搜档网
当前位置:搜档网 › 罗丹明类荧光探针研究进展

罗丹明类荧光探针研究进展

罗丹明类荧光探针研究进展
罗丹明类荧光探针研究进展

荧光比率探针及其应用研究进展

7 前 言 荧光比率技术是荧光分析中的一项重要技术。该技术在生物染色剂中,可被紫外线或蓝紫光(短波长光)激发而发射荧光的染料,称为荧光染料(荧光色素)。可被长波长光激发,这些荧光色素常称为荧光探针。荧光探针通常用于固定组织和细胞的染色,以及或活细胞中的应用, 此外还包括应用于体内荧光探针。 分子荧光探针按用途分类包括离子探针、极性探针、粘度探针、PH值探针、膜荧光探针、细胞活性探针、细胞器探针、位点特异性荧光探针等等。探针通过与分析物(如生命金属离子)进行结合后,引起荧光特性发生变化,通过测定荧光的激发波长、发射波长、荧光强度、峰位、荧光寿命、荧光量子产率和各向异性等,获得相关信息。 荧光方法测定中,荧光探针在与反应物结合后,出现激发或发射光谱移位的探针,可使用在两个不同波长测定的荧光强度比率进行测定,称为比率测量。因为通过二个选择性的波长的荧光强度变化可作为定量的依据, 通常指在波长范围内有荧光强度明显的变化。同普通荧光探针相比,比率测量探针可以被分为两部分。 一种是荧光比率效果是通过原来荧光谱的迁移。通常,这些迁移的背景是荧光探针激发态的电子转移。它被激发通过改变发色团同周围分子或原子交互作用的能量改变(溶剂化显色迁移),同外部电场的交互作用(电致显色迁移)和在发色团中的双电弛豫(双电弛豫迁移)。 另外一种结合探针,荧光谱包括2个或更多的谱带。通常,是这些谱带相对强度的改变,激发态同荧光探针发色团反应。这些反应在不连续的能量状态。 荧光比率探针及其应用研究进展 杨柳* ,郭成海,张国胜 (防化研究院第四研究所,北京 102205) 摘要 本文介绍了荧光比率探针,包括阳离子探针、阴离子探针、pH值探针、极性探针、氧化性和分子的比率测量探针的应用及近几年的研究进展。关键词 荧光分析,比率测量 *作者简介:杨柳(1975-),男,助理研究员,博士研究生,E-mail:yangliujinjin@sina.com 所以在初始和产物状态都随着能量转移而发射荧光。 荧光比率测定法可消除光漂白和探针负载和留存及设备因素(照明稳定性)引起的数据的失真。如阴离子探针可通过有机离子载体从细胞排除,如AM酯可被P糖蛋白多药载体排出荧光比率测定法可减少探针渗漏对实验结果的影响。探针与离子结合后,出现激发或发射光谱移位的探针可使用在两个不同波长测定的荧光强度比率校准,可克服由于离子浓度的变化而造成的荧光信号人工假象。 Bright等(1989)发现比率测量减少或消除几种决定因素的变化对测量荧光强度的影响,包括探针浓度、激发光的光路长度、激发强度、和检测效率。消除的人工假象包括光漂白、探针渗漏、细胞厚度、探针在细胞内(区室化作用引起)或不同细胞群之间(负载效率差异造成)的不均匀分布。 比率测量探针已经应用于不同的测量领域:离子探针(阳离子探针Ca2+、Mg2+,Zn2+,Ag+等)阴离子探针(Cl-,CN-,F-等),膜探针、活性氧和一氧化氮探针,极性探针、PH值探针等等。 1应用比率测量的阳离子探针: 各种各样的阳离子在生命活动中起重要的作用, 如构成细胞和生物体某些结构的重要成分,参与并调节生物体的代谢活动等,荧光方法通常用来测定阳离子在生物体不同组织的含量和分布。阳离子比率测量探针也在不断发展。 1.1 Ca2+检测的比率测量探针: 探针与Ca2+结合后出现光谱移位的探针可进行比率测量。主要包括:Fura-2、双- Fura-2、Fura-4F、Fura-5F、Fura-6F、 indo-1、indo-5F、mag-Fura-2

