搜档网
当前位置:搜档网 › 第2章 习题课 直线、平面平行与垂直

第2章 习题课 直线、平面平行与垂直

第2章 习题课 直线、平面平行与垂直
第2章 习题课 直线、平面平行与垂直

习题课 直线、平面平行与垂直

【课时目标】 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用.

a 、

b 、

c 表示直线,α、β、γ表示平面. 位置关系 判定定理(符号语言) 性质定理(符号语言)

直线与平面平行 a ∥b 且________?a ∥α

a ∥α,________________?a ∥

b 平面与平面平行

a ∥α,

b ∥α,且________________

?α∥β

α∥β,________________?a ∥b

直线与平面垂直

l ⊥a ,l ⊥b ,且________________

?l ⊥α a ⊥α,b ⊥α?________ 平面与平面垂直 a ⊥α,

?α⊥β

α⊥β,α∩β=a ,____________

?b ⊥β

一、选择题

1.不同直线M 、n 和不同平面α、β.给出下列命题:

?????α∥βm ?α?M ∥β; ② ?

????m ∥n m ∥β?n ∥β; ③

?????m ?αn ?β?M ,n 异面; ④

?

???

?α⊥βm ∥α?M ⊥β. 其中假命题的个数为( )

A .0

B .1

C .2

D .3

2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( )

A .4

B .1

C .2

D .3

3.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α?a ⊥b ;②a ⊥α,a ⊥b ?b ∥α; ③a ∥α,a ⊥b ?b ⊥α.

A .1

B .2

C .3

D .0

4.过平面外一点P :①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是( )

A .1

B .2

C .3

D .4

5.如图所示,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( )

A.线段B1C

B.线段BC1

C.BB1的中点与CC1的中点连成的线段

D.BC的中点与B1C1的中点连成的线段

6.已知三条相交于一点的线段P A、PB、PC两两垂直,点P在平面ABC外,PH⊥面ABC于H,则垂足H是△ABC的()

A.外心B.内心C.垂心D.重心

二、填空题

7.三棱锥D-ABC的三个侧面分别与底面全等,且AB=AC=3,BC=2,则二面角A-BC-D的大小为________.

8.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”,在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.

9.如图所示,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△P AC在该正方体各个面上的射影可能是________.(填序号)

三、解答题

10.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M 是EA的中点,求证:

(1)DE=DA;

(2)平面BDM⊥平面ECA;

(3)平面DEA⊥平面ECA.

11.如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.

(1)证明:平面AB1C⊥平面A1BC1;

(2)设D是A1C1上的点且A1B∥平面B1CD,求A1D

DC1的值.

能力提升

12.四棱锥P—ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图:

(1)根据图中的信息,在四棱锥P—ABCD的侧面、底面和棱中,请把符合要求的结论填写在空格处(每空只要求填一种):

①一对互相垂直的异面直线________;

②一对互相垂直的平面________;

③一对互相垂直的直线和平面________;

(2)四棱锥P—ABCD的表面积为________.

13.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点.

(1)求证:FH∥平面EDB;

(2)求证:AC⊥平面EDB;

(3)求四面体B-DEF的体积.

转化思想是证明线面平行与垂直的主要思路,其关系为

即利用线线平行(垂直),证明线面平行(垂直)或证明面面平行(垂直);反过来,又利用面面平行(垂直),证明线面平行(垂直)或证明线线平行(垂直),甚至平行与垂直之间的转化.这样,来来往往,就如同运用“四渡赤水”的战略战术,达到了出奇制胜的目的.

习题课直线、平面平行与垂直答案

知识梳理

a?α,b?αa?β,α∩β=b a?β,b?β,a∩b=Pα∩γ=a,β∩γ=b a?α,b?α,a∩b=P a∥b a?βb⊥a,b?α

作业设计

1.D[命题①正确,面面平行的性质;命题②不正确,也可能n?β;命题③不正确,如果m、n有一条是α、β的交线,则m、n共面;命题④不正确,m与β的关系不确定.] 2.C[(2)和(4)对.]

3.A[①正确.]

4.B[①④正确.]

5.A[

连接AC,AB1,B1C,

∵BD⊥AC,AC⊥DD1,

BD∩DD1=D,

∴AC⊥面BDD1,∴AC⊥BD1,

同理可证BD1⊥B1C,

∴BD1⊥面AB1C.

∴P∈B1C时,始终AP⊥BD1,选A.]

6.C[

如图所示,由已知可得PA⊥面PBC,PA⊥BC,又PH⊥BC,

∴BC⊥面APH,BC⊥AH.

同理证得CH⊥AB,∴H为垂心.]

7.90°

解析

由题意画出图形,数据如图,取BC 的中点E ,

连接AE 、DE ,易知∠AED 为二面角A —BC —D 的平面角. 可求得AE =DE =2,由此得AE 2+DE 2=AD 2. 故∠AED =90°. 8.36

解析 正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.

