免疫等多种生理功能[1-2]因此,检测生物体中的GSH 含量对于一些疾病的预防二研究和治疗都具有十分重要的作用,故而引起了诸多科研工作者的高度关注[3-4]三 相比于分光光度法二色谱法二毛细管电泳法二电化学法等传统检测方法,以荧光探针为基础的荧光分析法具有测试简单二选择性高二响应时间短等优点三更重要的是,荧光探针还能应用于生物体内的实时监测和生物成像研究,故而被广泛应用于生物医学二分析化学和化学生物学等诸多领域[5-6]三 近年来,基于谷胱甘肽的荧光探针得到了迅猛发展;若按照谷胱甘肽与荧光探针识别基团的识别机理进行分类,可以将 其分为加成反应取代反应和还原反应三本文主要综述了近年来谷胱甘肽荧光探针的设计合成与应用进展,并分类阐述如下三 1 加成反应 加成反应是利用GSH 中具有亲核性的巯基与不饱和双键(主要是碳碳双键)发生加成反应,使得探针的荧光发射光谱发生变化,从而实现对检测对象的识别与检测三 1.1 马来酰亚胺类 自Kanaoka [7]首次报道了以马来酰亚胺作为生物硫醇识别基团的荧光探针以来,基于马来酰亚胺的香豆素二BODIPY二喹啉二萘酐等[8-10]荧光探针陆续涌现出来,并成功应用于生物体内GSH 的选择性识别(图1)三然而,按此原理构建的大部分荧光探针对半胱氨酸(Cys)二同型半胱氨酸(Hcy)和GSH 均有响应,很难对这三者进行区分;仅少许报道是例外三其中,

生物化学与分子生物学进展(基础)期末考试总结

生物化学与分子生物学进展(基础) 概论、目的基因 分子克隆的载体 核酸序列分析 聚合酶链反应(自学) 分子克隆技术常用的工具酶(自学) 肿瘤转移的分子机制 新生血管研究与转化医学 细胞周期与细胞增殖 基因打靶的设计与实现 细胞分化的分子机制 医学系统生物学和蛋白质组学 细胞信号转导 一、1.操纵子那张图 以乳糖操纵子为例,其组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I 存在诱导物(乳糖)时,mRNA得到转录;不存在诱导物时,mRNA无法转录。 (1)阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。(2)CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 2.概念 (1)基因诊断:利用分子生物学技术,通过检测基因及基因表达产物的存在状态,对人体疾病作出诊断的方法。基因诊断检测的目标分子是DNA、RNA,也可以是蛋白质或者多肽。(2)基因治疗:指将目的基因通过基因转移技术(病毒载体介导或者非病毒载体介导的基因转移技术)导入靶细胞内,目的基因表达产物对疾病起治疗作用。包括直接导入外源正常基因、采用适当的技术抑制细胞内过度表达的基因、将特定的基因导入非病变细胞等。(3)pBR322:大小为4.36kb的环状双链DNA,其碱基序列已经全部清楚,是最早应用于基因工程的大肠杆菌质粒载体之一,有过百个限制性内切酶切点,一种限制性内切酶只有单一切口的位点也多达数十个。 (4)pUC质粒系列:是在pBR322基础上改建成的。大小约2.69kb,去除了pBR322的抗四环素区段,含LacZ基因及其启动子的操纵基因、M13的多聚接头polylinker。含有易于检测是否有外源DNA插入的标记基因LacZα,可利用α互补原理进行蓝白筛选。 3.分子医学的主要研究内容 分子医学是指从基因的角度重新认识疾病,运用基因技术预防、诊断和治疗疾病。研究内容主要包括疾病的分子机理、基因诊断、基因治疗和基因预防这四个方面。 (1)疾病的分子机理:探索疾病的原因,是有效治疗疾病的前提。基因科学的发展,为人类从细胞内部的微观生理学和分子生物学水平上寻找病因提供了新的思路。以尿黑酸症为例,

双光子荧光探针的研究进展

有机双光子材料的研究进展 随着以光电子学为中心的信息时代的到来,具有特殊信息处理功能和超快响应的光电材料将成为未来信息材料发展的主体,而非线性光学材料就是其中发展较为迅猛的一种。非线性光学是强光光学,研究的是物质在强光作用下产生的输出光强度与原入射光的非线性关系。非线性光学材料在强光作用下,反映介质性质的物理量(如极化强度P等)不仅与场强E的一次方有关,而且还决定于E的更高幂次项,从而导致许多在线性光学中不能解释的新现象,表现出独特的非线性光学性质。双光子吸收属于三阶非线性光学效应的一种,有着独特的光学和电学效益,使得双光子技术在未来光电子集成、生物分子探测、医学诊断等领域具有巨大的应用潜力和广阔前景[1]。 一、双光子吸收的基本概念 双光子吸收属于三阶非线性光学效应,该理论最早是由Goeppert- Mayer于1931年首次提出的。它是指在强激光激发下,利用近两倍于样品的线性吸收波长的光源激发该样品,使其通过一个虚中间态(virtue state)直接吸收两个光子跃迁至高能态的过程,所吸收的两个光子的能量可以相同(ω1=ω2,简并吸收),也可以不同(ω1≠ω2,非简并吸收),其机理如图1所示。 图1 单、双光子吸收和发射机理示意图 和单光子吸收和发射相比,双光子吸收和发射有以下本征特点: (1)在材料中高的穿透深度。单光子荧光过程是短波激发长波发射,吸收和发射所涉及的基元光物理过程服从Stark-Einstein定律。而双光子荧光是长波激发短波发射,所用激发光的波长红移近一倍,一般位于600-900nm,远远低于单光子过程紫外辐照光(波长为250-400nm)的光子能量。这一波段的光具有很好的穿透性,Rayleigh散射小,背景光干扰小,便于观测,并且光损伤、光漂白、光毒性都较小。

