搜档网
当前位置:搜档网 › 近世代数第19讲

近世代数第19讲

近世代数第19讲
近世代数第19讲

第19讲

§6. 多项式环

(Rings of polynomials )

本讲的教学目的和要求:在高等代数中,已经建立了数域F上的多项式环的一般理论,但是在处理某些问题时常会遇到诸如整系数多项式,矩阵系数多项式(譬如 —矩阵)等环上的多项式,它们与数域的多项式相比,有很多本质上的差异。故此,有必要讨论环上多项式环的一般理论。

目的和要求:

1、明确代数元和超越元的概念以及什么是R上的关于超越元的多项式环(本教材称超越元为半定元—与高等代数中的称呼一致)。

2、超越元(半定元)的存在性定理和多项式环存在性定理的证明需要弄懂。

3、对多元多项式的本质上的理论问题需要清楚。

本讲的重点和难点: 本讲是高等代数中多项式环(定义在数域上)的推广。由于环的定义不同,故研究的方法也不同,这是难点之一。如何清醒地认识到不能直接用“高代”的理理论直接套用,是关键。

一、多项式环的定义。

设0R 是一个含有单位元0

1R 的交换环。又设R 是0R 的子环

且R R ∈0

1,取定元素0R ∈α。显然

0100

n

i n i n i a a a a R ααα==+++∈∑ . 记()0100

R a a a a f n n n

i i

i ∈+++==∑=αααα

定义3.6.1. 如上形式的()αf 叫做环R 上关于α的一个多 项式,而每个i a 都叫做该多项式()αf 的系数。记[]R α为

R 上关于α的所有多项式做成的集合。

因为, ()()∑∑====?n

j j j m i i

i b g a f 0

,αααα,当m n ≤时

()()()∑=+=+n

j j j j b a g f 0

ααα, 假设 021====++n m m a a a .

()(),0

00∑∑∑+====?

??? ????? ??=?m n k k k n j j

j m i i i C b a g f ααααα其中

∑=+=

k

j i j

i k b a C

又 0000R α=+∈,()()∑∑==-=-=-m

i i

i m

i i

i a a f 0

ααα

可知 []R α是一个环。

定义3.6.2. 上方得到的环[]αR 叫做R 上的α的多项式环。 显然[]αR 是0R 的一个子环。

但R 上的多项式()αf 的表达形式不是唯一的。 譬如,设Z R =,而)(20实数域R R =∈=α. 那么

[]2

Z

中的零元2

0002α=+=-+. ∴ 0的表达式不唯一.

换句话说:上述定义的多项式环中会出一种现象:

()02210=++++=n n a a a a f αααα ,但系数n a a a a ,,,,210

不全为零.这显然与高等代数中多项式的零多项式的定 义相矛盾.于是,我们有必要对0R ∈α做如下的讨论. 定义3.6.3. 设R R ,0和α如前所示,称α为R 的一个未定元 (超越元),若在R 中找不到不全为零的元素n a a a ,,,10 使 ()*

=∈?=++++=∑N n a a a a a n n n

i i

i ,022100αααα

( 即 002100

=====?=∑=n n

i i

i a a a a a α

) .

习惯上,记R 上的未定元为x 。否则称α为R 上的代数元。

未定元的引入解决了多项式表示的唯一性问题。 若

因为α是R 的未定元,所以,0,1,2,i i a b i n == 。 定义3.6.4. 设()()0120n n n f x a a x a x a x a =++++≠ 为环R 上 的一元多项式.那么 非负整数n 叫做多项式()f x 的次数. 若()0=x f , ()f x 没有次数。

()20122

012,

n

n m

m f a a a a b b b b m n

ααααααα=++++=++++≤ 22012012()0,n m n m a a a a b b b b αααααα++++-++++= 2001122()()()()0,

n n n a b a b a b a b ααα-+-+-++-=

思考题1. 若α是R 的未定元,有可能R ∈α吗?

由上,我们已看到未定元的重要性,但对给定的环 里未定元是否一定存在?

例如: 设{}Z R Z b a ib a R =∈+=,,0,则知0R 是有

单位元的交换环,而R 为0R 的子环,但R 的未定元不存在。事实上,若ib a +=α是未定元,则有()()02222=+-++ααa b a 。 这与α是未定元矛盾。由α的任意性,0R 中没有R 的未定元。 二、未定元存在定理。

定理3.6.5. (定理1, p103) (未定元存在定理) 设R 是有单位元的交换环。那么必存在R 的扩环()P R P ≤, 使得P 中含有R 的未定元x . 证明: (1) 利用R 构造一个环P .