9.①④

10.证明 (1)如图所示,

取EC 的中点F ,连接DF ,∵EC ⊥平面ABC , ∴EC ⊥BC ,又由已知得DF ∥BC ,∴DF ⊥EC .

在Rt △EFD 和Rt △DBA 中,

∵EF =1

2

EC =BD ,

FD =BC =AB ,

∴Rt △EFD ≌Rt △DBA , 故ED =DA .

(2)取CA 的中点N ,连接MN 、BN ,则MN 綊1

2

EC ,

∴MN ∥BD ,∴N 在平面BDM 内,

∵EC ⊥平面ABC ,∴EC ⊥BN .又CA ⊥BN , ∴BN ⊥平面ECA ,BN ?平面MNBD , ∴平面MNBD ⊥平面ECA . 即平面BDM ⊥平面ECA .

(3)∵BD 綊12EC ,MN 綊1

2EC ,

∴BD 綊MN ,

∴MNBD 为平行四边形,

∴DM ∥BN ,∵BN ⊥平面ECA ,

∴DM ⊥平面ECA ,又DM ?平面DEA , ∴平面DEA ⊥平面ECA .

11.(1)证明 因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1.

又B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,

所以B 1C ⊥平面A 1BC 1.又B 1C ?平面AB 1C ,所以平面AB 1C ⊥平面A 1BC 1.

(2)解 设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面B 1CD 的交线. 因为A 1B ∥平面B 1CD ,所以A 1B ∥DE . 又E 是BC 1的中点,所以D 为A 1C 1的中点, 即A 1D DC 1=1. 12.(1)①PA ⊥BC(或PA ⊥CD 或AB ⊥PD) ②平面PAB ⊥平面ABCD(或平面PAD ⊥平面ABCD 或平面PAB ⊥平面PAD 或平面PCD ⊥平面PAD 或平面PBC ⊥平面PAB) ③PA ⊥平面ABCD(或AB ⊥平面PAD 或CD ⊥平面PAD 或AD ⊥平面PAB 或BC ⊥平面PAB)

(2)2a 2+2a 2

解析 (2)依题意:正方形的面积是a 2,

S △PAB =S △PAD =1

2

a 2.

又PB =PD =2a ,∴S △PBC =S △PCD =2

2

a 2.

所以四棱锥P —ABCD 的表面积是S =2a 2+2a 2. 13.

(1)证明 如图,设AC 与BD 交于点G ,则G 为AC 的中点.连接EG ,GH ,由于H 为BC 的中点,

故GH 綊1

2AB .

又EF 綊1

2

AB ,∴EF 綊GH .∴四边形EFHG 为平行四边形.∴EG ∥FH .而EG ?平面

EDB ,FH ?平面EDB ,

∴FH ∥平面EDB .

(2)证明 由四边形ABCD 为正方形,得AB ⊥BC . 又EF ∥AB ,∴EF ⊥BC .

而EF ⊥FB ,∴EF ⊥平面BFC . ∴EF ⊥FH .∴AB ⊥FH .

又BF =FC ,H 为BC 的中点,∴FH ⊥BC . ∴FH ⊥平面ABCD .∴FH ⊥AC .

又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .

(3)解 ∵EF ⊥FB ,∠BFC =90°∴BF ⊥平面CDEF . ∴BF 为四面体B -DEF 的高. 又BC =AB =2,∴BF =FC =2.

V B -DEF =13×12×1×2×2=1

3

立体几何中的向量方法(一)——证明平行与垂直

立体几何中的向量方法(一)——证明平行与垂直 1.直线的方向向量与平面的法向量的确定 (1)直线的方向向量:在直线上任取一非零向量作为它的方向向量. (2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为???? ? n ·a =0,n ·b =0. 2.用向量证明空间中的平行关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)?v 1∥v 2. (2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ?α?存在两个实数x ,y ,使v =x v 1+y v 2. (3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ?α?v ⊥u . (4)设平面α和β的法向量分别为u 1,u 2,则α∥β?u 1 ∥u 2. 3.用向量证明空间中的垂直关系 (1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2?v 1⊥v 2?v 1·v 2=0. (2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α?v ∥u . (3)设平面α和β的法向量分别为u 1和u 2,则α⊥β?u 1⊥u 2?u 1·u 2=0. 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( ) (2)平面的单位法向量是唯一确定的.( ) (3)若两平面的法向量平行,则两平面平行.( ) (4)若两直线的方向向量不平行,则两直线不平行.( ) (5)若a ∥b ,则a 所在直线与b 所在直线平行.( ) (6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( ) 1.下列各组向量中不平行的是( )