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

荧光探针汇总

1.Fluo-3 AM (钙离子荧光探针) 原理Fluo-3 AM是一种可以穿透细胞膜的荧光染料。Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离 的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2.Mag-fura-2 AM(钙离子荧光探针) 原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。Fura-2可以和钙离子结合,结合 钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会 导致荧光减弱。这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内 的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗 漏,细胞厚度差异等一些误差因素。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长为340nm和380nm 发射波长510nm (蓝色) 备注仪器滤光片不适用 3Fluo-4-AM (钙离子荧光探针) 原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。所以用氩 激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。由于Fluo 4与钙离子的亲和力 和Fluo 3近似,所以使用上和Fluo 3也基本相同 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长494nm 发射波长516nm (绿色) 备注用激光器激发时荧光强度强,因此不推荐 4.DCFH-DA (活性氧荧光探针) 原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长485nm 发射波长520nm (绿色) 备注推荐使用 5.DHR 123 (活性氧荧光探针) 原理本身无荧光, 在超氧化酶存在时可被过氧化氢(H2O2)氧化, 转变成发射绿色荧光的罗丹明123 (Rhodamine 123), 因此广泛应用于检测细胞内活性氧(ROS), 如过氧化物, 次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6.RhodamineI23 (线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515 ~ 575nm (绿色) 生理意义检测线粒体膜电位

