搜档网
当前位置:搜档网 › 人教版高中数学选修2-2学案:2.2.3数学归纳法

人教版高中数学选修2-2学案:2.2.3数学归纳法

人教版高中数学选修2-2学案:2.2.3数学归纳法
人教版高中数学选修2-2学案:2.2.3数学归纳法

2.2.3数学归纳法(一)

【学习目标】

1.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤;

2.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写;

3.理解数学归纳法中递推思想.

【新知自学】 知识回顾:

1.证明方法:

(1)直接证明???_________

_________; (2)间接证明:________. 新知梳理:

1.问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么?

2.数学归纳法两大步:

(1)归纳奠基:证明当n 取第一个值n 0时命题成立;

(2)归纳递推:假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.

3.数学归纳法是一种完全归纳的证明方法,主要用于研究与正整数有关的数学问题.在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立. 对点练习:

1.若f (n )=1+12+13+…+16n -1

(n ∈N +),则f (1)为() A .1

B .15

C .1+12+13+14+15

D .非以上答案

2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则() A .f (n )中共有n 项,当n =2时,f (2)=12+13

B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14

C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13

D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14

3.用数学归纳法证明:当为整数时,

2135(21)n n ++++-=.

【合作探究】 典例精析:

2222*(1)(21)123,6n n n n n N ++++++=∈

变式练习:

2*1427310(31)(1),n n n n n N ?+?+?+

++=+∈

例 2.用数学归纳法证明:首项是,公差是的等差数列的通项公式是1(1)n a a n d =+-,前项和的公式是1(1)2

n n n S na d -=+.

变式练习:

用数学归纳法证明:首项是,公比是的等差数列的通项公式是11n n a a q -=,前项和的公式是

1(1)1n n a q S q

-=-.(1q ≠)

规律总结:

(1)数学归纳法证题时,第一个值n 0不一定为1,如证明多边形内角和定理(n -2)π时,初始值n 0=3.

(2)数学归纳法证题的关键是第二步,证题时应注意:①必须利用归纳假设作基础;②证明中可利用综合法、分析法、反证法等方法;③解题时要搞清从n =k 到n =k +1增加了哪些项或减少了哪些项.

2.其中关键:从假设n =k 成立,再证得n =k +1成立时要用上假设.

【课堂小结】

【当堂达标】

1.用数学归纳法证明:

2

2111(1)1n n a a a a a a

++-++++=≠-,在验证1n =时,左端计算所得项为 A.1 B.21a a ++

C.1a +

D.231a a a +++

2.设*111()()122f n n N n n n

=+++∈++,那么)()1(n f n f -+等于() A.121+n B.221

+n

C.221121+++n n

D.221121+-+n n

3. 已知数列}{n a 的前n 项和)2(2≥=n a n S n n ,而11=a ,通过计算432,,a a a ,猜想=n a .

4. 用数学归纳法证明:

1111133557(21)(21)21

n n n n ++++=???-++

【课时作业】

1.用数学归纳法证明

))(12(312)()3)(2)(1(*N n n n n n n n n ∈-???=++++ 时,从n=k 到n=k+1,左端需要增加的代数式为

A.2k+1

B. 2(2k+1)

C.1

12++k k D.132++k k

2.一个关于自然数n 的命题,如果验证当n =1时命题成立,并在假设当n =k (k ≥1且k ∈N *)时命题成立的基础上,证明了当n =k +2时命题成立,那么综合上述,对于()

A .一切正整数命题成立

B .一切正奇数命题成立

C .一切正偶数命题成立

D .以上都不对

3. 已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2???

?1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证()

A .n =k +1时等式成立

B .n =k +2时等式成立

C .n =2k +2时等式成立

D .n =2(k +2)时等式成立

4.用数学归纳法证明“1+2+22+…+2n -1=2n -1(n ∈N *)”的过程中,第二步n =k 时等式

成立,则当n =k +1时应得到()

A .1+2+22+…+2k -2+2k -1=2k +1-1

B .1+2+22+…+2k +2k +1=2k -1 +2k +1

C .1+2+22+…+2k -1+2k +1=2k +1-1

D .1+2+22+…+2k -1+2k =2k +1-1

5.用数学归纳法证明:当为正整数时,

21122221n n -++++=-.

