搜档网
当前位置:搜档网 › 三角函数的图象与性质教学设计

三角函数的图象与性质教学设计

三角函数的图象与性质教学设计
三角函数的图象与性质教学设计

三角函数的图象与性质教学设计

●知识梳理

1.三角函数的图象和性质

函数

性质=sinx=csx=tanx

定义域

值域

图象

奇偶性

周期性

单调性

对称性

注:读者自己填写.

2.图象与性质是一个密不可分的整体,研究性质要注意联想图象.

●学生练习

1.函数=sin(-2x)+sin2x的最小正周期是

A.2π

B.π

C.

D.4π

解析:=cs2x-sin2x+sin2x=cs2x+sin2x=sin(+2x),T=π.

答案:B

2.若f(x)sinx是周期为π的奇函数,则f(x)可以是

A.sinx

B.csx

C.sin2x

D.cs2x

解析:检验.

答案:B

3.函数=2sin(-2x)(x∈[0,π])为增函数的区间是

A.[0,]

B.[,]

C.[,]

D.[,π]

解析:由=2sin(-2x)=-2sin(2x-)其增区间可由=2sin (2x-)的减区间得到,即2π+≤2x-≤2π+,∈Z.

∴π+≤x≤π+,∈Z.

令=0,故选C.

答案:C

4.把=sinx的图象向左平移个单位,得到函数____________的图象;再把所得图象上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,得到函数____________的图象.

解析:向左平移个单位,即以x+代x,得到函数=sin(x+),再把所得图象上所有点的横坐标伸长到原来的2倍,即以x代x,得到函数:=sin(x+).

答案:=sin(x+)=sin(x+)

5.函数=lg(csx-sinx)的定义域是_______.

解析:由csx-sinx>0csx>sinx.由图象观察,知2π-<x <2π+(∈Z).

答案:2π-<x<2π+(∈Z)

●典例剖析

【例1】(1)=csx+cs(x+)的最大值是_______;

(2)=2sin(3x-)的图象的两条相邻对称轴之间的距离是

_______.

剖析:(1)=csx+csx-sinx

=csx-sinx=(csx-sinx)

=sin(-x).

所以ax=.

(2)T=,相邻对称轴间的距离为.

答案:

【例2】(1)已知f(x)的定义域为[0,1),求f(csx)的定义域;

(2)求函数=lgsin(csx)的定义域.

剖析:求函数的定义域:(1)要使0≤csx≤1,(2)要使sin (csx)>0,这里的csx以它的值充当角.

解:(1)0≤csx<12π-≤x≤2π+,且x≠2π(∈Z).

∴所求函数的定义域为{x|x∈[2π-,2π+]且x≠2π,∈Z}.

(2)由sin(csx)>02π<csx<2π+π(∈Z).又∵-1≤csx≤1,∴0<csx≤1.故所求定义域为{x|x∈(2π-,2π+),∈Z}.

评述:求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线.

【例3】求函数=sin6x+cs6x的最小正周期,并求x为何值时,有最大值.

剖析:将原函数化成=Asin(ωx+)+B的形式,即可求解.

解:=sin6x+cs6x=(sin2x+cs2x)(sin4x-sin2xcs2x+cs4x)=1-3sin2xcs2x=1-sin22x=cs4x+.

∴T=.

当cs4x=1,即x=(∈Z)时,ax=1.

深化拓展

函数=tan(ax+θ)(a>0)当x从n变化为n+1(n∈Z)时,的值恰好由-∞变为+∞,则a=_______.

分析:你知道函数的周期T吗?

答案:π

●闯关训练

夯实基础

1.若函数f(x)=sin(ωx+)的图象(部分)如下图所示,则ω和的取值是

A.ω=1,=

B.ω=1,=-

C.ω=,=

D.ω=,=-

解析:由图象知,T=4(+)=4π=,∴ω=.

又当x=时,=1,∴sin(×+)=1,

+=2π+,∈Z,当=0时,=.

答案:C

2.f(x)=2cs2x+sin2x+a(a为实常数)在区间[0,]上的最小值为-4,那么a的值等于

A.4

B.-6

C.-4

D.-3

解析:f(x)=1+cs2x+sin2x+a

=2sin(2x+)+a+1.

∵x∈[0,],∴2x+∈[,].

∴f(x)的最小值为2×(-)+a+1=-4.

∴a=-4.