罗丹明类荧光探针研究进展_吴豪

罗丹明类荧光探针研究进展 吴豪,袁文兵* (海南大学材料与化工学院,海南海口 570228) [摘要]文章主要介绍近年来罗丹明衍生物在分子探针方面研究的一些新进展,系统阐述了该类探针分子在离子和小分子检测方面的应用。 [关键词]罗丹明;荧光探针;离子检测 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2011)06-0265-01 Recent Progress in Rhodamine-Based Fluorescence Chemosensor Wu Hao, Yuan Wenbing* (College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China) Abstract: The recent progress in the studies on rhodamines-based fluorescent probes was reviewed. The application of Rhodamine chemosensors in ions and small molecules sense were discussed in detail. Keywords: rhodamine;fluorescent sensor;ions sense 罗丹明B是重要的荧光探针材料,属于呫吨类染料。罗丹明B具有高的消光系数,较好的荧光量子产率,水溶性好,无毒,制备成本低等优点。因此,它是一类较好的荧光探针母体,极具广泛的应用价值。在中性或碱性条件下,罗丹明B内酰胺化合物以螺环状结构存在,体现紫外区吸收,无色,荧光减弱至消失。在酸性条件下以醌式结构存在,内酰胺结构开环,有荧光,体现长波吸收,成紫红色。 罗丹明基荧光染料由于其具有特殊的结构及相应的结构特性,使其广泛应用于化学分析和生命科学领域。目前的研究焦点多集中于通过不断修饰、优化罗丹明荧光分子探针的结构片段,以实现对小分子及离子的特异性识别,并进一步应用于生物活体及自然环境监测领域。 1 铜离子探针 铜是人体重要的微量元素,机体内铜缺失会导致代谢紊乱和诸多疾病,如胆固醇升高,动脉弹性降低,血压升高。一直以来,铜离子生物荧光探针的研究是一个热门课题。 1997年,Czarinik等[1]合成了罗丹明B酰肼,其可以选择性识别铜离子,该荧光探针是基于铜离子催化罗丹明B酰肼水解生成强荧光的罗丹明B分子的。 2006年,AijunTong等[2]合成水杨醛罗丹明B酰腙,可以可逆性的荧光增强识别铜离子。也就是说,在缓冲溶液中,当加入铜离子时,内酰胺螺环状结构被打开,吸收和荧光增强,当加入络合剂EDTA时,化合物表现出没有吸收和荧光,而在此时再加入铜离子,荧光恢复。 Yang等[3]通过在酸性条件下罗丹明B-酰肼与硫氰酸甲间的一步反应合成了一种Cu2+荧光探针。向该探针的乙腈/水溶液中添加Cu2+后,会造成荧光分子内酰胺键断裂,从而引起体系的荧光和紫外吸收明显增强。利用该探针实现了水相中Cu2+荧光和紫外检测,方法的线性范围分别为0.2~0.4和0.5~10 μmol/L。他们将该方法应用于自来水中Cu2+含量的测定,测定结果与原子吸收光谱方法测定结果一致。 Zhao等[4]在2009年设计合成了一种新型罗丹明内酰胺衍生物5,并将其应用于水溶液和活体细胞中Cu2+的检测。这种比色探针对铜离子的反应是瞬时可逆的,并且在其它金属离子浓度很高的情况下也不会对铜离子的比色和荧光信号产生干扰,这一特征使其很好地满足了生物医学和环境监测方面的特殊要求。目前,该类探针已广泛应用于环境体系中铜离子浓度的检测和生物活细胞铜离子分布成像实验,其优异的综合性能预示了极好的应用前景。 2 铁离子探针 铁是人体中所必须的微量元素,它在人体中主要以络离子的形式存在,与血红素、蛋白质等形成血红蛋白和肌红蛋白,在机体中起到运输和贮存氧的作用。由于Fe3+的顺磁性,一般的Fe3+荧光探针都是荧光熄灭型,不利于在牛物体内Fe3+的荧光成像及原位检测。因此利用罗丹明分子的闭环一开环间转换机理设计荧光增强型Fe3+荧光探针逐步受到重视。 2006年,Tong等[5]利用二乙基三胺将两个罗丹明B连接起来,从而形成无色,没有荧光的罗丹明B的衍生物,三价铁离子的加入,导致其内酰胺结构的开环,荧光增强,从而实现了对三价铁离子的检测。 2007年,Tae和Bae[6]利用肟酸作为Fe3+识别点的功能团,将氧肟酸引入罗丹明内酰胺和开环结构的平衡中。得到了一种新型的Fe3+探针。这种具有氧肟酸结构片段的罗丹明基荧光探针,在甲醇一乙腈(V∶V=1∶1)溶液中能很好的识别Fe3+,产生明显的荧光增强和颜色变化。 Peng等[7]通过乙二胺将2-羟基苯甲醛与罗丹明6G相连接,合成了一种Fe3+荧光探针。内酰胺的羰基氧原子、2-羟基苯甲醛上的羟基氧原子以及乙二胺上的氮原子同时参与了 Fe3+的螯合作用,导致了内酰胺键断裂,体系的荧光性增强。其他重金属和过渡金属离子无类似现象发生。 3 汞离子探针 汞是具有很高毒性的金属。汞单质及汞离子可通过各种途径进入环境,人体长期接触并摄入后会产生严重的恶心、呕吐、腹痛以及肾功能损伤等病症,危害极大。由于人们对汞毒性的高度重视,近年来对Hg2+荧光探针的研究日益增多。 Saresh等[8]以罗丹明6G为母体合成的Hg2+的荧光探针L1在水和甲醇(1∶1,φ)混合溶液中与Hg2+形成Hg (L1)2型复合物,荧光强度提高了90倍,利用L1测定Hg2+的检测线打到1 μg/L。25倍Hg2+浓度的Co2+,Fe2+,Ni2+,Zn2+,Pb2+,Cd2+,Mg2+,Ca2+,Ba2+,Li+,K+和Na+等离子对荧光信号基本无干扰。因而L1是一种高选择性、高灵敏度的Hg2+荧光探针。 Xu等[9]设计合成了一种罗丹明硫酰肼用于紫外和荧光检测水相中Hg2+,探针与Hg2+结合的化学计量比为2∶1.Qian等[10]设计合成的高选择性的罗丹明类Hg2+荧光探针不仅可以实现对Hg2+的荧光检测,而且利用显色反应可以对Hg2+的存在进行初步判断。该探针具有可逆性,当向显色的平衡体系中加入EDTA后,体系的紫红色变为无色。另外,荧光响应速度快是该探针的另一特点,Hg2+加入后立即产生稳定的强烈荧光,与同类的探针需要一定的平衡时间相比,该探针更适合于环境或者生物样品的实时分析。 2005年,Tae等[11]报道了一种十分精妙的罗丹明6G衍生物12,它可用于水溶液中Hg2+高灵敏度和高选择性的检测,即可以检测水溶液中低于2 μmol/L的Hg2+。 重金属与过渡金属离子的检测一般在水相中进行,尤其是生物体内的该类离子的原位检测对探针的水溶性提出了更高的要求。因此,在设计时要考虑探针的实用性,尽量引入具有一定水溶性的辅助基团。Huang等[16]将葡萄糖与罗丹明6G酰肼共价连接,合成了一种水溶性好、高选择性、高灵敏度的Hg2+荧光探针RGl。在纯水中,Hg2+的检测限达到1 μg/L,满足美国EPA规定。该探针可以在pH在5.5~10范围内使用,而且不受环境和生物样品中常见的其他金属离子的影响。因此,RGl可以应用在环境和生物体系,如细胞膜中汞离子的检测。另外,RGl与汞离子的结合是可逆的。向RGl和Hg2+共存的稳定体系中加入Na2S后,可以降低该体系的荧光强度,而再添加Hg2+时,体系的荧光则恢复。 (下转第243页) 新工艺新技术 [收稿日期] 2011-05-05 [作者简介] 吴豪(1988-),男,河南人,本科,主要研究方向为罗丹明类荧光探针。*为通讯作者。