6.用数学归纳法证明: 112(1)3(2)1(1)(2)6n n n n n n n ?+?-+?-+?=++

《数学归纳法》导学案

第5课时数学归纳法 1.使学生了解归纳法,理解数学归纳法的原理与实质. 2.掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题. 多米诺骨牌游戏,首先要用力推第一块骨牌,在任何两块骨牌之间有恰当的距离时,第一块倒下,就会使第二块倒下,第二块倒下就会导致第三块倒下,……以致很多都会倒下!如果我们在骨牌间抽出几块,使有两块之间存在一个较大的缺口,推倒了第一块骨牌,后面的骨牌就不会都倒下了.如果第一块骨牌我们不使它倒下,后面的骨牌也就不会倒下的. 问题1:要使得所有骨牌全都倒下须满足的条件 (1); (2). 问题2:数学归纳法:证明一个与正整数有关的命题,可按下列步骤进行 (1)(归纳奠基)证明当n取时命题成立; (2)(归纳递推)假 设. 问题3:数学归纳法是一种只适用于与有关的命题的证明方法,第一步是递推的“”,第二步是递推的“”,两个步骤缺一不可. 问题4:在证明过程中要防范以下两点 (1)第一步验证n=n0时,n0不一定为1,要根据题目要求. (2)第二步中,归纳假设起着“已知条件”的作用,在证明1时,命题也成立的过程中一定要用,否则就不是数学归纳法. (n∈N+),验证n=1时,左边应取的项是1.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4) 2 (). A.1 B.1+2 C.1+2+3 D.1+2+3+4 2.某个命题与自然数n有关,若n=k(k∈N+)时命题成立,那么可推得当n=k+1时该命题也成立,现已知n=5时,该命题不成立,那么可以推得(). A.n=6时该命题不成立 B.n=6时该命题成立 C.n=4时该命题不成立 D.n=4时该命题成立

数学归纳法教学设计与反思

数学归纳法教学设计与反思 长春市十一高中杨君 一、教学内容解析 就本节课的题目而言,它有两个意思,一个是归纳法,另一个是数学归纳法。归纳法是由特殊事例得出一般结论的归纳推理方法,是现实生活中人们自觉或不自觉普遍运用的方法,特别是不完全归纳法所得到的命题虽然不一定成立因而并不能作为一种论证方法,同时也应该看到不完全归纳法是数学中普遍存在的一种方法,是研究数学的一把钥匙,是发现数学规律的一种重要手段,具有很好的创造性。在科学发现中也是如此。 数学归纳法呢?它是证明与正整数n(n取无限个值)有关命题的重要工具,是一种重要的数学思想方法.其理论依据是归纳公理(即设M是正整数的一个子集,且它具有下列性质:①1∈M;②若k∈M,则k+1∈M.那么M是全体正整数的集合)和最小数原理(即自然数集的任何非空子集必有一个最小数),其实质是把具有共同特征的、无限重复的递推过程( )真? ( +1)真? ( +2)真?…用具有高度代表性、概括性的( )真? ( +1)真来代替,而核心与关键是如何利用归纳假设和递推关系.数学归纳法是以归纳为基础、以演绎为手段证明结论的一种方法,是归纳法与演绎法的完善结合.这也许是数学归纳法不是归纳法但又叫“数学归纳法”的原因.归纳法是一种以特殊化和类比为工具的推理方法,是重要的探索发现的手段,是一种似真结构;而数学归纳法是一种严格的证明方法,一种演绎法,它的实质是“把无穷的三段论纳入唯一的公式中提出“自然数公理”后,数学归纳法以归纳公理为理论基础,得到了广泛的确认和应用.而自然数中的“最小数原理”,则从反面进一步说明了数学归纳法证题的可靠性. 数学归纳法虽不是归纳法,但它与归纳法有着一定程度的关联.在数学结论的发现过程中,往往先通过对大量个别事实的观察,通过归纳形成一般性的结论,最终利用数学归纳法的证明解决问题.因此可以说论断是以试验性的方式发现的,而论证就像是对归纳的一个数学补充,即“观察”+“归纳”+“证明”=“发现”。 二、教学目标设置 1、知识和技能目标 (1)了解数学推理的常用方法(归纳法) (2)理解数学归纳法原理和其本质的科学性 (3)初步掌握数学归纳法证题的两个步骤和一个结论。 (4)会用数学归纳法证明简单的恒等式。 2、过程与方法目标 通过对归纳法的引入,说明归纳法的两难处境,引出数学归纳法原理,使学生理解理论与实际的辨证关系。在学习中培养学生探索发现问题、提出问题的意识,解决问题和数学交流的能力,学会观察——归纳——猜想——证明的思想方法,能用总结、归纳、演绎类比探求新知识。