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

小学六年级数学总复习知识点总结知识点平面图形的认识

六年级数学下册总复习知识点总结 知识点7:图形的认识测量 姓名________ 记忆情况________________________ 一、线和角 1、线 直线:直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。 射线:射线只一1 ■ 线段:线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。* ? 平行线:在同一平面内,不相交的两条直线叫做平行线。 两条平行线之间的垂线长度都相等。 垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。 o 从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。 2、角 (1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。角的大小与角的两边叉开的大小有关。计量角的大小的单位是度。记着“a (2)角的分类 锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。 钝角:大于90°而小于180°的角叫做钝角。 平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。 周角:角的一边旋转一周,与另一边重合。周角是360 °。 二、平面图形 1、长方形--------- b (宽) a ------ (长— 特征:对边相等,4个角都是直角的四边形。有两条对称轴。 2、正方形 a I (边长) 特征:四条边都相等,四个角都是直角的四边形。有4条对称轴。

3、三角形 (高)

a (底) 锐角三角形 直角三角形 钝角三角形 (1)特征:由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条 高。三角形任意两边之和大于第三边,任意两边之差小于第三边。 (2)分类按角分: 锐角三角形:三个角都是锐角。 直角三角形:有一个角是直角。等腰直角三角形的两个锐角各为 45度,它有一条 对称轴。 钝角三角形:有一个角是钝角。 按边分: 不等边三角形:三条边长度不相等。 等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴 等边三角形: 4、平行四边形 h a (1)特征:两组对边分别平行的四边形。 相对的边平行且相等。对角相等,相邻的两个角的度数之和为 180度。平行四边形容易 变形。 5、梯形 特征:只有一组对边平行的四边形。 公式:s=(a+b )h -^2=m h (m 表示中位线---?两条腰的中点的连线) 6、圆 o r (1)圆的认识 d '——; 1) 平面上的一种曲线图形。 ' ' 2) 圆中心的一点叫做圆心。一般用字母 o 表示。 3) 半径:连接圆心和圆上任意一点的线段叫做半径。一般用 r 表示。 4) 在同一个圆里,有无数条半径,每条半径的长度都相等。 5) 通过圆心并且两端都在圆上的线段叫做直径。一般用 d 表示。 6) 同一个圆里有无数条直径,所有的直径都相等。 7) 同一个圆里,直径等于两个半径的长度,即 d=2r 。 8) 圆的大小由半径决定。 圆有无数条对称轴。 (2)圆的画法 1) 把圆规的两脚分开,定好两脚间的距离(即半径); 三条边长度都相等;三个内角都是 60度;有三条对称轴 h

两条直线平行与垂直作业

两条直线平行与垂直作业 一、选择题(每小题8分) 1.下列命题 ①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等; ③如果两直线的斜率之积为-1,则它们垂直; ④如果两直线垂直,则它们斜率之积为-1. 其中正确的为( ) A.①②③④ B.①③ C.②④ D.以上全错 2.已知点A(1,2),B(m,1),直线AB 与直线y=0垂直,则m 的值为( ) A.2 B.1 C.0 D.-1 3.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( ) A.锐角三角形 B.钝角三角形 C.以A 为直角顶点的直角三角形 D.以B 为直角顶点的直角三角形 4.已知12l l ⊥,直线2l 的倾斜角为45°,则直线1l 的倾斜角为( ) A.45° B.135° C.-45° D.120° 5.满足下列条件的1l 与2l ,其中12l l ⊥的是( ) (1) 1l 的斜率为- , 2l 经过点A(1,1),B(0,- ); (2) 1l 的倾斜角为45°, 2l 经过点P(-2,-1),Q(3,-5); (3) 1l 经过点M(1,0),N(4,-5), 2l 经过点R(-6,0),S(-1,3). A.(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3) 6.若A (-4,2),B(6,-4),C(12,6),D(2,12),则下列四个结论: ① AB ∥CD ② AB ⊥AD ③ AC ∥BD ④ AC ⊥BD 中正确的个数为( ) A.1 B.2 C.3 D.4 7.已知直线l 与过点M(2,3-),N(3,2-)的直线垂直,则直线l 的 倾斜角( ) A.60° B.180° C. 45° D.153° 8.若P (a,b )与Q (b-1,a+1)关于直线l 对称,则l 的倾斜角为( ) A .135° B.45° C. 30° D.60° 二、填空题(每小题8分) 9、经过点P(-2?-1)?Q(3,a)的直线与倾斜角为45°的直线垂直.则a= _____ 10、如果下列三点:A(a,2),B(5,1),C(-4,2a)在同一直线上, 则a= _____ 11、 1l 过点A(m,1),B(-3,4), 2l 过点C(0,2),D(1,1),且1l ∥2l ,则m=_______. 2312