荧光探针研究新进展

《生物工程进展》2000,Vol.20,No.2 荧光探针研究新进展 章晓波 徐 洵 (国家海洋局第三海洋研究所,厦门 361005) 摘要 自从Southern(1975)首次进行DNA探针杂交后,至今核酸分子杂交已成为分子生物学的最基本方法。Matthews和Kricka[1]总结了各种杂交方法,将其归为两大类:一是异相杂交(hetero2 geneous assay)即固相杂交,目的核酸结合于不溶性支持物上;二是同相杂交(homogeneous assay)即液相杂交,一般同时使用两个探针。为了检测杂交,寡核苷酸探针需要标记,探针的标记物有放射性同位素和非放射性标记物。固相杂交常使用放射性同位素,荧光素是一种非放射性标记物,它能检测到的DNA浓度比吸收减色测定方法所需DNA浓度低100-1000倍[2],在同相杂交中广泛用于探针的标记。最近,荧光探针研究获得了新的进展,Tyagi和Krammer(1996)建立了一种新的荧光探针-分子信标探针,并得到许多应用,我们实验室也开展了这方面的研究。本文拟对荧光探针的研究进展作一综述。 关键词 荧光探针 分子信标探针 荧光PCR 1 常规荧光探针 固相杂交中,探针非特异结合于支持物表面,降低了灵敏度。Heller等(1982)以及Heller和Morri2 son(1985)[3]最早进行了同相杂交试验,同相杂交不需支持物,减少了固定目的DNA及除去未杂交探针等操作。他们的试验中使用了两个探针,这两个探针分别与目标DNA的两个相邻区域互补,第1探针在3′末端标记,第2探针在5′末端标记,根据标记物的光谱特性,使第1标记物为第2标记物的能量供体。当探针与目标DNA杂交时,二探针彼此靠近,光吸收或化学反应激发供体标记物,通过能量转移引起受体标记物的激发,这样,第1标记物发射光的减少以及(或)第2标记物发射光的增加标志着目标DNA的存在。 后来Morris on等[3]扩展了这一方法,他们使用的两个探针互补且相应于目标DNA上同一碱基序列,一个探针在5′末端标记荧光素,另一互补探针在3′末端标记荧光素发射的淬灭剂芘丁酸(pyrenebutyrate)或磺基若丹明101(sulforhodamine101)。无目标DNA 时,两探针结合,荧光素的能量转移至淬灭剂,不产生荧光。存在目标DNA时,探针与目标DNA之间竞争杂交,由于探针与目标DNA的结合,在494-496nm 光照下,产生荧光,目标DNA浓度越高,荧光信号越强,最低可检测到4pM的目标DNA,此方法得到一些应用[2,4,5]。Cardullo等[4]在应用Morris on方法的同时,提出在两个互补探针的5′末端分别标记荧光素和四甲若丹明(T etramethylrhodamine),因为荧光共振能量转移(fluorescence res onance energy trans ferr FRET)的效率随供体和受体之间距离的-6次方而减少,当两者相距20个核苷酸(70!)即产生不明显的能量转移,因此此方法中所使用的探针长度较短,特异性降低。 2 分子信标探针 同相杂交一般同时采用两个标记探针,Tyagi 和Kramer(1996)[6]首次建立了分子信标探针(molecular beacon probe),在同一寡核苷酸探针的5′末端标记荧光素、3′末端标记淬灭剂(DABCY L)。分子信标探针能形成发夹结构,探针的噜扑环与目的DNA碱基互补,噜扑环两侧为与目的DNA无关的碱基互补的臂。无目的DNA时,探针形成发夹结构,荧光素靠近淬灭剂,荧光素接受的能量通过共振能量转移至淬灭剂,DABCY L吸收能量后以热量形式消失,结果不产生荧光。当探针遇到目的DNA 分子时,形成一个比两臂杂交更长也更稳定的杂交,探针自发进行构型变化,便两臂分开,荧光素和淬灭剂随之分开,此时在紫外照射下,荧光素产生荧光。 影响分子信标探针构型变化的参数主要有[6]:臂长、臂序列GC含量、噜扑环长度和溶液盐浓度,尤其是二价阳离子如Mg2+对两臂形成的杂交茎有较强的稳定作用,在Mg2+存在条件下,4~12个核 41

荧光探针汇总

精心整理 1. Fluo-3AM (钙离子荧光探针) 原理Fluo-3AM 是一种可以穿透细胞膜的荧光染料。Fluo-3AM 的荧光非常弱,进入细胞后可以 被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2. Mag-fura-2AM (钙离子荧光探针) 原理Fura-2AM 是一种可以穿透细胞膜的荧光染料。Fura-2 AM 进入细胞后可以被细胞内的酯 3 4. 成5. 原理本身无荧光,在超氧化酶存在时可被过氧化氢(H2O2)氧化,转变成发射绿色荧光的罗丹明 123(Rhodamine123),因此广泛应用于检测细胞内活性氧(ROS),如过氧化物,次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6. RhodamineI23(线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料,能够迅速被活线粒体摄取,而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515~575nm (绿色) 生理意义检测线粒体膜电位