设()012{,,,|,0}i i P a a a a R a =∈≠ 只有有限个。规定:

()() ,2,1,0,,,,,,,210210==?=i b a b b b a a a i i

现在P 中定义加法和乘法:

加法: ()()() ,,,,,,,,1100210210b a b a b b b a a a ++=+ 乘法: ()()(),,,,,,,,,,210210210 c c c b b b a a a =其中 ()0,1,2,k i i

k i j

c a b k =+=

=∑

可以验证: {}?+,,P 做成一个环,其中 (ⅰ)

P 中的零元为(),,0,0,0 (这里R ∈0) (ⅱ) P 是交换环

( R 是可换的)

(ⅲ)

P 中有单位元 (),,0,0,1 (R 11=)

(2) 利用P ,构造一个能包含R 的扩环P .

设 =R (){,0,0,|}a a R ?∈ ,

显然R ≠?,且

()(),,0,0,,,0,0,R b a ∈? ()()().,0,0,,0,0,,0,0,R b a b a ∈-=-

()() ,0,0,,0,0,b a () ,0,0,ab = R ∈ R ?是P 的一个子环.

现令 ?: ,R R →其中 ()()R a a a ∈?= ,0,0,? 可知, ?是一个环同构,即

R R

?

?。

显然. ()?=-R R P

由“挖补定理”知,我们可得到一个新的环()P P R R =- , 其中R P ?且 P P ?

?,P 中的单位元就是R 中单位元R 1. (3) 须证P 含有R 上的未定元 令 ()0,1,0,0,x = ,则x P R P ∈-?。 又注意到,

(0,0,,0,1,0,0)k k x =

(证略)

下面证明: x 就是R 的未定元.

令 20120n n a a x a x a x ++++= ()R a i ∈ …… (*) 在环同构中之下: P P → () ,0,0,00a a → () ,0,0,11a a →

() ,0,0,n n a a → () ,0,0,00→

由(*)?()()()() ,0,0,0,0,,0,0,,0,0,10=+++n n x a x a a 。 利用P 中元素乘法的x 定义和的特点上式变为:

()() ,0,0,0,,,210=a a a 。 ∴ 0210=====n a a a a

x 是的R 上的未定元。

练习题: 设R 为整环,而F 是R 的子域,如果αα,R ∈?都 是F 上的代数元,那么R 本身就是一个域.

证明: (只需证?

R 中每个元都可逆即可)?

∈?R α,由题设知,

α是F 上的代数元,即存在不全为零的

F a a a a n ∈ ,,,210

使 02210=++++n n a a a a ααα ,

不妨设00≠a

即零次项0≠.(这是因为:由于n a a a ,,,10 不全为零,设i a 是从 左数第一个不为零的元

?().0111=+++=+++-+++i n n i i i n n i i i i a a a a a a αααααα

但α不是零因子i α?不是零因子??=+++-+01i n n i i a a a αα 零次项0≠。所以上述假设是合理的)

0a 可逆,于是 ()?+++=--ααα1210n n a a a a

1[

1a -=()ααα]1

2

1

-+++n n

a a a

∴ 0

11

a -=

-α()121-+++n n a a a αα 可逆.

由α的任意性R ?为域. 三、多元多项式环

设0R 是交换的有单位元的环,而R 是0R 的子环且R R ∈0

1.

现任取0R 中n 个元素n ααα,,,21 ,我们可以依次做如下工作:

首先作上的1α的多项式环[]1αR . 再作[]1αR 上的2α的多项式环 [][]21ααR

最后作上[][][]121-n R ααα 的n α的多项式环[][].1n R αα 其中, ()[][][]?∈?N n R f αααααα 2121,,

n n i n

i i i i i a ααα 2

12121∑= 其中,,2

1R a n

i i i ∈ 系数只有有限个0≠.

定义3.6.6 上述描述的每个()n f ααα,,,21 称为R 上的n ααα,,,21 的多元多项式,而每个n

i i i a 2

1叫作()n f ααα,,,21 的系数.

习惯上,

R 上的n ααα,,,21 的多项式环[][].1n R αα 写成

对于多元多环中加法和乘法的运算为:

(n n

n i n

i i i i i i a αα 1

1211

∑)???