时两条直线的平行与垂直配套练习必修

两条直线的平行与垂直(2) 分层训练 1 . .若直线ax y 1 0和直线2x by 1 0垂直,则a,b满足() (A)2a b 0 (B)2a b 0 (C)ab 2 0 (D)ab 2 0 2 ..已知两点A( 2,0), B(0,4) ,则与 直 线AB垂直的直线方程可写成( ) (A)2x y m 0 (B)2x y m 0 (C) x 2 y m 0 (D) x 2y m 0 3?已知两点A( 1,3), B(3,1),点C在坐标轴上.若ACB -,则这样的点C有 ( ) (A)1 个(B)2 个(C)3 个(D)4 个 4.原点在直线I上的射影是P( 2,1),则|的方程为( ) (A)x 2y 0 (B) x 2y 4 0 (C)2x y 5 0 (D) 2x y 3 0 5.已知直线mx 4y 2 0 和2x 5y n 0互相垂直,且垂足为(1,p),则m n p的 值是() (A)24 (B)20 (C) 0 (D) 4 6?根据条件,判断直线l i与I2是否垂直: (1)l i的倾斜角为45°, I2的方程是x y 1 : _______________________ ; (2)I1 经过点M (1,0), N(4,5) , J过点R( 6,0), S( 1,3): ________________________ . 7?直线I在y轴上的截距为2,且与直线l': x 3y 2 0垂直,则I的方程是__________ 8.已知直线Ax 4y 2 0和直线2x y C 0垂直且垂足的坐标为(1,m),则 A ______ , C ________ ,m ________ . 9?求经过点(2,1),且与直线2x y 10 0垂直的直线I的方程.

空间几何——平行与垂直证明

c c ∥∥b a b a ∥?一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那 么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β b a a =??βαβ α∥b a ∥? b a b a ////??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα∥?a β ∥a ?b ∥a b a αα??α ∥a ?

直线、平面平行与垂直的判定及其性质 复习

直线、平面平行的判定及其性质 知识点一、直线与平面平行的判定 ⅰ.直线和平面的位置关系(一条直线和一个平面的位置关系有且只有以下三种) 位置关系直线在平面内直线与平面相交直线与平面平行 公共点有无数个公共点有且只有一个公共点没有公共点 符号表示a?αa∩α=A a||α 图形表示 注:直线和平面相交或平行的情况统称为直线在平面外 ⅱ.思考:如图,设直线b在平面α内,直线a在平面α外,猜想在什么条件下直线a 与平面α平行.(a||b) 判定 文字描述直线和平面在空间永无交点,则直线 和平面平行(定义) 平面外的一条直线与平面内的一条直线平 行,则该直线与此平面平行 图形 条件a与α无交点 结论 a∥αb∥α

知识点二、直线与平面平行的性质 性质 文字描述一条直线与一个平面平行, 则这条直线与该平面无交点 一条直线和一个平面平行,则过 这条直线的任一平面与此平面 相交,这条直线和交线平行. 图形 条件 a∥αa∥α,a?β,α∩β= b 结论 a∩α=?a∥b 线面平行,则线线平行 特别提示 证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通 过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行, 证得“线面”平行. 判定 文字描述如果两个平面无公共 点,则这两个平面平行一个平面内有两条相 交直线与另一个平面 平行,那么这两个平面 平行. 如果两个平面同时垂直于 一条直线,那么这两个平 面平行。 图形 条件 α∩β=?a,b?β a∩b=P a∥α b∥α l⊥α l⊥β 结论 α∥βα∥βα∥β

知识点四、平面与平面平行的性质 性质 文字描述如果两个平行平面同时和第 三平面相交,那么他们的交 线平行如果两个平面平行,那么其中一个平面内的直线平行于另一个平面 图形 条件α∥β β∩γ=b α∩γ=a α∥β a?β 结论a∥b a∥α 直线、平面垂直的判定及其性质 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直线都 垂直,我们就说直线l与平面互相垂直, 记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥b l⊥m,l⊥n,m∩n=B,mα,nα 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条直线 垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.图形

两直线的平行与垂直的条件

复习引入: 直线名称 已知条件 直线方程 使用范围 示意图 点斜式 k y x P ),,(111 )(11x x k y y -=- 存在k 斜截式 b k , b kx y += 存在k 两点式 ) ,(11y x (),22y x 1 21 121x x x x y y y y --= -- 2121,y y x x ≠≠ 截距式 b a , 1=+b y a x 0,0≠≠ b a 一般式 A 、 B 、 C R ∈ 0=++C By Ax 022≠+B A 1.特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行; (2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直王新敞 2.斜率存在时两直线的平行与垂直. 设直线1l 和2l 的斜率为1k 和2k ,它们的方程分别是: 1l :11b x k y +=; 2l :22b x k y +=. 两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特 征王新敞 ⑴两条直线平行(不重合)的情形. 如图,从位置关系、倾斜角、斜率的定义、正切函数的性质分析,得以下结论: 两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如 果它们的斜率相等,则它们平行,即21//l l ?1k =2k 且21b b ≠ 王新敞 要注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. 例1 两条直线1l :0742=+-y x , 2l :052=+-y x .求证:1l ∥2l 例2 求过点)4,1(-A 且与直线0532=++y x 平行的直线方程.(两种方法) 注意: ①解法一求直线方程的方法是通法,必须掌握; ②解法二是常常采用的解题技巧。一般地,直线0=++C By Ax 中系数A 、B l 2l 1 α2 α1 x O y