备注正在使用 7.Hoechst33342(DNA荧光探针) 原理Hoechst33342是一种可对DNA染色的细胞核染色试剂,常用于细胞凋亡检测。Hoechst 染料可透过细胞膜在聚AT序列的富集区域的小沟处与DNA结合并对DNA染色而发出强 烈的蓝色荧光。 生理意义标记双链DNA 激发波长355nm发射波长465nm(蓝色) 备注正在使用 8.FDA 原理FDA可透过细胞膜并作为荧光素积蓄在活细胞内。 生理意义反映细胞膜完整性和细胞活力 9.PI( 倍。 10.EB 11.DAPI 20 12.CalceinAM 原理Calcein-AM由于在Calcein(钙黄绿素)的基础上加强了疏水性,因此能够轻易穿透活细胞膜。当其进入到细胞质后,酯酶会将其水解为Calcein(钙黄绿素)留在细胞内,发出强绿色 荧光,且细胞毒性很低,适合用于活细胞染色。 生理意义检测细胞膜完整性 激发波长494nm发射波长517nm(绿色) 备注跟FDA功能类似,细胞毒性很低,可以长时间标记细胞,但价格比较贵 13.BCECF-AM(pH荧光探针) 原理BCECF-AM是一种可以穿透细胞膜的荧光染料,BCECF-AM没有荧光,进入细胞后被细胞内的酯酶水解成BCECF,从而被滞留在细胞内。BCECF在适当的pH值情况下可以被激发 形成绿色荧光。 生理意义检测细胞内pH

基于EET机理比率型荧光探针的研究进展

有机化学 Chinese Journal of Organic Chemistry ARTICLE * E-mail: yuhaibo@https://www.sodocs.net/doc/c85946925.html, Received September 23, 2014; revised November 18, 2014; published online December 2, 2014. Project supported by the National Natural Science Foundation of China (21302080). Program Funded by Liaoning Province Education Administration (L2014010). 国家自然科学基金(No.21302080),辽宁省教育厅科研项目(No.L2014010)资助项目. DOI: 10.6023/cjo201409036 研究论文 基于EET 机理比率型荧光探针的研究进展 陈忠林a 李红玲a 韦驾a 肖义b 于海波a ,* (a 辽宁大学 环境学院 沈阳 110036) (b 大连理工大学 精细化工国家重点实验室 大连 116024) 摘要 激发态能量转移(Excitation Energy Transfer, EET )作为一类重要的光物理现象,被广泛用于比 率型荧光探针和分子灯标的设计以及DNA 检测等多个领域。影响EET 效率的两个重要因素是供受体间的空间距离和光谱交盖,通过调节供受体间的空间距离或光谱重叠程度来调控能量转移过程,实现对目标客体的双波长比率检测。本文综述了基于不同供受体荧光团的EET 体系、供受体间的连接方式对能量转移效率的影响,以及通过调控供受体间光谱重叠程度或空间距离,获得识别不同客体的比率型荧光探针,并对EET 机理的比率型荧光探针的设计以及未来在生物成像和医学检测等领域的应用进行了展望。 关键词 荧光探针; 激发态能量转移; F?rster 能量转移; 比率型荧光探针; 荧光发色团 Recent Progress in Ratiometric Fluorescent Probes Based on EET Mechanism Chen Zhonglin a Li Hongling a Wei Jia a Xiao Yi b Yu Haibo a * (a College of Environmental Sciences, Liaoning University, Shenyang) (b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian) Abstract Excitation Energy Transfer (EET) is one of the vital photophysical phenomenons, which is wide-ly used in many applications, such as the design of ratiometric fluroesent probes, molecular beacon and DNA analysis, and so on. The process of energy transfer from donor to acceptor can be regulated by two factors: the spatial distance between donor and acceptor, and the spectral overlaps between donor’s emission and acceptor’s absorption, which results that there is a wide variety in the ratio at two different wavelengths of ratiometric fluo-rescent probes. In this review, noticeable EET systems with different donor fluorophore, connection form and energy transfer efficiency between donor and acceptor, and the modulation of spatial distance or spectral overlap are summarized. Finally, as a promising tool, the future developing prospects of EET fluorescent probes in bioi-maging and medical diagnostics are discussed and highlighted. Keywords Fluorescent probe, Excitation energy transfer, F?rster resonance energy transfer, Ratiometric probe, Fluorophore 随着荧光显微成像技术和时间分辨技术的迅速发展,基于超分子化学和有机染料的荧光探针现已成为研究生物学和医学领域相关问题的重要工具。荧光探针在与目标客体相互作用过程中荧光信号会发生改变,借助于荧光信号的变化,荧光探针能够对目标客体进行实时在线的检测或监测,并被广泛用于分析化学,生物化学,医学和环境监测等多个领域[1]。荧光探针主要有三种类型:淬灭型、增强型和比率型。由于增强型荧光探针在与目标客体作用后,荧光输出信号增强,在荧光显微成像中比淬灭型荧光探针更为灵敏,故增强型荧光探针是目前荧光探针领域设计的主流[2]。 与增强型荧光探针相比,比率型荧光探针在定量检测方面具有明显的优势,近些年来,比率型荧光探针的设计