? ??+∑n n j n j j n j j j j b αα 11211

()

n n

n n

i n

i i i i i i i b a

αα ∑+=11111(n n

n i n i i i i i i a αα 11211∑)(n n

n j n j j j j j b αα 1

111∑)

∑=

n

n

n

k k k n k

k k C

11

1

1αα 其中, ∑=+=

m

m m n

n

n

k j i j j i i k k b a

C 111

同样,上多元多项式环中元素仍存在着表示不唯一的问题. 所以与一元多项式环一样,要定义无关未定元.

定义6. 设R ,0R 如上,而0R 中n 个元n x x x ,,21叫做R 上的无关未定 元,如果它们满足:R 上的任一个关于n x x x ,,21的多项式为零?该 多项式的系数全为零.

定理2. 设R 是一个可变换么环,任取定一个自然数n ,一定存在 上R 的无关未定元存n x x x ,,21在,使多项式环[]n x x x R ,,21存在. 证明: (数学归纳法)当

1=n ,由定理1直接可得,

假设时1-n 定理成立,即有可变换环[]11,-n x x R ,其中 121,,,-n x x x 为

R

上的无关未定元。对n 的情形:首先可知,由定理1?有环

[]11,-n x x R 上的未定元n x ,

使 [][]n n x x x R 11,- 为环.

下面说明: n x x x ,,,21 是R 上的无关未定元.

()?==

?∑0111111n n

n i n i

i i i i n x x a x x f

()

?=∑--0111

111n n

n n i n i i i n i i i x x x a

01111

111=???

? ??∑∑---n

n n n n i n i i i i n i i i x x x a n x 是[]n x x R 1上的未定元011

1

1111=?---∑n n nn

i n i i i i i x x a

但11-n x x 又是R 上的无关未定元.01

=?n

i i a

∴ n x x 1是R 上的无关未定元.

四、未定元的重要性质

设0R ,R 如上,如果0R ∈α,且x 为R 上的未定元.那么一元多项式环

[]x R 与[]αR 有什么联系?

首先,这两者的区别是明显的(元素表示法的唯一性) 其次,这两者具有许多类似性质,事实上,有下列结论. 结论:设00,,R R R x ∈∈α,x 为R 上的未定元,那么环[]x R 与[]αR 有关系: []x R ~[]αR

证 : 取 :?[]x R →[]αR .其中()()αf x f →,即 ()x f ()i i n

i i i a f x a αα∑∑=→==0 R a i ∈

由于x 是未定元()x f ?的表示法唯一,所以?是映射.

尽管()αf 的表示法可能不唯一,但()[]a R f ∈?α, 必有()[]x R x f ∈ 使 ()()()α?f x f =。∴ 是满射. 而且知, ()()()()()()x g x f x g x f +=+?? ()()()()()()()x f x f x g x f ???= ∴ [][]α?

R x R ~

现将上述结论推广到()1 n n 个未定元上,则得到下定理

定理3. 设[]n x x x R ,,,21 和[]n R ααα,,,21 都是可换么环R 上的多项式

环,且 n x x x ,,,21 是R 上的无关未定元,而n ααα,,,21 是上的任意元,

那么

[]n x x x R ,,,21 ~[]n R ααα,,,21 证明(略)

由上结论可知:在[]x R 中若干个多项式通过加法和乘法做成的某等式.当用x 换成0R 中任一个元素α后,该等式仍成立.于是有相应的

推论.在[]x R 中,设()()(),x g x f x u += ()()()x g x f x v ?= 那么在[]αR 中有

()()()αααg f u +=, ()()()αααg f v ?=.

顺着这样的思路,利用定理3也可得到类似的多元多项式 的推论。

近世代数第四章 环与域题解讲解

第四章环与域 §1 环的定义 一、主要内容 1.环与子环的定义和例子。在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环. 2.环中元素的运算规则和环的非空子集S作成子环的充要条件: 二、释疑解难 1.设R是一个关于 代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,·,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为 ,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对 满足左、右分配律,即 就是说,在环的定义里要留意两个代数运算的顺序. 2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“·”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).

1. 2.

3. 4. 5.

