搜档网
当前位置:搜档网 › 空间直角坐标系试题含答案

空间直角坐标系试题含答案

空间直角坐标系试题含答案
空间直角坐标系试题含答案

空间直角坐标系试题含答

The Standardization Office was revised on the afternoon of December 13, 2020

空间直角坐标系

一、选择题

1.在空间直角坐标系中, 点P(1,2,3)关于x 轴对称的点的坐标为( )

A .(-1,2,3)

B .(1,-2,-3)

C .(-1, -2, 3)

D .(-1 ,2, -3)

2.在空间直角坐标系中, 点P(3,4,5)关于yOz 平面对称的点的坐标为( )

A .(-3,4,5)

B .(-3,- 4,5)

C .(3,-4,-5)

D .(-3,4,-5)

3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为( )

A .6

B .6

C .3

D .2

4.点P( 1,0, -2)关于原点的对称点P /的坐标为( )

A .(-1, 0, 2)

B .(-1,0, 2)

C .(1 , 0 ,2)

D .(-2,0,1)

5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是( )

A .( 4, 2, 2)

B .(2, -1, 2)

C .(2, 1 , 1)

D . 4, -1, 2)

6.若向量a 在y 轴上的坐标为0, 其他坐标不为0, 那么与向量a 平行的坐标平面是( )

A . xOy 平面

B . xOz 平面

C .yOz 平面

D .以上都有可能

7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是( )

A .关于x 轴对称

B .关于xOy 平面对称

C .关于坐标原点对称

D .以上都不对

8.已知点A 的坐标是(1-t , 1-t , t), 点B 的坐标是(2 , t, t), 则A 与B 两点间距离的最小值为( )

A .55

B .555

C .553

D . 5

11 9.点B 是点A (1,2,3)在坐标平面yOz 内的射影,则OB 等于( )

A .14

B .13

C .32

D .11

10.已知ABCD 为平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则点D 的坐标为 ( )

A .(2

7,4,-1) B .(2,3,1) C .(-3,1,5) D .(5,13,-3)

11.点),,(c b a P 到坐标平面xOy 的距离是( )

A .22b a +

B .c

C .c

D .b a +

12.已知点)11,2,1(-A ,)3,2,4(B , )15,,(y x C 三点共线,那么y x ,的值分别是( )

A .21,4

B .1,8

C .21-,-4

D .-1,-8

13.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是( )

A .

26 B .3 C .23 D .3

6 二、填空题

14.在空间直角坐标系中, 点P 的坐标为(1, 3,2),过点P 作yOz 平面的垂线PQ, 则垂足Q 的坐标是________________.

15.已知A(x, 5-x, 2x-1)、B (1,x+2,2-x ),当|AB|取最小值时x 的值为_______________.

16.已知空间三点的坐标为A(1,5,-2)、B (2,4,1)、C (p ,3,q+2),若A 、B 、C 三点共线,则p =_________,q=__________.

17.已知点A(-2, 3, 4), 在y 轴上求一点B , 使|AB|=7 , 则点B 的坐标为________________. 三、解答题

18.求下列两点间的距离:

(1)A(1 , 1 , 0) , B(1 , 1 , 1);

(2)C(-3 ,1 , 5) , D(0 , -2 , 3).

19.已知A(1 , -2 , 11) , B(4 , 2 , 3) ,C(6 , -1 , 4) , 求证: ?ABC 是直角三角形.

20.求到下列两定点的距离相等的点的坐标满足的条件:

(1)A(1 , 0 ,1) , B(3 , -2 , 1) ;

(2)A(-3 , 2 , 2) , B(1 , 0 , -2).

21.在四棱锥P -ABCD 中,底面ABCD 为正方形,且边长为2a ,棱PD ⊥底面

ABCD ,PD =2b ,取各侧棱的中点E ,F ,G ,H ,写出点E ,F ,G ,H 的坐标.

答案:

; ; ; ; ; ; ; ; ; ; ; ; ; 14. (0, 3,2); 15. 7

8; 16. 3 , 2; 17. (0, )0,293±; 18. 解: (1)|AB|=;1)10()11()11(222=-+-+- (2)|CD|=222)35()21()03(-+++--=.22

19. 证明: ,||||||,14||,75||,89||222AB BC AC BC AC AB =+∴===

ABC ?∴为直角三角形.