发酵法生产谷胱甘肽的研究进展

谷胱甘肽发酵法生产的研究进展摘要:谷胱甘肽(GSH)是由谷氨酸、半胱氨酸和甘氨酸经肽键缩合而成的具有多种重要生理功能的活性三肽,对维持生物体内合适的氧化还原环境起着关键作用,被广泛应用于医药、食品和化妆品等领域。发酵法已成为目前生产谷胱甘肽最常用的方法,但现有生产能力还不能够满足市场需求。本文主要针对发酵法生产谷胱甘肽的关键技术环节,包括菌种选育、工艺优化、过程控制的研究进展进行一个综述。 关键词:谷胱甘肽发酵生产菌种选育工艺优化过程控制 谷胱甘肽(Glutathione,GSH) 是一种缩合而成的含C-谷氨酰基和巯基的生物活性三肽类化合物,在蛋白质和DNA 的合成、氨基酸的转运、细胞的保护等重要的生物学现象中起着直接或间接作用。它主要分布于动物、植物、微生物细胞中,被广泛应用于临床医学、运动保健、食品加工等很多领域。因此,GSH 已成为各国科学家研究和探索的热点。 1 谷胱甘肽的性质及功能 虽然GSH的研究已经日益受到关注,但大家对其理化性质及生理功能的了解并不够全面。而对这些基本信息的掌握,恰是我们更进一步探索谷胱甘肽各项作用机理的前提。 1.1谷胱甘肽的理化性质 GSH是由谷氨酸、半胱氨酸和甘氨酸经肽键缩合而成的具有多种重要生理功能的活性三肽,化学名称为C-L-谷氨酰-L-半胱氨酰-甘氨酸( C-L-Glutamy-l L-Cysteiny-l Gly cine)。GSH 的相对分子质量为307133,熔点189~193℃( 分解) ,晶体呈无色透明细长柱状,等电点为5.93,溶于水、液氨和二甲基甲酰胺,而不溶于醇、醚和丙酮。 GSH 分子中含有一特殊肽键C-谷氨酰胺键,其保护肝脏等许多特殊性质均与此肽键有关;GSH 分子中含有一个活泼的巯基- SH,易被氧化脱氢,2分子GSH 脱氢后转变为1分子氧化型谷胱甘肽( GSSG) 。GSH 广泛存在于自然界中,动物肝脏、酵母和小麦胚芽中都含有丰富的GSH,其含量为1~10 mg/g,人和动物的血液中也含有较多的GSH,而植物组织中的GSH 含量则较低。 1.2 谷胱甘肽的生理功能 GSH 在生物体内有着多种重要的生理功能,特别是对于维持生物体内适宜的氧化还原环境起着至关重要的作用。GSH 的生理功能主要有以下几个方面: (1)保护肝脏,治疗各种肝类疾病GSH 强大的还原作用使肝细胞膜对氧自由基的耐受性增加,从而使GSH 具有促进肝功能,保护肝细胞膜,提高肝脏酶的活性,加快黄疸的消退,增强肝脏解毒等功能。 (2)治疗肿瘤,减轻化疗和放疗的副作用GSH 能激活多种酶( 如巯基- SH 酶) ,从而促进糖、脂肪和蛋白质代谢,并影响细胞的代谢过程,同时通过巯基与体内自由基结合,可以转化成容易代谢的酸类物质,从而加速了放化疗产生的自由基的排泄。 (3)治疗眼科疾病,特别是应用于白内障的治疗GSH 高浓度存在于眼组织的水晶体、视网膜及睫状体内,有益于角膜或水晶体透明性的维持以及组织再生与修复。 (4)解除中毒,减轻空气污染和食物中的有毒成分对人体造成的伤害GSH 能与进入机体的有毒化合物、重金属离子等直接结合,并促其排出体外,起到中和解毒的作用。 (5)其他功能GSH 具有较强的抗氧化作用,广泛应用于食品和保健品行业;还具有增强免疫力、治疗糖尿病神经损害、抗炎等作用。 1.3国内技术现状 谷胱甘肽生产方法有:萃取法、发酵法、酶法及化学合成法。化学合成得率比较低,而且污染严重。酶法近几年有报道,但目前还没有工业化报告。发酵法生产GSH所用菌种

相关主题