答案:C

3.函数=的定义域是_________.

解析:-sin≥0sin≤02π-π≤≤2π6π-3π≤x≤6π(∈Z).

答案:6π-3π≤x≤6π(∈Z)

4.函数=tanx-ctx的最小正周期为____________.

解析:=-=-2ct2x,T=.

答案:

5.求函数f(x)=的最小正周期、最大值和最小值.

解:f(x)=

==(1+sinxcsx)

=sin2x+,

所以函数f(x)的最小正周期是π,最大值是,最小值是.

6.已知x∈[,],函数=cs2x-sinx+b+1的最大值为,试求其最小值.

解:∵=-2(sinx+)2++b,

又-1≤sinx≤,∴当sinx=-时,

ax=+b=b=-1;

当sinx=时,in=-.

培养能力

7.求使=sin(-)成立的θ的区间.

解:=sin(-)

=(sin-cs)|sin-cs|=sin-cs

sin≥cs2π+≤≤2π+(∈Z).

因此θ∈[4π+,4π+](∈Z).

8.已知方程sinx+csx=在0≤x≤π上有两解,求的取值范围.

解:原方程sinx+csx=sin(x+)=,在同一坐标系内作函数1=sin (x+)与2=的图象.对于=sin(x+),令x=0,得=1.

∴当∈[1,)时,观察知两曲线在[0,π]上有两交点,方程有两解.

评述:本题是通过函数图象交点个数判断方程实数解的个数,应重视这种方法.

探究创新

9.已知函数f(x)=

(1)画出f(x)的图象,并写出其单调区间、最大值、最小值;

(2)判断f(x)是否为周期函数.如果是,求出最小正周期.

解:(1)实线即为f(x)的图象.

单调增区间为[2π+,2π+],[2π+,2π+2π](∈Z),

单调减区间为[2π,2π+],[2π+,2π+](∈Z),

f(x)ax=1,f(x)in=-.

(2)f(x)为周期函数,T=2π.

●思悟小结

1.三角函数是函数的一个分支,它除了符合函数的所有关系和共性外,还有它自身的属性.

2.求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误.

●教师下载中心

教学点睛

1.知识精讲由学生填写,起到回顾作用.

2.例2、例4作为重点讲解,例1、例3诱导即可.

拓展题例

【例1】已知sinα>sinβ,那么下列命题成立的是

A.若α、β是第一象限角,则csα>csβ

B.若α、β是第二象限角,则tanα>tanβ

C.若α、β是第三象限角,则csα>csβ

D.若α、β是第四象限角,则tanα>tanβ

解析:借助三角函数线易得结论.

答案:D

【例2】函数f(x)=-sin2x+sinx+a,若1≤f(x)≤对一切x∈R恒成立,求a的取值范围.

解:f(x)=-sin2x+sinx+a

=-(sinx-)2+a+.

由1≤f(x)≤

1≤-(sinx-)2+a+≤

a-4≤(sinx-)2≤a-.①

由-1≤sinx≤1-≤sinx-≤

(sinx-)=,(sinx-)=0.

∴要使①式恒成立,

只需3≤a≤4.

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

三角函数的图像与性质

三角函数的图像与性质 1.三角函数中的值域及最值问题 a .正弦(余弦、正切)型函数在给定区间上的最值问题 (1)(经典题,5分)函数f (x )=sin ????2x -π4在区间????0,π 2上的最小值为( ) A .-1 B .- 22 C.22 D .0 答案:B 解析:∵x ∈????0,π2,∴-π4≤2x -π4≤3π 4,∴函数f (x )=sin ????2x -π4在区间????0,π2上先增后减.∵f (0)=sin ????-π4=-22, f ????π2=sin ????3π4=2 2, f (0)