6. 7. 8.证明:循环环必是交换环,并且其子环也是循环环. §4.2 环的零因子和特征 一、主要内容 1.环的左、右零因子和特征的定义与例子. 2.若环R 无零因子且阶大于1,则R 中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数. 这就是说,阶大于l 且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶. 3.整环(无零因子的交换环)的定义和例子. 二、释疑解难 1.由教材关于零因子定义直接可知,如果环有左零因子,则R 也必然有右零因子.反之亦然. 但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l 中的元素??? ? ??0001就是一个例子.反之,一个右零因子也不一定是一个左零因子.例如,设置为由一切方阵 ),(00Q y x y x ∈???? ? ??

近世代数 第17讲

第17 讲 §交换律、单位元、零因子、整环. (Commutatine Law,unity,divisor of zero and integral domain) 讲本讲教学目的和要求:由环的定义,环{}?+,,R是在某集合R上定义了两种代数运算,而这二个运算是通过分配律建立了彼此的联系.很明显,环中的这两种运算立法机关的要求是很不平衡的.特别是环中的乘法只要求满足半群—乘法封闭和结合律.所以为环在乘法方面留下了很大的余地,一旦某些乘法方面再满期点头其它一些条件,则变成了一些特殊的类型的环.本节主要介绍交换环有单位元的环,没有零因子的环和整环,扩大环论的知识面.在学习方面要求掌握: 1、交换环仅是对乘法而言,可交换的一种环.由此可得到什么新结果. 2、有单位元的环(习惯上称心内幺元)具有的一些重要性质. 3、零因子的概念以及没有零因子与满足消去律的等价性. 4、什么是整环,什么是除环和域,它们之间的差别和联系. 本讲的重点和难点:零因子是一个新的概念,要真正了解并掌握它不是件易事.而”没有零因子”与”有消去律”之间的等价性的证明是难点. 一.交换环

设},;{?+R 为环,已知R 关于加法”+”而言,已可以交换,至于对于乘法”·”,R 也有满足交换律的可能(比如数环,多项式环等),所以我们有 定义1.如果环},;{?+R 关于乘法满足交换律:R b a ∈?, 都有ba ab =,那么称此环是交换环. 例1.易知,在§1中所介绍的所有数环,一元多项式][x F ,和剩余类环m Z 都分别是变换环.但n 价矩阵环)(F M n 不是变换环. 例2.设环},;{?+R 的加法群是循环群,那么环F 必是变换环. 证明: };{+R 是循环群,即}|{)(R n na a R ∈== ∴,,,ma y na x R y x ==?∈? ∴))((ma na xy = 22][)]([nma ma n ma a n ===, 而 ))((na ma yx = 222][)]([nma mna na m na a m ==== ∴yx xy =. 明示1.在第二章中已知:每个阶5≤的群必是交换群.而一旦环R 中元素个数3≤,那么R 必是变换环. 交换环的性质:设R 是交换环.R b a ∈?,.那么 (1)n n n b a ab N n =∈?)(, (2) R 中满足:222 2)(b ab a b a +±=±,))((22b a b a b a -+=- ))(()(2233b ab a b a b a +±=± (3) R 中满足二项式公式: n n n n n n n n n n b ab C b a C b a C a b a +++++=+----1122211)( 二. 无零因子环

近世代数课后习题参考答案(张禾瑞)1

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 12)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

近世代数9

题 号 一 二 三 四 五 六 是否缺考 题 分 15 20 15 10 20 20 得 分 《近世代数》试卷 一、填空题(每空2分,共20分) 1、设G =)(a 是15阶循环群,则G 的子群的个数为_________. 2、整数加群Z 是一个循环群,它有且仅有两个生成元是______和_____. 3、4次对称群4S 的阶是___,在4S 中,(134)(12)=_______,(1324)1 =_______,元素(1234)的阶 是______. 4、在剩余类环18Z 中,[11]+[8]=_______,[5][6]=_______. 5、整数环Z 上的一元多项式环][x Z 中的理想_______不是一个主理想. 6、_______是整数环Z 的一个商域. 二、判断题(对打“√”,错打“×”,不说明理由,每小题2分,共20分) 1、( )一个阶是13的群只有两个子群。 2、( )交换群的子群是不变子群。 3、( )全体整数的集合对于普通减法构成一个群。 4、( )无零因子环的特征不可能是2007。 5、( )群G 的指数是2的子群一定是不变子群。 6、( )模15的剩余类环15Z 是域。 7、( )在一个环中,若左消去律成立,则右消去律成立。 得分 评卷人 复查人 得分 评卷人 复查人