20. 解: (1)设满足条件的点的坐标为(x ,y , z) , 则

222222)1()2()3()1()0()1(-+++-=-+-+-z y x z y x ,

化简得4x-4y-3=0即为所求.

(2)设满足条件的点的坐标为(x ,y , z) , 则

222222)2()0()1()2()2()3(++-+-=-+-++z y x z y x ,

化简得2x-y-2z+3=0即为所求.

21. 解: 由图形知,DA⊥DC,DC⊥DP,DP⊥DA,故以D为原点,建立如图空间坐标系D-xyz.

因为E,F,G,H分别为侧棱中点,由立体几何知识可知,平面EFGH与底面ABCD平行,

从而这4个点的竖坐标都为P的竖坐标的一半,也就是b,

由H为DP中点,得H(0,0,b)

E在底面面上的投影为AD中点,所以E的横坐标和纵坐标分别为a和0,所以E(a,0,b),

同理G(0,a,b);

F在坐标平面xOz和yOz上的投影分别为点E和G,故F与E横坐标相同都是a,

与G的纵坐标也同为a,又F竖坐标为b,故F(a,a,b).

空间直角坐标系整理

2.3.1 空间直角坐标系 一、教材知识解析 1、空间直角坐标系的定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴和z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xOy 平面、yOz 平面和xOz 平面。 2、右手直角坐标系及其画法: (1)定义:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方 向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系。教材上所指的都是右手直角坐标系。 (2)画法: 将空间直角坐标系画在纸上时,x 轴与y 轴、x 轴与z 轴均成135°,而z 轴垂直于y 轴,y 轴和z 轴的长度单位相同,x 轴上的单位长度为y 轴(或z 轴)的长度的一半,这样,三条轴上的单位长度在直观上大体相等。 3、空间中点的坐标表示:点在对应数轴上的坐标依次为x 、y 、z ,我们把有序实数组(x , y ,z )叫做点A 的坐标,记为A (x ,y ,z )。 二、题型解析: 题型1、在空间直角坐标系下作点。 例1、在空间直角坐标系中,作出M(4,2,5). 解:法一:依据平移的方法,为了作出M(4,2,5), 可以按如下步骤进行:(1)在x 轴上取横坐 标为4的点1M ;(2)将1M 在xoy 平面内沿与y 轴平行的方向向右移动2个单位,得到 点2M ;(3)将2M 沿与z 轴平行的方向向上 移动5个单位,就可以得到点M (如图)。 法二:以O 为一个顶点,构造三条棱长分别为4,2,5的长方体,使此长方体在点O 处的三 条棱分别在x 轴的正半轴、y 轴的正半轴、z 轴的正半轴上,则长方体与顶点O 相对的顶点即为所求的点M 。 法三:在x 轴上找到横坐标为4的点,过此点作与x 垂直的平面α;在y 轴上找到纵坐标为2 的点,过此点作与y 垂直的平面β;在z 轴上找到竖坐标为5的点,过此点作与z 垂直的平面γ;则平面αβγ,,交于一点,此交点即为所求的点M 的位置。 【技巧总结】:(1)若要作出点M 000(,,)x y z 的坐标有两个为0,则此点是坐标轴上的点,可 直接在坐标轴上作出此点; (2)若要作出点M 000(,,)x y z 的坐标有且只有一个为0,则此点不在坐标轴上,但在某一坐 标平面内,可以按照类似于平面直角坐标系中作点的方法作出此点。 (3)若要作出点M 000(,,)x y z 的坐标都不为0,则需要按照一定的步骤作出该点,一般有三 种方法:①在x 轴上取横坐标为0x 的点1M ;再将1M 在xoy 平面内沿与y 轴平行的方向向左(00y <)或向右(00y >)平移0||y 个单位,得到点2M ;再将2M 沿与z 轴平

最新空间直角坐标系专题学案(含答案解析)

第九讲 空间直角坐标系 时间: 年 月 日 刘老师 学生签名: 一、 兴趣导入 二、 学前测试 要点考向1:利用空间向量证明空间位置关系 考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。 考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例1:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =, 90BFC ∠=?,BF FC =,H 为BC 的中点。 (1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。 【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 E F B C D H G X Y Z