立体几何平行与垂直经典证明题

N M P C B A 新课标立体几何常考证明题汇总 考点:证平行(利用三角形中位线),异面直线所成的角 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若BD=23,AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 考点:线面垂直,面面垂直的判定 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 考点:线面平行的判定 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 考点:线面垂直的判定 4、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 考点:线面平行的判定(利用平行四边形) 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 考点:线面垂直的判定,三角形中位线,构造直角三角形 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC =, 90BDC ∠=,求证:BD ⊥平面ACD 考点:三垂线定理 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的 A E D 1 C B 1 D C B A A H G F E D C B A E D B C S D C B A A 1 A B 1 C 1 C D 1 D G E F D 1 O D B A C 1 B 1 A 1 C

第2章习题课直线、平面平行与垂直分析

直线、平面平行与垂直 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用. a 、 b 、 c 表示直线,α、β、γ表示平面. 位置关系 判定定理(符号语言) 性质定理(符号语言) 直线与平面平行 a ∥b 且________?a ∥α a ∥α,________________?a ∥ b 平面与平面平行 a ∥α, b ∥α,且________________ ?α∥β α∥β,________________?a ∥b 直线与平面垂直 l ⊥a ,l ⊥b ,且________________ ?l ⊥α a ⊥α,b ⊥α?________ 平面与平面垂直 a ⊥α, ?α⊥β α⊥β,α∩β=a ,____________ ?b ⊥β 一、选择题 1.不同直线M 、n 和不同平面α、β.给出下列命题: ① ?????α∥βm ?α?M ∥β; ② ? ??? ?m ∥n m ∥β?n ∥β; ③ ?????m ?αn ?β?M ,n 异面; ④ ? ????α⊥βm ∥α?M ⊥β. 其中假命题的个数为( ) A .0 B .1 C .2 D .3 2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( ) A .4 B .1 C .2 D .3 3.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α?a ⊥b ;②a ⊥α,a ⊥b ?b ∥α; ③a ∥α,a ⊥b ?b ⊥α. A .1 B .2 C .3 D .0 4.过平面外一点P :①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是( ) A .1 B .2 C .3 D .4 5.如图所示,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( ) A .线段 B 1C

高中数学2.1.3两条直线的平行与垂直(2)教案苏教版必修2

2.1.3 两条直线的平行与垂直(2) 教学目标: 1. 掌握利用斜率判定两条直线垂直的方法,感受用代数方法研究几何问题的思想; 2. 通过分类讨论、数形结合等数学思想的渗透,培养学生严谨、辩证的思维习惯. 教材分析及教材内容的定位: 本节课和上节课研究的内容有类似之处,都是通过方程研究几何性质的. 教学重点: 用斜率判断两直线垂直的方法. 教学难点: 理解直线垂直的解析刻画. 教学方法: 探究合作. 教学过程: 一、问题情境 1?复习回顾:(1)利用直线的斜率关系判断两条直线平行; (2)利用直线的一般式方程判断两条直线的平行. 2 ?本节课研究的问题是:一一两条直线垂直, 两条直线垂直,那么他们的斜率之间有什么关系,体现在方程有何特征? 二、学生活动 探究:两条直线垂直,即倾斜角的差为直角,那么他们的斜率如何? 不妨设直线丨1,丨2(斜率存在)所对应的倾斜角分别为a 1, a 2,对应的斜率分别为k1, k2. 因为两条直线相互垂直,不妨设 a 1 — a 2= 90 .根据倾斜角与斜率的关系,我们知道 当倾斜角不是直角时,斜率存在,从而有k1=tan a 1, k2= tan a 2,于是根据诱导公式有 1 k1 tan 1 tan (90° 2) tan 2