生物化学与分子生物学进展(基础)期末考试总结

生物化学与分子生物学进展(基础) 概论、目的基因 分子克隆的载体 核酸序列分析 聚合酶链反应(自学) 分子克隆技术常用的工具酶(自学) 肿瘤转移的分子机制 新生血管研究与转化医学 细胞周期与细胞增殖 基因打靶的设计与实现 细胞分化的分子机制 医学系统生物学和蛋白质组学 细胞信号转导 一、1.操纵子那张图 以乳糖操纵子为例,其组成:大肠杆菌乳糖操纵子含Z、Y、A三个结构基因,分别编码半乳糖苷酶、透酶和半乳糖苷乙酰转移酶,此外还有一个操纵序列O,一个启动子P和一个调节基因I 存在诱导物(乳糖)时,mRNA得到转录;不存在诱导物时,mRNA无法转录。 (1)阻遏蛋白的负性调节:没有乳糖存在时,I基因编码的阻遏蛋白结合于操纵序列O处,乳糖操纵子处于阻遏状态,不能合成分解乳糖的三种酶;有乳糖存在时,乳糖作为诱导物诱导阻遏蛋白变构,不能结合于操纵序列,乳糖操纵子被诱导开放合成分解乳糖的三种酶。(2)CAP的正性调节:在启动子上游有CAP结合位点,当大肠杆菌从以葡萄糖为碳源的环境转变为以乳糖为碳源的环境时,cAMP浓度升高,与CAP结合,使CAP发生变构,CAP结合于乳糖操纵子启动序列附近的CAP结合位点,激活RNA聚合酶活性,促进结构基因转录,调节蛋白结合于操纵子后促进结构基因的转录,对乳糖操纵子实行正调控,加速合成分解乳糖的三种酶。 2.概念 (1)基因诊断:利用分子生物学技术,通过检测基因及基因表达产物的存在状态,对人体疾病作出诊断的方法。基因诊断检测的目标分子是DNA、RNA,也可以是蛋白质或者多肽。(2)基因治疗:指将目的基因通过基因转移技术(病毒载体介导或者非病毒载体介导的基因转移技术)导入靶细胞内,目的基因表达产物对疾病起治疗作用。包括直接导入外源正常基因、采用适当的技术抑制细胞内过度表达的基因、将特定的基因导入非病变细胞等。(3)pBR322:大小为4.36kb的环状双链DNA,其碱基序列已经全部清楚,是最早应用于基因工程的大肠杆菌质粒载体之一,有过百个限制性内切酶切点,一种限制性内切酶只有单一切口的位点也多达数十个。 (4)pUC质粒系列:是在pBR322基础上改建成的。大小约2.69kb,去除了pBR322的抗四环素区段,含LacZ基因及其启动子的操纵基因、M13的多聚接头polylinker。含有易于检测是否有外源DNA插入的标记基因LacZα,可利用α互补原理进行蓝白筛选。 3.分子医学的主要研究内容 分子医学是指从基因的角度重新认识疾病,运用基因技术预防、诊断和治疗疾病。研究内容主要包括疾病的分子机理、基因诊断、基因治疗和基因预防这四个方面。 (1)疾病的分子机理:探索疾病的原因,是有效治疗疾病的前提。基因科学的发展,为人类从细胞内部的微观生理学和分子生物学水平上寻找病因提供了新的思路。以尿黑酸症为例,