,,//,,,,,,,. ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥Q Q I I 四边形为正方形,又且,平面又为中点,且平面 H HB GH HF u u u r u u u r u u u r 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系, 1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则 (1) (0,0,1), (0,0,1),////HF HF GE HF HF ∴==∴??∴u u r u u u r u u r u u u r Q 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB (2) (2,2,0),(0,0,1),0,. AC AC AC AC AC =-=∴=∴⊥⊥∴⊥u u u r u u r u u u r u u r Q g I GE GE GE 又BD,且GE BD=G ,平面EBD. (3) 1111111(1,,),(1,1,1),(2,2,0). 010,10,220011,0y z BE BD BE y z y z y BD ==--=--?=--+=??=-=??--==? ??∴=-u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 1111设平面BDE 的法向量为n n 由即,得,n n (,) 2222222(1,,),(0,2,0),(1,1,1). 00,01,10010,-1y z CD CE CD y y z y z CE ==-=-?==??==-??-+==? ??∴=u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 2222设平面CDE 的法向量为n n 由即,得,n n (,) 121212121 cos ,,2||||,60,n n n n n n n n ∴<>===∴<>=o o u r u u r u r u u r g u r u u r u r u u r 即二面角B-DE-C 为60。 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问

知识讲解空间直角坐标系基础

空间直角坐标系 【学习目标】 通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式. 【要点梳理】 要点一、空间直角坐标系 1.空间直角坐标系 从空间某一定点O 引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系Oxyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别是xOy 平面、yOz 平面、zOx 平面. 2.右手直角坐标系 在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,如果中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系. 3.空间点的坐标 空间一点A 的坐标可以用有序数组(x ,y ,z)来表示,有序数组(x ,y ,z)叫做点A 的坐标,记作A(x ,y ,z),其中x 叫做点A 的横坐标,y 叫做点A 的纵坐标,z 叫做点A 的竖坐标. 要点二、空间直角坐标系中点的坐标 1.空间直角坐标系中点的坐标的求法 通过该点,作两条轴所确定平面的平行平面,此平面交另一轴于一点,交点在这条轴上的坐标就是已知点相应的一个坐标. 特殊点的坐标:原点()0,0,0;,,x y z 轴上的点的坐标分别为()()(),0,0,0,,0,0,0,x y z ;坐标平面,,xOy yOz xOz 上的点的坐标分别为()()(),,0,0,,,,0,x y y z x z .

2.空间直角坐标系中对称点的坐标 在空间直角坐标系中,点(),,P x y z ,则有 点P 关于原点的对称点是()1,,P x y z ---; 点P 关于横轴(x 轴)的对称点是()2,,P x y z --; 点P 关于纵轴(y 轴)的对称点是()3,,P x y z --; 点P 关于竖轴(z 轴)的对称点是()4,,P x y z --; 点P 关于坐标平面xOy 的对称点是()5,,P x y z -; 点P 关于坐标平面yOz 的对称点是()6,,P x y z -; 点P 关于坐标平面xOz 的对称点是()7,,P x y z -. 要点三、空间两点间距离公式 1.空间两点间距离公式 空间中有两点()()111222,,,,,A x y z B x y z ,则此两点间的距离 ||d AB == 特别地,点(),,A x y z 与原点间的距离公式为OA = 2.空间线段中点坐标 空间中有两点()()111222,,,,,A x y z B x y z ,则线段AB 的中点C 的坐标为121212,,222x x y y z z +++?? ???. 【典型例题】 类型一:空间坐标系 例1.在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、D 1B 1的中点,棱长为1,建立空间直角坐标系,求点E 、F 的坐标。 【答案】11,0,2E ? ? ???,11,,122F ?? ??? 【解析】 法一:如图,以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空