即k i k2=—1 .此时,若两直线平行,则两直线的斜率乘积为一1. 反之,如果两直线的斜率(斜率存在)互为负倒数,即k i k2=—1,根据倾斜角和斜率 的关系以及正切函数的单调性可知倾斜角的差等于直角,从而说明它们互相垂直. 三、建构数学 两直线垂直. 一般地,设直线l i,丨 2 (斜率存在)所对应的斜率分别为k i, k2,则 11 I2 k i k2 1 说明: (1)如果直线丨1,丨2的斜率有一个不存在,那么其中有一条直线(不妨设 为I 1 )与X轴垂直,此时两条直线垂直的等价条件为I 2的斜率为0; (2)在利用以上结论判定两直线的位置关系时,一定要注意前提条件,即 斜率存在,因此在讨论问题过程中一定要注意对斜率是否存在作分类讨论. (3)设直线I 1: Ax + By+ Ci= 0, 12:Ax+ By + C2= 0,那么两条直线垂直的等价条件 为:A1A2 B1 B20 . 四、数学运用 例1 (1 )已知四点A(5, 3), B (10, 6) , C(3, —4) , D(—6 , 11),求证:AB丄 CD 3 2 (2)已知直线I 1的斜率k1= ,直线12经过点A (3a, —2) , B( 0 , a +1),且I』 4 12 ,求实数a的值. 例2 已知三角形的顶点为A (2 , 4), B (1, —2), C (—2 , 3),求BC边上的高AD 所在的直线. 例3在路边安装路灯,路宽23m,灯杆长2. 5m且与灯柱成1200角.路灯采用锥形灯罩,灯罩轴线与灯杆垂直. 当灯柱高h为多少米时,灯罩轴线正好通过道路路面的中线? (精确到0. 01m) 练习: 1. 求过点A(0 , —3),且与直线2x+ y—5= 0垂直的直线的方程. 2. 已知直线I与直线I : 3x+4y —12= 0互相垂直,且与坐标轴围成的三角形面积为6,求直线I的方

(完整版)直线、平面平行与垂直的综合问题

第六节 直线、平面平行与垂直的综合问题 考点一 立体几何中的探索性问题 [典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧?CD 所在平面垂直,M 是?CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC . (2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. [解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ?平面ABCD , 所以BC ⊥平面CMD ,所以BC ⊥DM . 因为M 为?CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 因为DM ?平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点. 连接OP ,因为P 为AM 的中点, 所以MC ∥OP . 又MC ?平面PBD ,OP ?平面PBD , 所以MC ∥平面PBD . [题组训练] 1.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°. (1)求三棱锥P -ABC 的体积; (2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6 .

(完整版)第六章:平面图形的认识知识点总结

M O a 第六章:平面图形的认识 第一节:直线、射线、线段 知识点1:概念 线段:一段拉直的棉线可近似地看作线段,线段有两个端点。 线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结 ”就是指画以A 、B 为端点的线段. 射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。如手电筒、探照灯 射出的光线等。 射线的画法:画射线 一要画出射线端点 ;二要画出射线经过一点,并向一旁延伸的情况. 直线:将线段向两个方向无限延长就形成了直线,直线没有端点。如笔直的铁轨等。 直线的画法:用直尺画直线,但只能画出一部分,不能画端点。 知识点2:线段、直线、射线的表示方法: (1) 点的记法:用一个大写英文字母 (2) 线段的记法:①用两个端点的字母来表示 ②用一个小写英文字母表示 如图: 记作线段AB 或线段BA , 记作线段a , 与字母顺序无关 此时要在图中标出此小写字母 温馨提示:线段是直线(或射线)的一部分;2.线段不可向两方无限延伸,但可度量;3.延长线常化成虚线;4.延长线段AB 是指按A 到B 的方向延长,延长线段BA 是指按B 到A 的方向延长. (3) 射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面 如图: 记作射线OM,但不能记作射线MO 温馨提示:1.射线是直线的一部分;2.射线是像一方无限延伸,有一个端点,不能度量,不能比较大小;3.射线可作反向延长线,不存在射线的延长线。 (4) 直线的记法:①用直线上两个点来表示 ②用一个小写字母来表示 如图: 记作直线AB 或直线BA , 记作直线l 与字母顺序无关。 此时要在图中标出此小写字母 知识点3:线段、射线、直线的区别与联系: 联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到 直线,故射线、线段都是直线的一部分,线段是射线的一部分。 区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别 见下表: B A l

两条直线的平行与垂直教案

教学目标 1、掌握用斜率判定两条直线平行和垂直的方法,感受用代数方法研究几何图形性质的思想; 2、通过分类讨论、数形结合等数学思想的运用,培养学生思维的严谨性、辩证性. 教学重难点 重点:两条直线平行和垂直的条件 难点:把两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题 教学过程 (一)温故知新 1、回顾什么是倾斜角、斜率?斜率的公式? 2、平面上两直线位置关系有哪几种? (二)两条直线的平行 1、当两条直线都有斜率且不重合 思考: 如果L 1∥L 2,则α1 α2,k 1 k 2. 若两条直线的斜率相等: 即k 1=k 2,则α1 α2,它 们的位置关系 是 . 结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率 ;反之,如果它们的斜率相等,那么它们 , 即 前提: . 2、当不重合的两直线L 1和L 2的斜率都不存在,那么它们的倾斜角都是 ,它们的位置关系是 . 例题解析 形。四点所得的四边形是梯,,),,(),,(、求证:顺次连接例)44(),32(27-53-21 D C B A