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数的图像与性质教案

三角函数的图像与性质教案 考纲要求 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性. 2.借助图象理解正弦函数、余弦函数在[0,2π],正切函数在(-π 2,π 2)上的性质. 要点识记 1个必会思想——整体思想的运用 研究y=A sin(ωx+φ)(ω>0)的单调区间、值域、对称轴(中心)时,首先把“ωx+φ”视为一个整体,再结合基本初等函数y=sin x的图象和性质求解. 2个重要性质——三角函数的周期性与单调性 (1)周期性:函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π |ω|,y=tan(ωx+φ)的最 小正周期为π |ω|. (2)单调性:三角函数的单调性应在定义域内考虑,注意以下两个三角函数单调区间的不同: ①y=sin(π 4-x),②y=sin(x- π 4). 教材回归 判断下列说法是否正确(请在括号内填“√”或“×”). (1)y=cos x在第一、二象限上是减函数.(×) (2)y=k sin x+1,x∈R,则y的最大值是k+1 . (×) (3)y=cos(x+π 3)在[0,π]的值域是[-1, 1 2].(√) (4)y=sin(2x+5 2π)是非奇非偶函数.(×) 考向一三角函数的定义域、值域 例1(1)[2014·天津高考]函数f(x)=sin(2x-π 4)在区间[0, π 2]上的最小值为() A. -1 B. - 2 2 C. 2 2 D. 0 (2)函数y=lg(2sin x-1)+1-2cos x的定义域是________.

[解析] (1)∵x ∈[0,π2],∴2x -π4∈[-π4,34π], ∴y ∈[-22,1],选B 项. (2)由题意,得????? 2sin x -1>0,1-2cos x ≥0, 即????? sin x >12,cos x ≤12, [2k π+π3,2k π+56π)(k ∈Z ) 变式练习 1.已知f (x )的定义域为[0,1],则f (cos x )的定义域为__[2k π-π2,2k π+π2](k ∈Z ) ______. 2.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 __2__. 3.函数y =2cos 2x +5sin x -4的值域为____[-9,1]____. [易错点拨] 求解三角函数的最值和值域时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得,因此要把这两个最值点弄清楚,不然极易出现错误. 三角函数定义域、值域的求解策略 (1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值). 考向二 三角函数的单调性 例2 (1)[2014·唐山模考]已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数图像与性质知识点总结

三角函数图像与性质知识 点总结 The Standardization Office was revised on the afternoon of December 13, 2020

函数图像与性质知识点总结 一、三角函数图象的性质 1.“五点法”描图 (1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为 (0,0) ? ?? ?? ?π2,1 (π,0) ? ?? ??? 32π,-1 (2π,0) (2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为 (0,1),? ?????π2,0,(π,-1),? ???? ? 3π2,0,(2π,1) 2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x 定义域 R R {x |x ≠k π+π 2 ,k ∈Z} 图象 值域 [-1,1] [-1,1] R 对称性 对称轴: x =k π+ π2(k ∈Z); 对称轴: x =k π(k ∈Z) 对称中心: 对称中心:? ?? ?? ?k π2,0 (k ∈Z)

3.一般地对于函数(),如果存在一个非零的常数,使得当取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期) 4.求三角函数值域(最值)的方法: (1)利用sin x、cos x的有界性; 关于正、余弦函数的有界性 由于正余弦函数的值域都是[-1,1],因此对于?x∈R,恒有-1≤sin x≤1,-1≤cos x≤1,所以1叫做y=sin x,y=cos x的上确界,-1叫做y=sin x,y=cos x的下确界.

教你如何记住中学所有三角函数公式

教你如何记住中学所有三角函数公式 人脑不应该去和电脑比拼记忆力。我们记忆的目的不是为了挑战自己的记忆力,而是为了在中高考中帮助我们解题,或者用来解决别的实际问题。有意义的东西才去记,没意义的东西就不要记。不要迷信一些花里胡哨的记忆诀窍。比如,不管是用“谐音法”还是“图形法”还是别的什么方法来强行记忆圆周率后的几十位数字,这些东西都是没有意义的。有这个工夫,不如多解几道数学题,对提高数学成绩更有帮助。真正有用的知识,都是有规律、有意义的。所以,‘寻找知识之间的规律,根据规律来记忆’是一种最重要、最高效的记忆法,是提高记忆力的第一原则! 下面,我以三角函数为例来说明如何运用“彻底理解+ 把握规律”的方法来记忆数量巨大而且非常复杂的理科公式。怎样一个小时记住中学所有三角函数公式?(三角函数的记忆规律)所谓彻底理解,就是能够从最简单的概念推出最复杂的结论。所以当我们觉得某个知识很难理解的时候,首先应该想到的就是,这个知识背后那些最简单的概念我们有没有真正弄清楚。 所以,我们要把三角函数彻底搞清楚,记下来并且活学活用,首先就要问:三角函数最简单的概念是什么? 显然,就是sin、cos、tg、ctg 这四个概念。这是三角函数的基本元素。可惜有很多人学了很长时间的三角函数,这四个符号倒是认识了,却没有能够真正理解它们的内涵。所谓三角函数,简单来说,就是直角三角形的几条边的比例关系。假设有直角△ ABC,∠C=90°,对应斜边c,∠ A 和∠B 分别对应直角边a 和b。 那么,sinA=a/c, cosA=b/c, tgA=a/b, ctgA=b/a。实际上,这四个函数就是为了把直角三角形的比例线段简单化,为了避免每次都要写一大堆线段的比例式,而发明出来的。sinA 就代表∠A 所对的直角边与斜边的比例,cosA 就代表∠A 的邻边与斜边的比例,tgA 就代表∠A 的对边与邻边的比例,ctgA 就代表∠A 的邻边与对边的比例。 把这些最简单的概念弄清楚了,有很多基础的三角函数公式就不用记了。比如sin2A+cos2A=1,tgA ctgA=1,cosA tgA= sinA,sinA ctgA= cosA。因为这些全都是直接从这个基本概念推出来的,比如cosAtgA= sinA,sinActgA= cosA 这两个公式颠来倒去的,很容易把tgA 和ctgA 记混淆,一不小心就会