空间直角坐标系

4.3 空间直角坐标系 重点难点 教学重点:在空间直角坐标系中确定点的坐标. 教学难点:通过建立适当的直角坐标系确定空间点的坐标,以及相关应用. 新知探究: ①在初中,我们学过数轴是规定了原点、正方向和单位长度的直线.决定数轴的因素有原点、正方向和单位长度.这是数轴的三要素.数轴上的点可用与这个点对应的实数x来表示. ②在初中,我们学过平面直角坐标系,平面直角坐标系是以一点为原点O,过原点O分别作两条互相垂直的数轴Ox和Oy,xOy称平面直角坐标系,平面直角坐标系具有以下特征:两条数轴:①互相垂直;②原点重合;③通常取向右、向上为正方向;④单位长度一般取相同的.平面直角坐标系上的点用它对应的横、纵坐标表示,括号里横坐标写在纵坐标的前面,它们是一对有序实数(x,y). ③在空间,我们也可以类比平面直角坐标系建立一个坐标系,即空间直角坐标系,空间中的任意一点也可用对应的有序实数组表示出来. ④观察图2,OABC—D′A′B′C′是单位正方体,我们类比平面直角坐标系的建立来建立一个坐标系即空间直角坐标系,以O为原点,分别以射线OA,OC,OD′的方向为正方向,以线段OA,OC,OD′的长为单位长度,建立三条数轴Ox,Oy,Oz称为x轴、y轴和z轴,这时我们说建立了一个空间直角坐标系O—xyz,其中O叫坐标原点,x轴、y轴和z轴叫坐标轴.如果我们把通过每两个坐标轴的平面叫做坐标平面,我们又得到三个坐标平面xOy平面,yOz平面,zOx 平面. 由此我们知道,确定空间直角坐标系必须有三个要素,即原点、坐标轴方向、单位长. 图1 图1表示的空间直角坐标系也可以用右手来确定.用右手握住z轴,当右手的四个手指从x 轴正向以90°的角度转向y轴的正向时,大拇指的指向就是z轴的正向.我们称这种坐标系为右手直角坐标系.如无特别说明,我们课本上建立的坐标系都是右手直角坐标系.

空间直角坐标系练习题含详细答案

空间直角坐标系(11月21日) 一、选择题 1、有下列叙述: ①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。 其中正确的个数是(C ) A、1 B、2 C、3 D、4 2、已知点A(-3,1,4),则点A关于原点的对称点的坐标为(C ) A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,4) D、(4,-1,3) 3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为(A ) A、(-3,-1,4) B、(-3,-1,-4) C、(3,1,4) D、(3,-1,-4) 4、点(1,1,1)关于z轴的对称点为(A ) A、(-1,-1,1) B、(1,-1,-1) C、(-1,1,-1) D、(-1,-1,-1) 5、点(2,3,4)关于xoz平面的对称点为(C ) A、(2,3,-4) B、(-2,3,4) C、(2,-3,4) D、(-2,-3,4) 6、点P(2,0,3)在空间直角坐标系中的位置是在(C) A.y轴上B.xOy平面上C.xOz平面上D.x轴上 7、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为(C ) A、(1 2 ,1,1)B、(1, 1 2 ,1)C、(1,1, 1 2 )D、( 1 2 , 1 2 ,1) 8、点P( 2 2, 3 3,- 6 6)到原点的距离是(B) A.30 6B.1 C. 33 6 D. 35 6 9、点M(4,-3,5)到x轴的距离为(B) A.4 B.34 C.5 2 D.41 10、在空间直角坐标系中,点P(1,2,3),过点P作平面xOy的垂线PQ,垂足为Q,则Q的坐标为(D) A.(0,2,0) B.(0,2,3) C.(1,0,3) D.(1,2,0) 11、点M(-2,1,2)在x轴上的射影的坐标为(B) A.(-2,0,2) B.(-2,0,0) C.(0,1,2) D.(-2,1,0) 12、在长方体ABCD-A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为(B) A.9 B.29 C.5 D.2 6 二、填空题 1、在空间直角坐标系中, 点P的坐标为(1, 3 2,),过点P作yOz平面的垂线PQ, 则垂足Q 的坐标是________________. 2、已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________. 3、已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________. 4、已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.