高中数学选修2-2学案7:2.2.2 反证法

2.2.2 反证法 学习要求 1.了解反证法是间接证明的一种基本方法. 2.理解反证法的思考过程,会用反证法证明数学问题. 知识要点 1.定义:假设原命题________,经过正确的推理,最后得出矛盾,因此说明_________,从而证明了__________,这种证明方法叫做反证法. 2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与__________矛盾,或与______矛盾,或与________________________矛盾等. 问题探究 探究点一反证法的概念 问题1王戎小时候,爱和小朋友在路上玩耍.一天,他 们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动,等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?” ”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这就是著名的“道旁苦李”的故事.王戎的论述,运用了什么方法? 问题2上述方法的含义是什么? 问题3反证法证明的关键是经过推理论证,得出矛盾. 反证法引出的矛盾有几种情况? 问题4反证法主要适用于什么情形? 探究点二用反证法证明定理、性质等一些事实结论

例1已知直线a,b和平面α,如果a?α,b?α,且a∥b,求证:a∥α. 小结数学中的一些基础命题都是数学中我们经常用到的明显事实,它们的判定方法极少,宜用反证法证明.正难则反是运用反证法的常见思路,即一个命题的结论如果难以直接证明时,可考虑用反证法. 跟踪训练1已知:a∥b,a∩平面α=A,如图.求证:直线b与平面α必相交. 探究点三用反证法证明否定性命题 例2求证:2不是有理数.

高中数学选修2-2导学案

高二数学导学案 §1.1.1 函数的平均变化率导学案 【学习要求】 1.理解并掌握平均变化率的概念. 2.会求函数在指定区间上的平均变化率. 3.能利用平均变化率解决或说明生活中的一些实际问题. 【学法指导】 从山坡的平缓与陡峭程度理解函数的平均变化率,也可以从图象上数形结合看平均变化率的几何意义. 【知识要点】 1.函数的平均变化率:已知函数y =f (x ),x 0,x 1是其定义域内不同的两点,记Δx = ,Δy =y 1-y 0=f (x 1)-f (x 0)= ,则当Δx ≠0时,商x x f x x f ?-?+) ()(00=____叫做函数y =f (x )在x 0到x 0+Δx 之间 的 . 2.函数y =f (x )的平均变化率的几何意义:Δy Δx =__________ 表示函数y =f (x )图象上过两点(x 1,f (x 1)),(x 2,f (x 2))的割线的 . 【问题探究】 在爬山过程中,我们都有这样的感觉:当山坡平缓时,步履轻盈;当山坡陡峭时,气喘吁吁.怎样用数学反映山坡的平缓与陡峭程度呢?下面我们用函数变化的观点来研究 这个问题. 探究点一 函数的平均变化率 问题1 如何用数学反映曲线的“陡峭”程度? 问题2 什么是平均变化率,平均变化率有何作用? 例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率. 问题3 平均变化率有什么几何意义? 跟踪训练1 如图是函数y =f (x )的图象,则: (1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 探究点二 求函数的平均变化率 例2 已知函数f (x )=x 2,分别计算f (x )在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]. 跟踪训练2 分别求函数f (x )=1-3x 在自变量x 从0变到1和从m 变到n (m ≠n )

人教版数学高二学案2.3数学归纳法

学习目标 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题. 知识点数学归纳法 对于一个与正整数有关的等式n(n-1)(n-2)…(n-50)=0. 思考1验证当n=1,n=2,…,n=50时等式成立吗? 思考2能否通过以上等式归纳出当n=51时等式也成立?为什么? 梳理(1)数学归纳法的定义 一般地,证明一个与__________n有关的命题,可按下列步骤进行: ①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立; ②(归纳递推)假设当n=k(k≥n0,k∈N*)时命题成立,证明当__________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法. (2)数学归纳法的框图表示

类型一 用数学归纳法证明等式 例1 (1)用数学归纳法证明(n +1)·(n +2)·…·(n +n )=2n ×1×3×…×(2n -1)(n ∈N *),“从k 到k +1”左端增乘的代数式为________. (2)用数学归纳法证明当n ∈N *时,1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+1 2n . 反思与感悟 数学归纳法证题的三个关键点: (1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定是1. (2)递推是关键:数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项、增加怎样的项. (3)利用假设是核心:在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法. 跟踪训练1 用数学归纳法证明:1+3+5+…+(2n -3)+(2n -1)+(2n -3)+…+5+3+1=2n 2-2n +1. 类型二 利用数学归纳法证明不等式 例2 求证:1n +1+1n +2 +…+13n >5 6(n ≥2,n ∈N *).