例2、求过点A(2,-3)且与直线2x+y-5=0平行的直线的方程. (三)两条直线垂直.- 思考:当两条直线的斜率都存在 1、如果L 1⊥L 2,这时α1与α2满足什么关系?斜率满足什么关系? 2、若k 1·k 2 = -1,则α1与α2满足什么关系?两直线有什么位置关系? 结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率 ; 反之,如果它们的斜率互为负倒数,那么它们 , 即?⊥21l l (前提: ) 3、思考:如果两直线L 1,L 2中的一条斜率不存在,那么这两条直线什么时候互相垂直? .,),1,0(),2,3(,4 3)2(; ),116(4-36,103,5)1(3212211的值求实数且经过点直线的斜率已知直线求证:,),,(),(),(已知四点、例a l l a B a A l k l CD AB D C B A ⊥+-=⊥- 例4、如图,已知三角形的顶点为A(2,4),B(1,-2),C(-2,3), 求BC 边上的高AD 所在直线方程.

立体几何中平行与垂直的证明(整理好)

D 1 B 1D A B C E 1A 1C 立体几何中平行与垂直的证明 姓名 例1.已知正方体ABCD —A 1B 1C 1D 1, O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; (2)A 1C ⊥平面AB 1D 1. 【变式一】如图,在长方体1111D C B A ABCD -中,1,11>==AB AA AD ,点E 在棱AB 上移动。 求证:E D 1⊥D A 1; 【变式二A 】如图平面ABCD ⊥平面ABEF , ABCD 是正方形,ABEF 是矩形,且,22 1== AD AF G 是EF 的中点,(1)求证平面AGC ⊥平面BGC ; (2)求空间四边形AGBC 的体积。

B C A D E F M C 1 B 11B A 【变式二B 】. 如图,在直三棱柱111ABC A B C -中,8AB =,6AC =,10BC =,D 是BC 边的中点.(Ⅰ)求证: 1AB A C ⊥; (Ⅱ)求证:1A C ∥ 面1AB D ; 【变式三】如图组合体中,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周上不与A 、B 重合一个点. (Ⅰ)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ; (Ⅱ)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比. 【变式四】如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥BE ; (2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE.

空间直线和平面总结知识结构图+例题

【同步教育信息】 一. 本周教学内容: 期中复习 [知识串讲] 空间直线和平面: (一)知识结构 (二)平行与垂直关系的论证 1、线线、线面、面面平行关系的转化: 线线∥ 线面∥ 面面∥ 公理 4 (a//b,b//c a//c) 线面平行判定 αβ αγβγ //,//I I ==???? a b a b 面面平行判定1 a b a b a //,//???? ??ααα 面面平行性质 a b a b A a b ??=????? ?ααββαβ ,//,////I 线面平行性质 a a b a b ////αβαβ?=???? ? ?I 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? A b α a β a b α 2. 线线、线面、面面垂直关系的转化:

线线⊥线面⊥面面⊥三垂线定理、逆定理 PA AO PO a a OA a PO a PO a AO ⊥ ? ⊥?⊥ ⊥?⊥ α α α ,为 在内射影 则 线面垂直判定1面面垂直判定 a b a b O l a l b l , , ? = ⊥⊥ ?⊥ ? ? ? ? ? α α I a a ⊥ ? ?⊥ ? ? ? α β αβ 线面垂直定义 l a l a ⊥ ? ?⊥ ? ? ? α α 面面垂直性质,推论2 αβ αβ β α ⊥ = ?⊥ ?⊥ ? ? ? ? ? I b a a b a , αγ βγ αβ γ ⊥ ⊥ = ?⊥ ? ? ? ? ? I a a 面面垂直定义 αβαβ αβ I=-- ?⊥ ? ? ? l l ,且二面角 成直二面角 3. 平行与垂直关系的转化: 线线∥线面⊥面面∥ 线面垂直判定2面面平行判定2 面面平行性质3 a b a b // ⊥ ?⊥ ? ? ? α α a b a b ⊥ ⊥ ? ? ? ? α α // a a ⊥ ⊥ ? ? ? ? α β αβ // αβ α β // a a ⊥ ⊥ ? ? ? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: (三)空间中的角与距离 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90°