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

三角函数公式大全关系

三角函数公式大全关系: 倒数 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

三角函数公式及记忆方法

三角函数公式 诱导公式的本质 所谓三角函数诱导公式,就是将角απ ±?)2 (n 的三角函数转化为角α的三角函数。 常用的诱导公式Z k ∈ 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: ααπs i n )2s i n (=+k ααπcos )2cos(=+k ααπt a n )2t a n (=+k ααπcot )2cot(=+k ααπs e c )2s e c (=+k ααπcsc )2csc(=+k 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: ααπs i n )s i n (-=+ ααπcos )cos(-=+ ααπt a n )t a n (=+ ααπcot )cot(=+ ααπs e c )s e c (-=+ ααπcsc )csc(-=+ 公式三: 任意角α与 -α的三角函数值之间的关系: ααs i n )s i n (-=- ααcos )cos(=- ααt a n )t a n (-=- ααcot )cot(-=- ααs e c )s e c (=- ααcsc )csc(-=- 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: ααπs i n )s i n (=- ααπcos )cos(-=- ααπt a n )t a n (-=- ααπcot )cot(-=- ααπs e c )s e c (-=- ααπcsc )csc( =- 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: ααπs i n )2 s i n (-=- ααπcos )2cos(=- ααπt a n )2 t a n (-=- ααπcot )2cot(-=- ααπs e c )2s e c (=- ααπcsc )2csc(-=-

三角函数的图像与性质教学设计

三角函数的图像与性质(王玮玮) 教材:人教版《普通高中课程标准实验教科书·数学(B版)》必修4 本节课“三角函数的图像和性质”选自实验教材第一章第四节。下面我将从五个方面说明本节课的教学设计。 1教学设计思路 2教材分析 3学情分析 4教学目标与重点、难点 5教学流程 一、教学设计思路:新课程标准倡导积极主动、勇于探索的学习方式,把学习的主动权还给学生。以此为宗旨,我采用自主学习、合作探究方法,引导学生自主学习、探究学习,努力做到教法、学法的最优组合,并体现以下几个特点: (1)苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者.”本节课正是抓住学生的这一心理需求,充分利用互动工具,让学生动手实践、思考探索,合作交流,真正意义上做到尊重学生的创造性,挖掘学生的潜力,让他们对整个学习过程充满激情,快乐学数学。 (2)注重信息反馈,坚持师生间的多向交流。当学生接触新知—周期性、单调性、值域等性质时以及利用性质画出图象时,要引导学生多思、多说、多练,要充分暴露他们所遇到的知识障碍,并在师生之间的多向交流中,不断的得到解决,使知识深化。 二、教材分析: 地位与作用:本节课是在学生掌握了单位圆中的正弦函数线和诱导公式的基础上进行的,不仅是对前面所学知识应用的考察,也是后续学习正、余弦函数性质的基础。对函数图像清晰而准确的掌握也为学生在解题实践