8、( )除环的中心是域。 9、( )欧氏环一定是主理想整环。 10、( )无零因子环的同态象无零因子。 三、解答题(第1题15分,第2,3题各10分,共35分) 1、设)}13(),1{( H 是3次对称群3S 的子群,求H 的所有左陪集和右陪集,试问H 是否是 3S 的不变子群?为什么? 得分 评卷人 复查人

近世代数复习

一、选择题(每题2分,共16分) 1.若(),G a ord a n ==,()则下列说法正确的是 2.假定φ是A 与()A A A =Φ间的一一映射,A a ∈,则)]([1a φφ-和)]([1a -φφ分别为 3.若G 是群,,()18,a G ord a ∈=则8()ord a = 4.指出下列那些运算是二元运算 5.设12,,,n A A A 和D 都是非空集合,而f 是12n A A A ???到D 的一个映射,那么 6.设是正整数集合N +上的二元运算,其中max(,)a b a b =,那么在Z 中 7.在群G 中,G b a ∈,,则方程b ax =和b ya =分别有唯一解为 8.设H 是群G 的子群,且G 有左陪集分类{,,,}H aH bH cH .如果[:]6G H =,那么G = 9.设集合A 中含有5个元素,集合B 中含有2个元素,那么,A 与B 的积集合A ×B 中含有( )个元素。 10.设A =B =R(实数集),如果A 到B 的映射?:x →x +2,?x ∈R ,则?是从A 到B 的 11.设Z 15是以15为模的剩余类加群,那么,Z 15的子群共有( )个。 12、G 是12阶的有限群,H 是G 的子群,则H 的阶可能是 13、下面的集合与运算构成群的是 14、关于整环的叙述,下列正确的是 15、关于理想的叙述,下列不正确的是 16.整数环Z 中,可逆元的个数是 17. 设M 2(R)=????????? ??d c b a a,b,c,d ∈R ,R 为实数域??? 按矩阵的加法和乘法构成R 上的二阶方阵环,那么这个方阵环是 18. 设Z 是整数集,σ(a)=?????+为奇数时当为偶数时 当a ,2 1a a ,2a ,Z a ∈,则σ是R 的 19、设A={所有实数x},A 的代数运算是普通乘法,则以下映射作成A 到A 的一个子集 的 同态满射的是( ). 20、设 是正整数集Z 上的二元运算,其中{}max ,a b a b =(即取a 与b 中的最大者),那么 在Z 中( ) 21.设3S ={(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则3S 中与元(1 2 3)不能交换的元的个数是( ) 22、设(),G 为群,其中G 是实数集,而乘法:a b a b k =++,这里k 为G 中固定的常数。那么群(),G 中的单位元e 和元x 的逆元分别是( ) 23、设H 是有限群G 的子群,且G 有左陪集分类{},,,H aH bH cH 。如果H =6,那么G 的阶G = 16.整数环Z 中,可逆元的个数是( ). 24、设12:f R R →是环同态满射,()f a b =,那么下列错误的结论为( )

近世代数基础习题课答案到第二章9题

第一章 第二章 第一章 1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □ 2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群. 证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □ 3. 设G 是一个非空有限集合, 它上面的一个乘法满足: (1) ()()a bc ab c =, 任意,,a b c G ∈. (2) 若ab ac =则b c =. (3) 若ac bc =则a b =. 求证: G 关于这个乘法是一个群. 证明: 任取a G ∈, 考虑2{,,,}a a G ??. 由于||G <∞必然存在最 小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1, 即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元, 从而是幺群. 事实上, 对任意,a b G ∈, 此时有: ()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==, 再由消去律, 得到a b =, 从而证明了此时G 只有一个元, 从而是幺群. 所以我们设G 中至少有一个元素a 满足: 对于满足 i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e

为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在 最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =: i ba ba =, 即be b =. 最后, 对任意x G ∈, 前面已经证明了有最小的正整数k 使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e = 从而22x e e ==, 此时x 有逆, 即它自身. 如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆: 1k x -. □ 注: 也可以用下面的第4题来证明. 4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法 还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群. 证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G 的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =. 于是: ()()be ca e c ae ca b ====. 得证. 对任意g G ∈, 由gx e =即得g 的逆. □ 5. 找两个元素3,x y S ∈使得222()xy x y =/. 解: 取(12)x =, (13)y =. □ 6. 对于整数2n >, 作出一个阶为2n 的非交换群. 解: 二面体群n D . □ 7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证 明: i i i r a ba b -=, i 是非负整数.