高中数学选修2-1 抛物线导学案加课后作业及参考答案

抛物线及其标准方程导学案 【学习要求】 1.掌握抛物线的定义及焦点、准线的概念. 2.会求简单的抛物线的方程. 【学法指导】 通过观察抛物线的形成过程,得出抛物线定义,建系得出抛物线标准方程.通过抛物线及其标准方程的应用,体会抛物线在刻画现实世界和解决实际问题中的作用. 【知识要点】 1.抛物线的定义 平面内与一个定点F 和一条定直线l (l 不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 2 探究点一 抛物线定义 如图,我们在黑板上画一条直线EF ,然后取一个三角板,将一条拉链AB 固定在三角板的一条直角边 上,并将拉链下边一半的一端固定在C 点,将三角板的另一条直角边贴在直线EF 上,在拉锁D 处放置一支粉笔,上下拖动三角板,粉笔会画出一条曲线. 问题1 画出的曲线是什么形状? 问题2 |DA |是点D 到直线EF 的距离吗?为什么? 问题3 点D 在移动过程中,满足什么条件? 问题 4 在抛物线定义中,条件“l 不经过点F ”去掉是否可以? 例1 方程[] 2 2)1()3(2-++y x =|x -y +3|表示的曲线是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 跟踪训练1 (1)若动点P 与定点F (1,1)和直线l :3x +y -4=0的距离相等,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .直线 (2)若动圆与圆(x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 ( ) A .椭圆 B .双曲线 C .双曲线的一支 D .抛物线 探究点二 抛物线的标准方程 问题 1 结合求曲线方程的步骤,怎样求抛物线的标准方程? 问题2 抛物线方程中p 有何意义?标准方程有几种类型? 问题3 根据抛物线方程如何求焦点坐标、准线方程? 例2 已知抛物线的方程如下,求其焦点坐标和准线方程. (1)y 2=-6x ; (2)3x 2+5y =0; (3)y =4x 2; (4)y 2=a 2x (a ≠0). 跟踪训练2 (1)抛物线方程为7x +4y 2=0,则焦点坐标为( ) A .??? ?7 16,0 B .????-74,0 C .??? ?-7 16,0 D .? ???0,-7 4 (2)抛物线y =-1 4x 2的准线方程是 ( ) A .x =1 16 B .x =1 C .y =1 D .y =2 例3 分别求满足下列条件的抛物线的标准方程. (1)准线方程为2y +4=0; (2)过点(3,-4); (3)焦点在直线x +3y +15=0上. 跟踪训练3 (1)经过点P (4,-2)的抛物线的标准方程为( ) A .y 2=x 或x 2=y B .y 2=x 或x 2=8y C .x 2=-8y 或y 2=x D .x 2=y 或y 2=-8x (2)已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (m ,-3)到焦点F 的距离为5,求m 的值、

苏教版高中数学选修2-2《1.1.2 瞬时变化率——导数(3)》教案

教学目标: 1.通过大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵; 2.会求简单函数的导数,通过函数图象直观地了解导数的几何意义; 3.体会建立数学模型刻画客观世界的“数学化”过程,进一步感受变量数学的思想方法. 教学重点: 导数概念的实际背景,导数的思想及其内涵,导数的几何意义. 教学难点: 对导数的几何意义理解. 教学过程: 一、复习回顾 1.曲线在某一点切线的斜率. ()()PQ f x x f x k x +-=??(当?x 无限趋向0时,k PQ 无限趋近于点P 处切线斜率) 2.瞬时速度. v 在t 0的瞬时速度=00()()f t t f t t ??+- 当?t →0时. 3.物体在某一时刻的加速度称为瞬时加速度. x

v 在t 0的瞬时加速度= 00()()v t t v t t ??+- 当?t →0时. 二、建构数学 导数的定义. 函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),如果自变量x 在x 0处 有增量△x ,那么函数y 相应地有增量△y =f (x 0+△x )-f (x 0);比值 y x ??就叫函数y =f (x )在x 0到(x 0+△x )之间的平均变化率,即00()()f x x f x y x x +?-?=??.如果当0x ?→时,y A x ?→?,我们就说函数y =f (x )在点x 0处可导,并把A 叫做函数y =f (x )在点x 0处的导数,记为0x x y =' , 0'000()()(),0x x f x x f x y y f x x x x =+?-?'===?→??当 三、数学运用 例1 求y =x 2+2在点x =1处的导数. 解 ?y =-(12+2)=2?x +(?x )2 y x ??=2 2()x x x ???+=2+?x ∴y x ??=2+?x ,当?x →0时,1x y '∣==2. 变式训练:求y =x 2+2在点x =a 处的导数. 解 ?y =-(a 2+2)=2a ?x +(?x )2 y x ??=2 2()a x x x ???+=2a +?x ∴y x ??=2a +?x ,当?x →0时,y '=2a . 小结 求函数y =f (x )在某一点处的导数的一般步骤: (1)求增量 ?y =f (x 0+?x )-f (x 0); (2)算比值 y x ??=00()()f x x f x x ??+-; (3)求0x x y '∣==y x ??,在?x →0时. 四、建构数学 导函数.