(完整版)高中数学必修二空间直角坐标系

2.3空间直角坐标系 考纲要求:①了解空间直角坐标系,会用空间直角坐标系表示点的位置. ②会推导空间两点间的距离公式. 2.3.1-2空间直角坐标系、空间两点间的距离 重难点:了解空间直角坐标系,会用空间直角坐标系刻画点的位置;会推导空间两点间的距离公式. 经典例题:在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),试问 (1)在y轴上是否存在点M,满足? (2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标. 当堂练习: 1.在空间直角坐标系中, 点P(1,2,3)关于x轴对称的点的坐标为() A.(-1,2,3) B.(1,-2,-3) C.(-1, -2, 3) D.(-1 ,2, -3) 2.在空间直角坐标系中, 点P(3,4,5)关于yOz平面对称的点的坐标为() A.(-3,4,5) B.(-3,- 4,5) C.(3,-4,-5) D.(-3,4,-5) 3.在空间直角坐标系中, 点A(1, 0, 1)与点B(2, 1, -1)之间的距离为() A.B.6 C.D.2 4.点P( 1,0, -2)关于原点的对称点P/的坐标为() A.(-1, 0, 2) B.(-1,0, 2) C.(1 , 0 ,2) D.(-2,0,1) 5.点P( 1, 4, -3)与点Q(3 , -2 , 5)的中点坐标是() A.( 4, 2, 2) B.(2, -1, 2) C.(2, 1 , 1) D.4, -1, 2) 6.若向量在y轴上的坐标为0, 其他坐标不为0, 那么与向量平行的坐标平面是() A.xOy平面B.xOz平面C.yOz平面D.以上都有可能7.在空间直角坐标系中, 点P(2,3,4)与Q (2, 3,- 4)两点的位置关系是() A.关于x轴对称B.关于xOy平面对称C.关于坐标原点对称D.以上都不对 8.已知点A的坐标是(1-t , 1-t , t), 点B的坐标是(2 , t, t), 则A与B两点间距离的最小值为() A.B.C.D. 9.点B是点A(1,2,3)在坐标平面内的射影,则OB等于()A.B.C.D.

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

空间直角坐标系检测题

空间直角坐标系检测题 姓名 得分 一.选择题 1.在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( ) A .点 B .直线 C .圆 D .平面 2.已知点(1,4,2)M -,那么点M 关于y 轴对称点的坐标是 ( ) A .(1,4,2)-- B .(1,4,2)- C . (1,4,2)- D .(1,4,2) 3.点(3,4,5)P 在yoz 平面上的投影点1P 的坐标是 ( ) A .(3,0,0) B .(0,4,5) C .(3,0,5) D . (3,4,0) 4.已知点(1,2,11),(4,2,3),(6,1,4)A B C --,则ABC ?的形状是 ( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 5.已知(4,3,1)M -,记M 到x 轴的距离为a ,M 到y 轴的距离为b ,M 到z 轴的距离为c ,则( ) A .a b c >> B .c b a >> C .c a b >> D .b c a >> 6. 在直角坐标系中,已知两点(4,2),(1,3)M N -,沿x 轴把直角坐标平面折成直二面角后,,M N 两点的距离为 ( ) A B C D 二.填空题 7.点B 是点(3,1,4)A --关于y 轴的对称点,则线段AB 长为 。 8.已知三角形的三个顶点(2,1,4),(3,2,6),(5,0,2)A B C ---,则过点A 的中线长为 。 9.已知正四棱柱1111ABCD A B C D -的顶点坐标分别为(0,0,0),(2,0,0),(0,2,0)A B D ,1(0,0,5)A ,则1C 的坐标为 。 10.已知球面2 2 2 (1)(2)(3)9x y z -+++-=,与点(3,2,5)A -,则球面上的点与点A 距离的最大值与最小值分别是 。 三.解答题

建立空间直角坐标系的几个常见思路

建立空间直角坐标系的几种常见思路 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--,,,(010)CD =-, ,. 设1BC 与CD 所成的角为θ, 则11317cos BC CD BC CD θ==. 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1.已知2AB =,BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB =2,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0,0,2)、B 1(0,2,0)、3102c ??- ? ??? ,,、133022C ?? ? ?? ?,,. 设302E a ?? ? ??? ,,且1322a -<<, 由EA ⊥EB 1,得10EA EB =, 即3322022a a ????---- ? ? ? ???? ,,,,

建立空间直角坐标系-解立体几何题

建立空间直角坐标系,解立体几何高考题 立体几何重点、热点: 求线段的长度、求点到平面的距离、求直线与平面所成的夹角、求两异面直线的夹角、求二面角、证明平行关系和垂直关系等. 常用公式: 1 、求线段的长度: 222z y x AB ++==()()()2 12212212z z y y x x -+-+-= 2、求P 点到平面α的距离: PN = ,(N 为垂足,M 为斜足,为平面α的法向量) 3、求直线l 与平面α所成的角:|||||sin |n PM ?= θ,(l PM ?,α∈M ,为α的法向量) 4、求两异面直线AB 与CD 的夹角:cos = θ 5、求二面角的平面角θ:|||||cos |21n n ?= θ,( 1n ,2n 为二面角的两个面的法向量) 6、求二面角的平面角θ:S S 射影 = θ cos ,(射影面积法) 7、求法向量:①找;②求:设, 为平面α内的任意两个向量,)1,,(y x =为α的法向量, 则由方程组?????=?=?0 n b n a ,可求得法向量.