平面图形的认识知识点总结

第六章:平面图形的认识 第一节:直线、射线、线段 知识点1:概念 线段:一段拉直的棉线可近似地看作线段,线段有两个端点。 线段的画法:(1)画线段时,要画出两个端点之间的部分,不要画出向任何一方延伸的情况.(2)以后我们说“连结”就是指画以A 、B 为端点的线段.射线:将线段向一个方向无限延长,就形成了射线,射线有一个端点。如手电筒、探照灯射出的光线等。 射线的画法:画射线一要画出射线端点;二要画出射线经过一点,并向一旁延伸的情况.直线:将线段向两个方向无限延长就形成了直线,直线没有端点。如笔直的铁轨等。 直线的画法:用直尺画直线,但只能画出一部分,不能画端点。 知识点2:线段、直线、射线的表示方法: (1)点的记法:用一个大写英文字母 (2)线段的记法:①用两个端点的字母来表示②用一个小写英文字母表示 如图: 记作线段AB或线段BA,记作线段a, 与字母顺序无关此时要在图中标出此小写字母 温馨提示:线段是直线(或射线)的一部分;2.线段不可向两方无限延伸,但可度量;3.延长线常化成虚线;4.延长线段AB是指按A到B的方向延长,延长线段BA 是指按B到A的方向延长. (3)射线的记法:用端点及射线上一点来表示,注意端点的字母写在前面 如图: 记作射线OM,但不能记作射线MO 温馨提示:1.射线是直线的一部分;2.射线是像一方无限延伸,有一个端点,不能度量,不能比较大小;3.射线可作反向延长线,不存在射线的延长线。 (4)直线的记法:①用直线上两个点来表示②用一个小写字母来表示 如图: 记作直线AB或直线BA,记作直线l 与字母顺序无关。此时要在图中标出此小写字母知识点3:线段、射线、直线的区别与联系: 联系:三者都是直的,线段向一个方向延长可得到射线,线段向两个方向延长可得到直线,故射线、线段都是直线的一部分,线段是射线的一部分。 区别:直线可以向两方延伸,射线可以向一方无限延伸,线段不能延伸,三者的区别见下表:

两条直线的平行与垂直的判定教案

两条直线的平行与垂直的判定教案 教学目标 (一)知识教学 理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. (二)能力训练 通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力. (三)学科渗透 通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣. 重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用. 难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题. 注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题. 教学过程 (一)先研究特殊情况下的两条直线平行与垂直 上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直. 讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. (二)两条直线的斜率都存在时, 两直线的平行与垂直 设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系? 首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系) ∴tgα1=tgα2. 即 k1=k2. 反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2. 由于0°≤α1<180°, 0°≤α<180°, ∴α1=α2. 又∵两条直线不重合, ∴L1∥L2. 结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它

线面平行与垂直关系的转化

三垂线定理 一、温故 1.线面平行的判定及性质定理 2.线面垂直的判定及性质定理 3.求线面所成角步骤 二、探究 思考1:面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。那么平面的斜线与平面内的直线在什么情况下是垂直的呢? 例1:已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a AO ⊥。 求证:a PO ⊥; 例2.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。 求证:PC BC ⊥。 P B

例3.已知:点O 是ABC ?的垂心,PO ABC ⊥平面,垂足为O ,求证:PA BC ⊥ 例4.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。 求证:,PO BD PC BD ⊥⊥。 例5.在正方体1AC 中,求证:1111 1,AC B D AC BC ⊥⊥; 例6.已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a PO ⊥。 求证:a AO ⊥; P B 1 A C O D A C B P

例7.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。 求证:(1)AD BC ⊥; (2)点A 在底面BCD 上的射影是BCD ?的垂心; 线面平行与垂直关系的转化 1.对于命题:①b a a b b a ⊥?⊥,//; ②αα//,b a b a ?⊥⊥; ③ c a b a c b a ////,,,?=???βαβα;④ c b a c a b ////,,,?=?=?=?ααγγββα,其中正确的命题个数是 2.若直线a ,b 没有公共点,则下列命题:①存在与a ,b 平行的直线;②存在与a ,b 垂直的平面;③存在经过a 而与b 垂直的平面;④存在经过a 而与b 平行的平面. 其中正确的命题序号是 3.已知a ,b 和平面α,下列推理:①α⊥a 且b a a b ⊥??;②αα⊥?⊥b a b a 且//;③b a a //b //??αα且;④ααα??⊥⊥a a b a 或且//b ,其中正确的命题序号是 4.下列说法:①如果一条直线和平面内的一条直线垂直,该直线与这个平面必相交;②如果一条直线和平面的一组平行线垂直,该直线必在这个平面内;④如果一条直线和一个平面垂直,该直线垂直于平面内的任何直线,其中正确的个数是 5.空间四边形ABCD 的四条边相等,则它的对角线AD 、BC 的关系是 6.对于命题:① αα⊥????⊥a b b a //;②αα////a b b a ?????;③αα⊥?? ?? ⊥a b b a //;④ αα//b b a a ?? ?? ⊥⊥其中正确的命题是 7.在正方体ABCD-A ?B ?C ?D ?中,边对角线BD ?的一个平面交AA ?于E ,交CC ?于F , D A B C

相关主题