2014届高考数学一轮复习教学案数学归纳法(理)(含解析)

第七节 数学归纳法(理) [知识能否忆起] 数学归纳法 一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立; (2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法. [小题能否全取] 1.用数学归纳法证明3n ≥n 3(n ∈N ,n ≥3),第一步应验证( ) A .n =1 B .n =2 C .n =3 D .n =4 答案:C 2.(教材习题改编)已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1 n = 2????1n +2+1n +4+…+1 2n 时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证( ) A .n =k +1时等式成立 B .n =k +2时等式成立 C .n =2k +2时等式成立 D .n =2(k +2)时等式成立 解析:选B 因为n 为偶数,故假设n =k 成立后,再证n =k +2时等式成立. 3.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12+1 3 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+1 4 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+1 3

D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+1 4 解析:选D 由f (n )可知,共有n 2-n +1项,且n =2时,f (2)=12+13+1 4 . 4.用数学归纳法证明1+2+22+…+2n + 1=2n + 2-1(n ∈N *)的过程中,在验证n =1时, 左端计算所得的项为________. 答案:1+2+22 5.用数学归纳法证明:“1+12+13+…+1 2n -11)”,由n =k (k >1)不等式成立,推 证n =k +1时,左边应增加的项的项数是________. 解析:当n =k 时,不等式为1+12+13+…+1 2k -1

数学归纳法教学设计电子教案

数学归纳法教学设计

授课日期: 2016 年 4 月 8 日授课班级:高二年级2 班

【教学难点】 (1)对数学归纳法原理的理解,即理解数学归纳法证题的严密性与有效性; (2)假设的利用,即如何利用假设证明当n=k+1时结论正确. 教法、学法分析 教法: 学习数学归纳法的过程紧扣多米诺骨牌是怎样倒下的,通过对科技节活动中多米诺骨牌倒下的分析类比得出数学归纳法的应用步骤,尤其是在引导学生理解数学归纳法由n=k得出n=k+1时必要性和有效性中,类比“后一块骨牌必须是被前一块骨牌砸倒的”起到重要作用。在教师的组织启发下,师生之间、学生之间共同探讨,平等交流;既强调独立思考,又提倡团结合作;既重视教师的组织引导,又强调学生的主体性、主动性、平等性、开放性、合作性。这节课主要选择以合作探究式教学法组织教学. 学法: 本课以问题为中心,以解决问题为主线展开,学生主要采用“探究式学习法”进行学习.本课学生的学习主要采用下面的模式进行: 教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用. 教学资源 导学案、PPT 教学过程 教学环 节 教师活动学生活动设计意图 课前复习准备 1、布置导学案内容; 2、批改纠正学生出现的错误; 3、及时了解学生学习情. 完成学案内容 1、归纳推理: 2、回忆等差数列,等比数 列的通项公式;思考等 差、等比数列通项公式的 得出过程,你能证明该公 式吗? 3、已知数列{}n a中, 1 1 = a, ) (* + ∈ + =N n a a a n n n2 2 1 , 试猜想这个数列的通项公 式并证明你的猜想. 复习公式及 其得出过 程,为本节 学习做好铺 垫. 使学生发现 不能解决的 问题,激发 学生学习新 知的愿望. 创设问题情景,引出新课问题情景:引导学生共同回顾学案 第3小题数列{}n a通项公式的得出过 程,提问:你的猜测正确吗?如何证 明? 学生回忆第3小题数列 {} n a通项公式的得出过 程,并思考老师的问题. 发现问题, 突出矛盾. 合作探索解决问题的方法1. 多媒体演示多米诺骨牌游戏. 引导学生共同探讨多米诺骨牌全 部依次倒下的条件: (1)第一块要倒下; 学生类比多米诺骨牌依顺 序倒下的原理,探究出证 明有关正整数命题的方 播放视频活 跃课堂氛 围,激发学 生的兴趣. 提 出 问 分 析 问 猜想与 置疑 论证 观察 情景 应用

2017_2018学年高中数学第二章推理与证明2.3数学归纳法教学案新人教A版选修2_2

2.3 数学归纳法 预习课本P92~95,思考并完成下列问题 (1)数学归纳法的概念是什么?适用范围是什么? (2)数学归纳法的证题步骤是什么? [新知初探] 1.数学归纳法的定义 一般地,证明一个与正整数n有关的命题,可按下列步骤进行 只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法. 2.数学归纳法的框图表示

[点睛] 数学归纳法证题的三个关键点 (1)验证是基础 数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0,就是我们要证明的命题对象对应的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是第一个关键点. (2)递推是关键 数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项. (3)利用假设是核心 在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心.不用归纳假设的证明就不是数学归纳法. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)与正整数n 有关的数学命题的证明只能用数学归纳法.( ) (2)数学归纳法的第一步n 0的初始值一定为1.( ) (3)数学归纳法的两个步骤缺一不可.( ) 答案:(1)× (2)× (3)√ 2.如果命题p (n )对所有正偶数n 都成立,则用数学归纳法证明时须先证n =________成立. 答案:2 3.已知f (n )=1+12+13+…+1n (n ∈N *),计算得f (2)=32,f (4)>2,f (8)>52 ,f (16)>3,f (32)>72 ,由此推测,当n >2时,有______________.