高中新教材9(B)引入了空间向量坐标运算这一内容,使得空间立体几何的平行﹑垂直﹑角﹑距离等问题避免了传统方法中进行大量繁琐的定性分析,只需建立空间直角坐标系进行定量分析,使问题得到了大大的简化。而用向量坐标运算的关键是建立一个适当的空间直角坐标系。 一﹑直接建系。 当图形中有互相垂直且相交于一点的三条直线时,可以利用这三条直线直接建系。 例1. (2002年全国高考题)如图,正方形ABCD ﹑ABEF 的边长都是1,而且平面ABCD ﹑ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a (20<

《空间直角坐标系》典型例题解析

《空间直角坐标系》典型例题解析 例1:在空间直角坐标系中,作出点M(6, -2, 4)。 点拨点M 的位置可按如下步骤作出:先在x 轴上作出横坐标是6的点1M ,再将1M 沿与y 轴平行的方向向左移动2个单位得到点2M ,然 后将2M 沿与z 轴平行的方向向上移动4个单位 即得点M 。 解答M 点的位置如图所示。 总结对给出空间直角坐标系中的坐标作出这个点、给出具体的点写出它的空间直角坐标系中的坐标这两类题目,要引起足够的重视,它不仅可以加深对空间直角坐标系的认识,而且有利于进一步培养空间想象能力。 变式题演练 在空间直角坐标系中,作出下列各点:A(-2,3,3);B(3,-4,2);C(4,0,-3)。 答案:略 例2:已知正四棱锥P-ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标。 点拨先由条件求出正四棱锥的高,再根据正 四棱锥的对称性,建立适当的空间直角坐标系。 解答 正四棱锥P-ABCD 的底面边长为4,侧 棱长为10, ∴正四棱锥的高为232。 以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为x 轴、y 轴,建立如图所示 的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,232)。 总结在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标。 1M 2M M (6,-2,4) O x y z 6 2 4 O A B C D P x y z

变式题演练 在长方体1111D C B A ABCD -中,AB=12,AD=8,1AA =5,试建立适当的空间直角坐标系,写出各顶点的坐标。 答案:以A 为原点,射线AB 、AD 、1AA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A(0,0,0)、B(12,0,0)、C(12,8,0)、D(0,8,0)、1A (0,0, 5)、1B (12,0,5)、1C (12,8,5)、1D (0,8,5)。 例3:在空间直角坐标系中,求出经过A(2,3,1)且平行于坐标平面yOz 的平面α的方程。 点拨求与坐标平面yOz 平行的平面的方程,即寻找此平面内任一点所要满足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解。 解答 坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行, ∴平面α也与x 轴垂直, ∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等。 平面α过点A(2,3,1),∴平面α内的所有点的横坐标都是2, ∴平面α的方程为x=2。 总结对于空间直角坐标系中的问题,可先回忆与平面直角坐标系中类似问题的求解方法,再用类比方法求解空间直角坐标系中的问题。本题类似于平面直角坐标系中,求过某一定点且与x 轴(或y 轴)平行的直线的方程。 变式题演练 在空间直角坐标系中,求出经过B(2,3,0)且垂直于坐标平面xOy 的直线方程。 答案:所求直线的方程为x=2,y=3.

空间直角坐标系练习题含详细答案之欧阳光明创编

空间直角坐标系(11月21日) 一、 欧阳光明(2021.03.07) 二、选择题 1、有下列叙述: ①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b, c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0, b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0, c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0, c)。 其中正确的个数是( C ) A、1 B、2 C、3 D、4 2、已知点A(-3,1,4),则点A关于原点的对称点的坐标为 ( C ) A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,4) D、 (4,-1,3) 3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为 ( A )A、(-3,-1,4) B、(-3,-1,-4) C、(3,1,4) D、(3,-1,-4) 4、点(1,1,1)关于z轴的对称点为( A ) A、(-1,-1,1) B、(1,-1,-1) C、(-1,1,-1) D、(-1,-1,-1) 5、点(2,3,4)关于xoz平面的对称点为( C ) A、(2,3,-4) B、(-2,3,4) C、(2,-3,4) D、(-2,-3,4) 6、点P(2,0,3)在空间直角坐标系中的位置是在(C) A.y轴上 B.xOy平面上C.xOz平面上 D.x轴上 7、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( C ) A、(1 2 ,1,1) B、(1,1 2 ,1) C、(1,1,1 2 ) D、 (1 2 ,1 2 ,1) 8、点P( 2 2, 3 3,- 6 6)到原点的距离是(B) A. 30 6B.1C. 33 6 D. 35 6 9、点M(4,-3,5)到x轴的距离为(B) A.4 B.34C.52D.41