双光子荧光探针的研究进展

有机双光子材料的研究进展 随着以光电子学为中心的信息时代的到来,具有特殊信息处理功能和超快响应的光电材料将成为未来信息材料发展的主体,而非线性光学材料就是其中发展较为迅猛的一种。非线性光学是强光光学,研究的是物质在强光作用下产生的输出光强度与原入射光的非线性关系。非线性光学材料在强光作用下,反映介质性质的物理量(如极化强度P等)不仅与场强E的一次方有关,而且还决定于E的更高幂次项,从而导致许多在线性光学中不能解释的新现象,表现出独特的非线性光学性质。双光子吸收属于三阶非线性光学效应的一种,有着独特的光学和电学效益,使得双光子技术在未来光电子集成、生物分子探测、医学诊断等领域具有巨大的应用潜力和广阔前景[1]。 一、双光子吸收的基本概念 双光子吸收属于三阶非线性光学效应,该理论最早是由Goeppert- Mayer于1931年首次提出的。它是指在强激光激发下,利用近两倍于样品的线性吸收波长的光源激发该样品,使其通过一个虚中间态(virtue state)直接吸收两个光子跃迁至高能态的过程,所吸收的两个光子的能量可以相同(ω1=ω2,简并吸收),也可以不同(ω1≠ω2,非简并吸收),其机理如图1所示。 图1 单、双光子吸收和发射机理示意图 和单光子吸收和发射相比,双光子吸收和发射有以下本征特点: (1)在材料中高的穿透深度。单光子荧光过程是短波激发长波发射,吸收和发射所涉及的基元光物理过程服从Stark-Einstein定律。而双光子荧光是长波激发短波发射,所用激发光的波长红移近一倍,一般位于600-900nm,远远低于单光子过程紫外辐照光(波长为250-400nm)的光子能量。这一波段的光具有很好的穿透性,Rayleigh散射小,背景光干扰小,便于观测,并且光损伤、光漂白、光毒性都较小。

谷胱甘肽荧光探针的研究进展

第46卷第7期2018年4月广 州 化 工 Guangzhou Chemical Industry Vol.46No.7Apr.2018 谷胱甘肽荧光探针的研究进展 * 石 磊1,2,黄 玲3,龚盛昭1,2 (1广东轻工职业技术学院轻化工技术学院,广东 广州 510300;2广东省绿色日用化工工程技术研究中心,广东 广州 510300;3佛山市安安美容保健品有限公司,广东 佛山 528099) 摘 要:谷胱甘肽在生物体的许多生理过程中发挥着重要作用,所以细胞内谷胱甘肽含量的检测对细胞功能研究和病理分 析都具有重要的意义三以荧光探针为基础的荧光分析法因其操作简便二灵敏度高和专一性强等优点而备受大家关注,并且有机小分子荧光探针还可以应用于活体细胞和生物体的成像技术三本文主要综述了近年来谷胱甘肽荧光探针的研究现状,并按照谷胱甘肽与探针识别基团的识别机理分类阐述,同时对谷胱甘肽荧光探针的未来发展趋势进行了展望三 关键词:谷胱甘肽二荧光探针二识别机理二检测  中图分类号:O657.3  文献标志码:A 文章编号:1001-9677(2018)07-0023-06 * 基金项目:广东轻工职业技术学院人才类项目(项目编号:KYRC2017-0031)三第一作者:石磊(1985-),男,博士,讲师,主要从事荧光探针的合成与应用三通讯作者:龚盛昭三 Research Progress on Fluorescent Probes for Glutathione * SHI Lei 1,2,HUANG Ling 3,GONG Sheng -zhao 1,2 (1School of Chemical Engineering and Technology,Guangdong Industry Polytechnic,Guangdong Guangzhou 510300;2Guangdong Engineering Technical Research Center for Green Household Chemicals,Guangdong Guangzhou 510300; 3Foshan Anan beauty &Health products Co,Ltd,Guangdong Foshan 528099,China)Abstract :Glutathione plays an important role in many physiological processes of life system,and the detection of glutathione in cell is significant for the research of cell function and pathological analysis.Fluorometric analysis based on fluorescent probes has attracted much attention due to its advantages,such as simple operation,high sensitivity and specificity.Moreover,the organic fluorescent probes could also be applied to bioimaging technology for living cells and organisms.The research progress on glutathione fluorescent probes was introduced and classified according to the recognition mechanism between glutathione and recognition groups of probes,and the developing trends of fluorescent probes for glutathione were prospected. Key words :glutathione;fluorescence probe;recognition mechanism;detection 谷胱甘肽(Glutathione,缩写GSH)是一种含有巯基二氨基和γ-酰胺键的三肽,主要由谷氨酸二半胱氨酸和甘氨酸组成三谷胱甘肽是细胞内一种重要的调节代谢物质;它不仅能够清除体内的过氧化物及其他自由基,促进肝脏酶活性二解毒和维持红细胞膜完整性等作用,同时还具有维持DNA 的生物合成和细胞免疫等多种生理功能[1-2]因此,检测生物体中的GSH 含量对于一些疾病的预防二研究和治疗都具有十分重要的作用,故而引起了诸多科研工作者的高度关注[3-4]三 相比于分光光度法二色谱法二毛细管电泳法二电化学法等传统检测方法,以荧光探针为基础的荧光分析法具有测试简单二选择性高二响应时间短等优点三更重要的是,荧光探针还能应用于生物体内的实时监测和生物成像研究,故而被广泛应用于生物医学二分析化学和化学生物学等诸多领域[5-6]三 近年来,基于谷胱甘肽的荧光探针得到了迅猛发展;若按照谷胱甘肽与荧光探针识别基团的识别机理进行分类,可以将 其分为加成反应取代反应和还原反应三本文主要综述了近年来谷胱甘肽荧光探针的设计合成与应用进展,并分类阐述如下三 1 加成反应 加成反应是利用GSH 中具有亲核性的巯基与不饱和双键(主要是碳碳双键)发生加成反应,使得探针的荧光发射光谱发生变化,从而实现对检测对象的识别与检测三 1.1 马来酰亚胺类 自Kanaoka [7]首次报道了以马来酰亚胺作为生物硫醇识别基团的荧光探针以来,基于马来酰亚胺的香豆素二BODIPY二喹啉二萘酐等[8-10]荧光探针陆续涌现出来,并成功应用于生物体内GSH 的选择性识别(图1)三然而,按此原理构建的大部分荧光探针对半胱氨酸(Cys)二同型半胱氨酸(Hcy)和GSH 均有响应,很难对这三者进行区分;仅少许报道是例外三其中,