近世代数第二章答案

近世代数第二章群论答案 §1.群的定义 1.全体整数的集合对于普通减法来说是不是一个群? 解:不是,因为普通减法不是适合结合律。 例如 () 321110 --=-= --=-=() 321312 ()() --≠-- 321321 2.举一个有两个元的群的例。 解:令G=,e a {},G的乘法由下表给出 首先,容易验证,这个代数运算满足结合律 (1) ()(),, = ∈ x y z x y z x y z G 因为,由于ea ae a ==,若是元素e在(1)中出现,那么(1)成立。(参考第一章,§4,习题3。)若是e不在(1)中出现,那么有 ()aa a ea a == a aa ae a ==() 而(1)仍成立。 其次,G有左单位元,就是e;e有左逆元,就是e,a有左逆元,就是a。所以G是一个群。 读者可以考虑一下,以上运算表是如何作出的。 3.证明,我们也可以用条件Ⅰ,Ⅱ以及下面的条件IV',V'来做群的

定义: IV ' G 里至少存在一个右逆元1a -,能让 =ae a 对于G 的任何元a 都成立; V ' 对于G 的每一个元a ,在G 里至少存在一个右逆元1a -,能让 1=aa e - 解:这个题的证法完全平行于本节中关于可以用条件I,II,IV,V 来做群定义的证明,但读者一定要自己写一下。 §2. 单位元、逆元、消去律 1. 若群G 的每一个元都适合方程2=x e ,那么G 是交换群。 解:令a 和b 是G 的任意两个元。由题设 ()()()2 ==ab ab ab e 另一方面 ()()22====ab ba ab a aea a e 于是有()()()()=ab ab ab ba 。利用消去律,得 =ab ba 所以G 是交换群。 2. 在一个有限群里,阶大于2的元的个数一定是偶数。 解:令G 是一个有限群。设G 有元a 而a 的阶>2n 。 考察1a -。我们有 ()1=n n a a e - ()()11==n n e a a e -- 设正整数

近世代数讲义(电子教案)

《近世代数》课程教案 第一章 基本概念 教学目的与教学要求:掌握集合元素、子集、真子集。集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n 的剩余类。 教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n 的剩余类。 教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n 的剩余类。 教学措施:网络远程。 教学时数:8学时。 教学过程: §1 集合 定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。集 合中的每个事物叫做这个集合的元素(简称元)。 定义:一个没有元素的集合叫做空集,记为?,且?是任一集合的子集。 (1)集合的要素:确定性、相异性、无序性。 (2)集合表示: 习惯上用大写拉丁字母A ,B ,C …表示集合, 习惯上用小写拉丁字母a ,b ,c …表示集合中的元素。 若a 是集合A 中的元素,则记为A a A a ?∈否则记为,。 表示集合通常有三种方法: 1、枚举法(列举法): 例:A ={1,2,3,4},B ={1,2,3,…,100}。 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。 例:{}41≤≤∈=a Z a a A 且。显然例6中的A 就是例5的A 。 3、绘图法:用文氏图(Diagram Venn )可形象地表现出集合的特征及集合之

近世代数习题解答(张禾瑞)一章

近世代数习题解答 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A I ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A =I ,B B A ?Y , 及由B A ?得B B A ?Y ,故B B A =Y , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c b b c a a a a a

近世代数 第11讲

第11 讲 §8 子群(Subgroups) 本讲教学目的和要求:对于群这个新的教对象,应该如何入手,从哪几个方面去研究它,这一直是我们所关心的问题。概括些说,对群的研究,可分为互相联系的两个方面:群的结构和群的表示。与集合比较,群就是多了一个运送(正是这个运算才给群带来了生命力),所以群论研究的初步可以仿照集合论去讨论,只是关系群的一切讨论都要围绕这个运送展开,子群是非常重要的概念,了解子群是了解群的结构的一个重要渠道,本讲中要求: 1、能判断子群的构成和掌握彼此等价的判断条件 2、有限群的判断定理 3、子群(集)的乘积和生成子群的概念 4、循环群的子群所具有的特性 本讲的重点和难点:为了更好的学习下一讲内容,本讲中增添了部分内容(也都是群论中最基本的内容)。循环群的子群的性质;子群之积的性质,…都是本讲中的要点和难点,通过这方面的训练可使我们对子群有一个更深入的了解。生成子群的概念在本教材中谈的很少,本讲中也作了适当地加强。结合高等代数中生成子空间的理论,会使我们有一种温故而知新的感觉。此外,本讲中还引入了中心,中心化子,正规化子等概念,以便拓宽知识量。