人教版高中数学选修2-3学案 全册

§1.1 分类加法计数原理与分步乘法计数原理(1) ※学习目标 1.通过实例,总结出分类加法计数原理、分步乘法计数原理; 2. 了解分类、分步的特征,合理分类、分步; 3. 体会计数的基本原则:不重复,不遗漏. ※课前预习 1、预习目标 准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。 2、预习内容 分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m 1 种不同的方法,在第二类方 式,中有m 2种不同的方法,……,在第n类方式,中有m n 种不同的方法. 那么完成这件事共有 N= 种不同的方法. 分步计数原理:完成一件事,需要分成n个,做第1步有m 1 种不同的方法,做 第2步有m 2种不同的方法,……,做第n步有m n 种不同的方法,那么完成这件事共有 N= 种不同的方法。 3、提出疑惑 同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点疑惑内容 预习自测 1从高二(1)班的50名学生中挑选1名同学担任学校元旦晚会主持人,有多少种不同挑选结果? 2一次会议共3人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?

二、新课导学 ※学习探究 探究任务一:分类计数原理 问题1:P2思考题1 分析:给座位编号的方法可分____类方法? 第一类方法用,有___ 种方法; 第二类方法用,有___ 种方法; ∴能编出不同的号码有__________ 种方法. 新知:分类计数原理-加法原理: 如果完成一件工作有两类不同的方案,由第1类方案中有m种方法,在第2类方案中有n种 m+种不同的方法. 不同的方法,那么,完成这件工作共有n 试试:一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是. 反思:使用分类计数原理的条件是什么?分类加法原理可以推广到两类以上的方法吗? 探究任务二:分步计数原理 问题2:P3思考题2 分析:每一个编号都是由个部分组成,第一部分是,有____种编法,第二部分是,有种编法;要完成一个编号,必须完成上面两部分,每一部分就是一个步骤,所以,不同的号码一共有个. 新知:分步计数原理-乘法原理: 完成一件工作需要两个步骤,完成第1步有m种不同的方法,完成第2步有n种不同的方 m?种不同方法。 法,那么,完成这件工作共有n 试试:P4例2

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

18年高考数学专题14二项式定理及数学归纳法教学案理

专题14 二项式定理及数学归纳法 【2018年高考考纲解读】 高考对本内容的考查主要有: (1) 二项式定理的简单应用,B级要求; (2)数学归纳法的简单应用,B级要求 【重点、难点剖析】 1.二项式定理 (1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n,上式中右边的多项式叫做(a+b)n的二项展开式,其中C r n(r=1,2,3,…,n)叫做二项式系数,式中第r+1项叫做展开式的通项,用T r+1表示,即T r+1=C r n a n-r b r; (2)(a+b)n展开式中二项式系数C r n(r=1,2,3,…,n)的性质: ①与首末两端“等距离”的两项的二项式系数相等,即C r n=C n-r n; ②C0n+C1n+C2n+…+C n n=2n;C0n+C2n+…=C1n+C3n+…=2n-1. 2.二项式定理的应用 (1)求二项式定理中有关系数的和通常用“赋值法”. (2)二项式展开式的通项公式T r+1=C r n a n-r b r是展开式的第r+1项,而不是第r项. 3.数学归纳法 运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可. 4.数学归纳法的应用 (1)利用数学归纳法证明代数恒等式的关键是将式子转化为与归纳假设的结构相同的形式,然后利用归纳假设,经过恒等变形,得到结论. (2)利用数学归纳法证明三角恒等式时,常运用有关的三角知识、三角公式,要掌握三角变换方法. (3)利用数学归纳法证明不等式问题时,在由n=k成立,推导n=k+1成立时,过去讲的证明不等式的方法在此都可利用. (4)用数学归纳法证明整除性问题时,可把n=k+1时的被除式变形为一部分能利用归纳假设的形式,另一部分能被除式整除的形式. (5)解题时经常用到“归纳——猜想——证明”的思维模式.