基于罗丹明B的阳离子荧光探针的研究

基于罗丹明B的阳离子荧光探针的研究 .1分子荧光产生的原理 当用紫外或可见光照射某些物质时,这些物质吸收某种波长的光后会发射出波长和 强度各不相同的光线,当停止照射后,这种红光也随之消失,这种光被称为荧光汇1.2〕。对 荧光产生原理和条件直到十世纪中期才弄清楚。GorgeGStokes在1852年详细考察了奎 宁和叶绿素的荧光后,首先确定和报告了他们的荧光波长总比激发波长要长。他还研究 了荧光强度和荧光物质浓度的关系,发现在高浓度时荧光会淬灭,他也发现荧光可以被 外部物质淬灭,从而建议利用荧光达到检测的目的。由AlexanderJabfonski在1935年提 出的荧光产生的过程图,常被称为Jabfonski图131(见图 1.1)。通常情况下,荧光试剂 分子处于基态,吸收光后,试剂分子的电子被激发而处于激发态,基态和激发态都有单 重态和三重态两种类型。S为电子自旋量子数的代数和,其数值为O或1。S为O时, Fig.1.1JalllonskidiagramforaPhotolu刀。刃。eseentsystem 分子内轨道中的所有电子自旋配对,自旋方向相反,此时分子处于单线态,大多数有机 物分子的基态是处于单线态。分子吸收光能后,电子越迁到高能级,电子自旋方向不变, 此时分子处于激发单重态。S。,51,52,.…,表示分子的基态和第一,第二,…,激发 单重态,能量由低到高。如果处于基态单重态的有机物分子的电子在跃迁过程中伴随有

电子自旋方向的变化,在激发态分子轨道中就有两个自旋不配对的电子,此时S=l,表 明分子处于激发态的三重态,用T表示,Tl,T:分别表示三重态的第一第二激发态,分 子中的电子从基态S0跃迁到激发态51,52,比较容易发生,进行很快(10飞),而从基 态单重态到激发三重态不易发生。高能量的单重态激发态分子(如S:)可以与其它同类分子或溶剂分子碰撞通过内转换回到激发态的最低能级51,这一过程为10一,25,处于激发态最低能级的分子寿命一般为10礴一10一ss,它们会放出光子返回基态,这时产生的光就是 荧光。从51到Tl能量转化是系间跨越。从Tl到S。有两种过程:一个事物能量释放; 另一个是放出光子,即磷光,在104一105间完成。 1.2荧光分子探针的定义 荧光探针定义为能和个别组织特异结合而又不干扰其他组织成分自身荧光的那些 荧光化合物,为了和细胞中的自发荧光物质相区别,人们也曾称荧光染料为次级荧光体, 相应地把这种染色过程称为次级染色,把像叶琳这样的自然荧光物质称为初级荧光体。 而现在把所有的荧光探针,不管其染色性能和对天然荧光的影响如何,都统称为荧光探 针〔‘〕。 荧光探针大多是含有共扼双键体系的有机化合物,共辆双键使其容易吸收激发光, 其激发波长多处于近紫外区或可见光区,发射波长多处于可见光区。 作为荧光探针应该具有以下特点〔4]:第一,荧光探针的荧光必须与生物样品的背景 荧光易于区别;第二,荧光探针必须不干扰研究的主体;第三,荧光探针主要用于

相关主题