一、 子群的定义及判定条件 定义1、设G 是一个群,而φ≠?H G H ,,如果H 关于G 中的运算本身也能作成群,则称H 是G 的一个子群记为 例 1 设G 为任意一个群,那么由G 的单位元组成子集}{e ,自然有G e ≤}{,另外G 本身也有G G ≤,所以G 一般有两个子群,统称它们为的G 平凡子群。如果G 除了平凡子群外还有其他子群,那就称为G 的真子群,记为G H <。 例2 Z 是整数加群,而一切偶数构成的集合为Z 2,其中: },4,2,0,2,4,{2 --=Z ,那么关于整数的加法有Z Z ≤2 明示1:任取一个整数m ,那么}|{Z n n m mZ ∈??=为一切m 的倍数构成的集合,可知Z mZ ≤. 例3 设}0|||)({≠∈=A R M A L n 表示一切可逆n 阶方阵组成的集合,用 矩阵通常的乘法可知: ? L 中方阵对乘法封闭(任二个n 阶可逆阵之积仍可逆) ? L 中方阵满足乘法结合律 ?单位元为E ?A L A ?∈.的逆元为A A —1-的逆阵 所以L 是个群。 若????? ???????= k k k kE 令为L 中的n 阶数乘阵,那么}0,|{≠∈?=k R k kE K 是L 的非空子集,且必有L K ≤。 例4 设)}132(),123(),23(),13(),12(),1{(3=S 为三次对称群,令)} 12(),1{(=H

《近世代数》习题及答案

《近世代数》作业 一.概念解释 1.代数运算 2.群的第一定义 3.域的定义 4.满射 5.群的第二定义 6.理想 7.单射 8.置换 9.除环 10.一一映射 11.群的指数 12.环的单位元 二.判断题 1.Φ是集合n A A A ??? 21列集合D 的映射,则),2,1(n i A i =不能相同。 2.在环R 到环R 的同态满射下,则R 的一个子环S 的象S 不一定是R 的一个子环。 3.设N 为正整数集,并定义ab b a b a ++= ),(N b a ∈,那么N 对所给运算 能作成一个群。 4.假如一个集合A 的代数运算 适合交换率,那么在n a a a a 321里)(A a i ∈,元的次序可以交换。 5.在环R 到R 的同态满射下,R 得一个理想N 的逆象N 一定是R 的理想。 6.环R 的非空子集S 作成子环的充要条件是: 1)若,,S b a ∈则S b a ∈-; 2),,S b a ∈,则S ab ∈。 7.若Φ是A 与A 间的一一映射,则1-Φ是A 与A 间的一一映射。 8.若ε是整环I 的一个元,且ε有逆元,则称ε是整环I 的一个单位。 9.设σ与τ分别为集合A 到B 和B 到C 的映射,如果σ,τ都是单射,则τσ是A 到C 的映射。 10.若对于代数运算 ,,A 与A 同态,那么若A 的代数运算 适合结合律,则A 的代数运算也适合结合律。 11.整环中一个不等于零的元a ,有真因子的冲要条件是bc a =。 12.设F 是任意一个域,*F 是F 的全体非零元素作成的裙,那么* F 的任何有限子群 G 必为循环群。 13. 集合A 的一个分类决定A 的一个等价关系。 ( ) 14. 设1H ,2H 均为群G 的子群,则21H H ?也为G 的子群。 ( ) 15. 群G 的不变子群N 的不变子群M 未必是G 的不变子群。 ( ) 三.证明题 1. 设G 是整数环Z 上行列式等于1或-1的全体n 阶方阵作成集合,证明:对于方阵的普通乘法G 作成一个 群。 2.设G=(a )是循环群,证明:当∞=a 时,G=(a )与整数加群同构。