苏教版高中数学选修2-2《1.2.1 常见函数的导数》教案

教学目标: 1.能根据导数的定义推导部分基本初等函数的导数公式; 2.能利用导数公式求简单函数的导数. 教学重点: 基本初等函数的导数公式的应用. 教学过程: 一、问题情境 1.问题情境. (1)在上一节中,我们用割线逼近切线的方法引入了导数的概念,那么如何求函数的导数呢? (2)求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标; ②利用切线斜率的定义求出切线的斜率; ③利用点斜式求切线方程. (3)函数导函数的概念

2.探究活动. 用导数的定义求下列各函数的导数: 思考由上面的结果,你能发现什么规律? 二、建构数学 1.几个常用函数的导数: 思考由上面的求导公式(3)~(7),你能发现什么规律? 2.基本初等函数的导数:

三、数学运用 例1 利用求导公式求下列函数导数. (1)5y x -=; (2)y (3)πsin 3 y =; (4)4x y =; (5)3log y x =; (6)πsin()2 y x =+; (7)cos(2π)y x =-. 例2 若直线y x b =-+为函数1y x =图象的切线,求b 及切点坐标. 点评 求切线问题的基本步骤:找切点—求导数—得斜率. 变式1 求曲线2y x =在点(1,1)处的切线方程. 变式2 求曲线2y x =过点 (0,-1)的切线方程. 点评 求曲线“在某点”与“过某点”的切线是不一样的. 变式3 已知直线l :1y x =-,点P 为2y x =上任意一点,求P 在什么位置时到直线l 的距离最短. 练习: 1.见课本P20练习. 第3题: ; 第5题: (1) ; (2) ;

人教版高中数学选修2-2学案:2.2.3数学归纳法

2.2.3数学归纳法(一) 【学习目标】 1.了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤; 2.能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写; 3.理解数学归纳法中递推思想. 【新知自学】 知识回顾: 1.证明方法: (1)直接证明???_________ _________; (2)间接证明:________. 新知梳理: 1.问题:在多米诺骨牌游戏中,能使所有多米诺骨牌全部倒下的条件是什么? 2.数学归纳法两大步: (1)归纳奠基:证明当n 取第一个值n 0时命题成立; (2)归纳递推:假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 3.数学归纳法是一种完全归纳的证明方法,主要用于研究与正整数有关的数学问题.在基础和递推关系都成立时,可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立. 对点练习: 1.若f (n )=1+12+13+…+16n -1 (n ∈N +),则f (1)为() A .1 B .15 C .1+12+13+14+15 D .非以上答案 2.已知f (n )=1n +1n +1+1n +2+…+1n 2,则() A .f (n )中共有n 项,当n =2时,f (2)=12+13 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14

C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14 3.用数学归纳法证明:当为整数时, 2135(21)n n ++++-=. 【合作探究】 典例精析: 2222*(1)(21)123,6n n n n n N ++++++=∈ 变式练习: 2*1427310(31)(1),n n n n n N ?+?+?+ ++=+∈

数学归纳法优秀教学设计

数学归纳法 【教学目标】 1.进一步理解“数学归纳法”的含意和本质;掌握数学归纳法证题的两个步骤一个结论;会用“数学归纳法”证明简单的恒等式;理解为证n=k+1成立,必须用n=k成立的假设;掌握为证n=k+1成立的常见变形技巧。 2.掌握归纳与推理的方法;培养大胆猜想,小心求证的辩证思维素质;培养学生对于数学内在美的感悟能力。 【教学重点】 使学生理解数学归纳法的实质,掌握数学归纳法的证题步骤 【教学难点】 如何理解数学归纳法证题的有效性;递推步骤中如何利用归纳假设 【授课类型】 新授课 【课时安排】 1课时 【教学准备】 多媒体、实物投影仪 【教学过程】 一、复习引入: 1.归纳法:由一些特殊事例推出一般结论的推理方法。特点:特殊→一般 2.不完全归纳法:根据事物的部分(而不是全部)特例得出一般结论的推理方法叫做不完全归纳法。 3.完全归纳法:把研究对象一一都考查到了而推出结论的归纳法称为完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法。与不完全归纳法不同,用完全归纳法得出的结论是可靠的。通常在事物包括的特殊情况数不多时,采用完全归纳法。 4.数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性: )时命题成立,证明当n=k+1先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n 时命题也成立这种证明方法就叫做数学归纳法