空间直角坐标系专题学案含答案解析

第九讲空间直角坐标系 时间:年月日刘老师学生签名: 一、兴趣导入 二、学前测试 要点考向1:利用空间向量证明空间位置关系 考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。 考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例1:如图,在多面体ABCDEF中,四边形ABCD是正方形,EF∥AB,EF FB ⊥,2 AB EF =,90 BFC ∠=?,BF FC =,H为BC的中点。 (1)求证:FH∥平面EDB; (2)求证:AC⊥平面EDB; (3)求二面角B DE C --的大小。 【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 E F B C D H G X Y Z

,,//,,,,,,,. ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥Q Q I I 四边形为正方形,又且,平面又为中点,且平面 H HB GH HF u u u r u u u r u u u r 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系, 1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则 (1) (0,0,1), (0,0,1),////HF HF GE HF HF ∴==∴??∴u u r u u u r u u r u u u r Q 设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又GE 平面EDB,平面EDB,平面EDB (2) (2,2,0),(0,0,1),0,. AC AC AC AC AC =-=∴=∴⊥⊥∴⊥u u u r u u r u u u r u u r Q g I GE GE GE 又BD,且GE BD=G ,平面EBD. (3) 1111111(1,,),(1,1,1),(2,2,0). 010,10,220011,0y z BE BD BE y z y z y BD ==--=--?=--+=??=-=??--==? ??∴=-u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 1111设平面BDE 的法向量为n n 由即,得,n n (,) 2222222(1,,),(0,2,0),(1,1,1). 00,01,10010,-1y z CD CE CD y y z y z CE ==-=-?==??==-??-+==? ??∴=u u r u u u r u u u r Q u u u r u u r g u u u r u u r g u u r 2222设平面CDE 的法向量为n n 由即,得,n n (,) 121212121 cos ,,2||||,60,n n n n n n n n ∴<>===∴<>=o o u r u u r u r u u r g u r u u r u r u u r 即二面角B-DE-C 为60。 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 4、以上立体几何中的常见问题,也可以采用向量法建立空间直角坐标系,转化为向量问

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

陕西省人教A版高中数学必修二4.3空间直角坐标系同步练习

陕西省人教A版高中数学必修二 4.3空间直角坐标系同步练习 姓名:________ 班级:________ 成绩:________ 一、单选题 (共6题;共11分) 1. (2分) (2018高二上·太原期中) 在空间直角坐标系中,点关于平面对称的点的坐标为() A . B . C . D . 2. (2分)在空间直角坐标系中,已知点P(x,y,z),给出下列4条叙述: ①点P关于x轴的对称点的坐标是(x,-y,z) ②点P关于yOz平面的对称点的坐标是(x,-y,-z) ③点P关于y轴的对称点的坐标是(x,-y,z) ④点P关于原点的对称点的坐标是(-x,-y,-z) 其中正确的个数是 A . 3 B . 2 C . 1 D . 0 3. (2分)设一地球仪的球心为空间直角坐标系的原点O,球面上有两个点A,B的坐标分别为A(1,2,2),B(2,-2,1),则|AB|=() A . 18

B . 12 C . D . 4. (2分)点到点的距离相等,则x的值为() A . B . 1 C . D . 2 5. (2分)已知△ABC的顶点坐标分别为A(1,-2,11)、B(4,2,3)、C(6,-1,4),则△ABC是() A . 直角三角形 B . 钝角三角形 C . 锐角三角形 D . 等腰三角形 6. (1分)在空间直角坐标系O﹣xyz中,设点M是点N(2,﹣3,5)关于坐标平面xoz的对称点,则线段MN的长度等于________. 二、填空题 (共3题;共3分) 7. (1分) (2018高二上·南昌期中) 如图,棱长为2的正方体OABC-D'A'B'C'中,点M在B'C'上,且M为B'C'的中点,若以O为坐标原点,建立空间直角坐标系,则点M的坐标为________ .