中提供了有力的工具。本小节内容是三角函数的图象与性质,是本章知识的重点,有着承前启后的作用。 美国华盛顿一所大学有句名言:“我听见了,就忘记了;我看见了,就记住了;我做过了,就理解了.”要想让学生深刻理解三角函数性质和图像,就应该让学生主动去探索,大胆去实践,亲身体验知识的发生和发展过程 三、学生情况分析: 知识上,通过高一对函数的学习,学生已经具备了一定的绘图技能,能够类比推理画出图像,并通过观察图像,总结性质。心理上,具备了一定的分辨能力、语言表达能力,初步形成了辩证的思维方法。另外学生基础差异较大,在小组中尽量搭配合理,在练习和作业中注意分层,另外学生对观察正切线得出函数单调性以及利用单位圆中的三角函数线作图有困难,要加强指导。 四、鉴于以上认识,确定本节课的(一)教学目标为: 1. 知识与技能目标:通过研究掌握正弦函数图像及其画法;掌握余弦函数图像;深刻理解五点作图法中五点的本质。利用正切函数已有的知识(如定义、诱导公式、正切线等),自己或合作通过绘制正切线的变化研究性质,根据性质探究正切函数的图象。 2. 过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使对正弦函数图像的认知更为深刻。让学生借助单位圆中的三角函数线能画出tan y x =的图象,借助图象理解正切函数在(,) 22ππ -上的性质(如单调性、周期性、最大值和最小值、图象与x 轴的交点等),并能解决一些简单问题。 3. 情感态度与价值观:用联系的观点看待问题,善于类比联想,直观想象,对数形结合有进一步认识,激发学习数学的兴趣,养成良好的数学品质。让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。 (二)、教学重点、难点 1. 教学重点: (1)正弦函数、余弦函数的图像形状 (2)利用正切函数已有的知识(如定义、诱导公式、正切线等)研究性质, (3)根据性质探究正切函数的图象。 2.教学难点:sin y x =在[]0,2x π∈时的函数图像。画正切函数的简图,体

三角函数常用公式公式及用法

三角函数常用公式及用法 珠海市金海岸中学 唐云辉 1、终边相同的角及其本身在内的角的表示法: S={ | k 360°,k Z},或者 S { | 用法:用来将任意角转化到 0?2的范围以便于计算。 公式中k 的求法: 如是正角就直接除以3600或2,得到的整数 就是我们 要求的k ,剩余的角就是公式中 的;如果是 负角,就先取绝对值然后再去除以 3600或者2,得到 的整数加1后再取相反数就是上述公式中的 k,等于3600或者2减去剩余的角的值。 用法:前者是弧长公式,用以计算圆弧的长度;后者为扇形的面积公式,用以计算扇形的面积。 3.三角形面积公式: 1 , 1 1 1 abc 2 S 』= a h a = ab si nC =—bc si nA = —ac si nB = =2R sin A si n B si nC 2 2 2 4R 2 a sin BsinC 2 sin A 2 2 b sinAsinC c sinAsinB = = =pr= P (P a)(p b)(p c) 2si nB 2sinC 1 ( 其中p -(a 2 4 ?同角关系: b c) , r 为三角形内切圆半径) (1 )、商的关系:① tan =y = sin x cos 用法:一般用来计算三角函数的值。 (2 )、平方关系:sin 2 cos 2 1 行运算,遇到sin cos m 就先平方而后再运算, 遇到sin cos sin 2 cos 2 这类题目就联想 2 2 到分母为"1” =s in cos 进行运算即可。 --------- K (3)、辅助角公式: asin bcos Va 2 b 2 sin( ) (其中 a>0,b>0 ,且 tan —) a 用法:用以将两个异名三角函数转化成同名三角函数,以便于求取相关的三角函数。 5、函数y= Asin( x ) k 的图象及性质:( 0, A 0 ) 2、 L 弧长= n nR R =180 扇 =丄LR 」F 2 2 2 n R 2 360 2k ,k Z} 用法:凡是见了 sin cos m 或者sin cos ?2 sin 2 cos 的形式题目都可以用上述平方关系进

三角函数的图像与性质优秀教案

三角函数图像与性质复习 教案目标: 1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。 2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。 重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数) sin(?ω+=x A y 的图象。 难点:一般函数)sin(?ω+=x A y 的图象与性质。 【教案内容】 1、引入: 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数: 注意: 最小正周期: 一般函数)sin(?ω+=x A y 中:A 表示 ,ω表示 及频率: ,相位: 。 正切函数: 3、三角函数的图象:

值域:tan ;tan .2 2 22 x x x x x x π π π π < → →+∞>- →-→-∞当且时,当且时, 单调性:对每一个k Z ∈,在开区间(,)22 k k π π ππ- +内,函数单调递增. 对称性:对称中心:( ,0)()2 k k Z π ∈,无对称轴。 五点作图法的步骤: (由诱导公式画出余弦函数的图象) 【例题讲解】

例1 画出下列函数的简图 (1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈ 例2 (1)方程lg sin x x =解得个数为( ) A. 0 B. 1 C. 2 D. 3 (2)3[, ]22x ππ ∈- 解不等式3 sin 2 x ≥- 4([,])33x ππ∈- 例3已知函数()cos(2)2sin()sin()3 4 4 f x x x x π π π =-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122 ππ - 上的值域。 例4已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的周期为π, 且图象上一个最低点为2( ,2)3 M π -. (Ⅰ)求()f x 的解读式;(Ⅱ)当[0, ]12 x π∈,求()f x 的最值. 例5写出下列函数的单调区间及在此区间的增减性: (1)1tan()26 y x π=-;(2)tan(2)4y x π =-. 【过手练习】 1、函数sin(2)3 y x π =+ 图像的对称轴方程可能是() A .6x π =- B .12 x π =- C .6x π = D .12 x π = 2、已知函数)0)(sin(2>+=ωφωx y 在区间[0,2π]的图像 如下,那么ω=() A. 1 B. 2 C. 1/2 D. 3 1 3、函数()cos 22sin f x x x =+的最小值和最大值分别为

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

三角函数诱导公式及经典记忆方法

三角函数诱导公式及记忆方法 一、同角三角函数的基本关系式 (一)基本关系 1、倒数关系 tanα ·cotα=1 s inα ·cscα=1 cosα ·secα=1 2、商的关系 sinα/cosα=tanαsecα/cscα=tanα cosα/sinα=cotαcscα/secα=cotα 3、平方关系 sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α (二)同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 1、倒数关系 对角线上两个函数互为倒数; 2、商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 3、平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 二、诱导公式的本质 所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。(一)常用的诱导公式 1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα,k∈z cos(2kπ+α)=cosα,k∈z tan(2kπ+α)=tanα,k∈z cot(2kπ+α)=cotα,k∈z sec(2kπ+α)=secα,k∈z csc(2kπ+α)=cscα,k∈z 2、公式二:α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)= tanα cot(π+α)= cotα sec (π+α) =—secα csc (π+α) =—cscα 3、公式三:任意角α与-α的三角函数值之间的关系:

三角函数公式大全

两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin( 2A )=2cos 1A -cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式:sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a -

三角函数的图像与性质 教案

三角函数的图象与性质   教学目标 1.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质. .熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、 2 重点难点 重点是通过复习,能运用四种三角函数的性质研究复合三角函数的性质及图象的特点,特别是三角函数的周期性,是需要重点明确的问题. 难点是,在研究复合函数性质时,有些需要先进行三角变换,把问题转化到四种三角函数上,才能进行研究,这就增加了问题的综合性和难度. 教学过程 三角函数的图象与性质是三角函数的核心问题,要熟练、准确地掌握.特别是三角函数的周期性,反映了三角函数的特点,在复习“三角函数的性质与图象”时,要牢牢抓住“三角函数周期性”这一内容,认真体会周期性在三角函数所有性质中的地位和作用.这样才能把性质理解透彻. 一、三角函数性质的分析 .三角函数的定义域 1 函数y=cotx的定义域是x≠π或(kπ,kπ+π)(k∈Z),这两种表示法都需要掌握.即角x不能取终边在x轴上的角. (2)函数y=secx、y=cscx的定义域分别与y=tanx、y=cotx相同. 求下列函数的定义域: 例1

π](k∈Z) . 形使函数定义域扩大. 到.注意不要遗漏.

. (3)满足下列条件的x的结果,要熟记(用图形更便于记住它的结果)

是 [ ] 所以选C. 2.三角函数的值域 (1)由|sinx|≤1、|cosx|≤1得函数y=cscx、y=secx的值域是 |cscx|≥1、|secx|≥1. (2)复合三角函数的值域问题较复杂,除了代数求值域的方法都可以适用外,还要注意三角函数本身的特点,特别是经常需要先进行三角变换再求值域.

数学三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|ο ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180|οοββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

相关主题