5. 数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n 0,如果当n=n 0时,命题成立,再假设当n=k(k ≥n0,k ∈N*)时,命题成立。(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n 0的正整数n 0+1,n 0+2,…,命题都成立。 6.用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当n 取第一个值n 0结论正确; (2)假设当n=k(k ∈N*,且k ≥n 0)时结论正确,证明当n=k+1时结论也正确。 由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确 二、讲解范例: 例1用数学归纳法证明 6 )12)(1(3212222++=++++n n n n 例2用数学归纳法证明 2)1()13(1037241+=+++?+?+?n n n n 三、课堂练习: 1.用数学归纳法证明:().125312n n =-++++ 证明:(1)当1=n ,左边=1,右边=1,等式成立。 (2)假设当k n =时,等式成立,就是(),125312k k =-++++ 那么()()[]11212531-++-++++k k ()[]1122-++=k k 122++=k k ().12+=k 这就是说,当1+=k n 时等式也成立。 根据(1)和(2),可知等式对任何的*N n ∈都成立。 2.用数学归纳法证明()()(),1121531n n n n -=--+-+- 当1=n 时,左边应为_____________。 3.判断下列推证是否正确,并指出原因。 用数学归纳法证明:126422++=++++n n n 证明:假设k n =时,等式成立 就是 126422++=++++k k k 成立 那么()122642++++++k k ()1212++++=k k k =()()1112++++k k 这就是说当1+=k n 时等式成立, 所以*N n ∈时等式成立。

高中数学选修2-2教案_学案

高中数学教案选修全套 【选修2-2教案|全套】 目录 目录................................................................................. I 第一章导数及其应用 (1) §1.1.1变化率问题 (1) 导数与导函数的概念 (4) §1.1.2导数的概念 (6) §1.1.3导数的几何意义 (9) §1.2.1几个常用函数的导数 (13) §1.2.2基本初等函数的导数公式及导数的运算法则 (16) §1.2.2复合函数的求导法则 (19) §1.3.1函数的单调性与导数(2课时) (22) §1.3.2函数的极值与导数(2课时) (27) §1.3.3函数的最大(小)值与导数(2课时) (31) §1.4生活中的优化问题举例(2课时) (34) §1.5.3定积分的概念 (38) 第二章推理与证明 (42) 合情推理 (42) 类比推理 (45) 演绎推理 (48) 推理案例赏识 (50) 直接证明--综合法与分析法 (52) 间接证明--反证法 (54) 数学归纳法 (56) 第3章数系的扩充与复数的引入 (67) §3.1数系的扩充和复数的概念 (67) §3.1.1数系的扩充和复数的概念 (67) §3.1.2复数的几何意义 (70) §3.2复数代数形式的四则运算 (73) §3.2.1复数代数形式的加减运算及几何意义 (73) §3.2.2复数代数形式的乘除运算 (77)

第一章 导数及其应用 §1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均 膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 1 212)()(V V V r V r - -

2019高考数学考点突破——推理与证明数学归纳法学案

数学归纳法 【考点梳理】 1.数学归纳法 证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N * )时命题成立; (2)(归纳递推)假设n =k (k ≥n 0,k ∈N * )时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 2.数学归纳法的框图表示 【考点突破】 考点一、用数学归纳法证明等式 【例1】设f (n )=1+12+13+…+1n (n ∈N * ).求证:f (1)+f (2)+…+f (n -1)=n [f (n )- 1](n ≥2,n ∈N * ). [解析] (1)当n =2时,左边=f (1)=1, 右边=2? ?? ??1+12-1=1,左边=右边,等式成立. (2)假设n =k (k ≥2,k ∈N * )时,结论成立, 即f (1)+f (2)+…+f (k -1)=k [f (k )-1], 那么,当n =k +1时, f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k =(k +1)? ??? ??f k +1- 1k +1-k =(k +1)f (k +1)-(k +1)=(k +1)[f (k +1)-1], ∴当n =k +1时结论仍然成立.

由(1)(2)可知,f (1)+f (2)+…+f (n -1)=n [f (n )-1](n ≥2,n ∈N * ). 【类题通法】 1.明确“2思路” (1)用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n 0是多少. (2)由n =k 时等式成立,推出n =k +1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程. 2.记牢“4句话” 两个步骤要做到,递推基础不可少; 归纳假设要用到,结论写明莫忘掉. 【对点训练】 用数学归纳法证明等式12 -22 +32 -42 +…+(-1)n -1 ·n 2=(-1) n -1 · n n +1 2 . [解析] (1)当n =1时,左边=12 =1, 右边=(-1)0 × 1×1+1 2 =1,左边=右边,原等式成立. (2)假设n =k (k ≥1,k ∈N * )时等式成立,即有12 -22 +32 -42 +…+(-1) k -1 ·k 2=(-1) k - 1 · k k +1 2 . 那么,当n =k +1时, 12 -22 +32 -42 +…+(-1)k -1 ·k 2+(-1)k ·(k +1)2 =(-1) k -1 · k k +1 2 +(-1)k ·(k +1)2 =(-1)k ·k +1 2 [-k +2(k +1)] =(-1)k · k +1 k +2 2 . ∴n =k +1时,等式也成立, 由(1)(2)知对任意n ∈N * ,都有

相关主题