建立空间直角坐标系的几种方法

建立空间直角坐标系的几种方法 坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题往往需要建立空间直角坐标系.依据空间几何图形的结构特征,充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系,是运用坐标法解题的关键.下面举例说明几种常见的空间直角坐标系的构建策略. 一、利用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠A 为直角,AB ∥CD ,AB =4,AD =2,DC =1,求异面直线BC 1与DC 所成角的余弦值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =-- , ,,(010)CD =- ,,. 设1BC 与CD 所成的角为θ, 则11cos 17BC CD BC CD θ== . 二、利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1 .已知AB =BB 1=2,BC =1,∠BCC 1=3 π.求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB ,∠BCC 1=3 π, ∴在三棱柱ABC -A 1B 1C 1中,有B (0,0,0)、A (0, )、B 1(0,2,0) 、102c ?-???? ,、1302C ???? ?,,. 设0E a ????? ,且1322a -<<, 由EA ⊥EB 1,得10EA EB = ,

空间直角坐标系专题学案(含答案解析)

1 第九讲 空间直角坐标系 时间: 年 月 日 刘老师 学生签名: 一、 兴趣导入 二、 学前测试 要点考向1:利用空间向量证明空间位置关系 考情聚焦:1.平行与垂直是空间关系中最重要的位置关系,也是每年的必考内容,利用空间向量判断空间位置关系更是近几年高考题的新亮点。 2.题型灵活多样,难度为中档题,且常考常新。 考向链接:1.空间中线面的平行与垂直是立体几何中经常考查的一个重要内容,一方面考查学生的空间想象能力和逻辑推理能力;另一个方面考查“向量法”的应用。 2.空间中线面的平行与垂直的证明有两个思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量来论证。 例1:如图,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF FB ⊥,2AB EF =, 90BFC ∠=?,BF FC =,H 为BC 的中点。 (1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求二面角B DE C --的大小。 【命题立意】本题主要考查了空间几何体的线面平行、线面垂直的证明、二面角的求解的问题,考查了考生的空间想象能力、推理论证能力和运算求解能力。 【思路点拨】可以采用综合法证明,亦可采用向量法证明。 【规范解答】 A E F B C D H G X Y Z

2 ,,//,,,,,,, . ABCD AB BC EF FB EF AB AB FB BC FB B AB FBC AB FH BF FC H BC FH BC AB BC B FH ABC ∴⊥⊥∴⊥=∴⊥∴⊥=∴⊥=∴⊥四边形为正方形,又且, 平面又为中点,且平面 H HB GH HF 如图,以为坐标原点,分别以、、的方向为x 轴、y 轴、z 轴的正方向建立坐标系, 1,(1,2,0),(1,0,0),(1,0,0),(1,2,0),(0,1,1),(0,0,1).BH A B C D E F =-----令则 (1) (0,0,1),(0,0,1),////HF HF GE HF HF ∴==∴??∴设AC 与BD 的交点为G ,连接GE 、GH,则G (0,-1,0),GE 又 GE 平面EDB,平面EDB,平面EDB (2) (2,2,0),(0,0,1),0,.AC AC AC AC AC =-=∴=∴⊥⊥∴⊥GE GE GE 又BD,且GE BD=G ,平面EBD. (3) 1111111(1,,),(1,1,1),(2,2,0). 010,10, 220011,0y z BE BD BE y z y z y BD ==--=--?=--+=??=-=??--==???∴=-1111设平面BDE 的法向量为n n 由即,得,n n (,) 2222222(1,,),(0,2,0),(1,1,1). 00,01, 10010,-1y z CD CE CD y y z y z CE ==-=-?==? ?==-??-+==???∴=2222设平面CDE 的法向量为n n 由即,得,n n (,) 12 12121211 cos ,,2|||| 22,60,n n n n n n n n ∴<>= = =∴<>=即二面角B-DE-C 为60。 【方法技巧】1、证明线面平行通常转化为证明直线与平面内的一条直线平行; 2、证明线面垂直通常转化为证明直线与平面内的两条相交直线垂直; 3、确定二面角的大小,可以先构造二面角的平面角,然后转化到一个合适的三角形中进行求解。 A E F B C D H G X Y Z

相关主题