2.3近世代数

§2.3循环群和生成群、群的同构 §2.3.1 循环群和生成群 设G 是群,,令 G a ∈ H ={ | } k a Z k ∈此时,称H 为由a 在G 中生成的子群。 注:1°易验证H 确实为G 的子群,1 2 1()k k a a H ?∈。 2°记H =< a >,a 称为它的生成元;若G =< a >,则称群G 为循环群。 定义1 (生成子群)设S 是群G 中的一个非空子集,G 的含有S 的最小子群称为由S 生成的子群,记为< S >,S 称为它的生成元集。 注:1°< S >可表示为 < S >={ …| 2 1 21ε εa a k k a εZ S a i i ∈∈ε,, k=1,2,3…} 这个表达式是合理的:设右式为H ,易见H ?S ,并且H ≤G ;要证明任何包含S 的子群K 必然包含H 。由于S K ,而K 为群G 的子群,所以;这也就是说H =< S >。 ?K a k i i i ∈∏=1 ε 2)如果群G =< S >,且K S ??,>≠,它的极

小生成元集为{a , b }。 (2) (Z ,+)=<1>=<-1>,它是可由1或-1生成的无限阶的循 环群。 (3) (,+)≌,它们都为n 阶循环群。 n Z n U (,+)=< [1] >;= < n Z n U ξ >。 (4) 二面体群>=<0,πρn D =ρ ???????1...22110n ??? ??????11 (2211) 0n n n n=6时: 不难证明,()2k i k n i π=+? (mod n ) k π, 上下均模n 。 l k l ?=ρπ较复杂的例子: P56 例1、设??????=?∈? ? ????=1,,,,)(2bc ad Z d c b a d b c a Z SL 证明: >?? ? ?????????=<1011,1101)(2Z SL 证明: , ??????=1101A ?? ? ???=1011B 有: ,,??????=101k A k ?? ????=101k B k Z k ∈ ? ? ?????=??????????????=????????????????????==??011010110111101111011011 11AB B Q

近世代数第3讲

第 3 讲 §7—9 一一映射,同态及同构(2课时) (Bijection Homomorphism and Osomorphism ) 本讲教学目的和要求:通过了解双射,同态及同构的理论,为后继课程中学习群同态,群同构(群第一、二同构定理)环同态,环同构理论做准备。具体要求: 1、在第一讲的基础上,对各类映射再做深入的研究。 2、充分了解双射(一一映射)的特性以及由此引导出的逆映射。 3、两个代数系统的同态的概念,尤其是同态的满射所具有的性质。 4、掌握同构映射的实质,为以后教学内容奠定基础, 本讲的重点和难点:本讲的重点在于对同态映射定义的了解;由同态满射引导的一系列性质及同构映射本质的掌握。而对双射及自身的逆映射之间的关系学生不易把握,需要认真对待。 本讲的教法和教具:在多媒体教室使用投影仪。在教学活动中安排时间让学生展开讨论。 本讲思考题及作业:本讲思考题将随教学内容而适当地展开。作业布置在本讲结束之后。 一、一一映射 在第1讲中,已对各类映射作了系列性的介绍,这里只对重要的

一一映射作重点的讨论。 定义1、设?是集合A 到A 的映射,且?既是单的又是满的,则称?是一个一一映射(双射)。 例1:},4,2,0,2,4,{2},2,1,0,1,2,{: --=→--=Z Z ?, 其中Z n n n ∈?=,2)(?,可知?显然是一个双射。 注意:Z 与偶数集Z 2之间存在双射,这表明:Z 与它的一个真子集Z 2一样“大”。 思考题:从例1中得知:一个无限集与其的某个真子集一样“大”。这是否可作为无限集都有的特性?即我们是否有如下的结论:A 为无限集的充要条件是A 与其某个真子集之间存在双射。 定理1:设?是A 到A 的一个双射,那么由?可诱导出(可确定出)A 到A 的一个双射1-?(通常称1-?是?的逆映射) 证明:由于?是A 到A 的双射,那么就A 中任一个元素a ,它在A 中都有逆象a ,并且这个逆象a 是唯一的。利用?的这一特点,则可确定由A 到A 的映射1-?: a a A a A A =∈?→--)(,,:11??,如果a a =)(?,由上述说明,易知1-?是映射。 1-?是满射:A a ∈?,因?是映射a a A a =∈??)(,?使,再由1-?的定义知a a =-)(1?,这恰说明,a 是a 在1-?下的逆象。由a 的任意性,知1-?是满射。 1-?是单射:2121,,a a A a a ≠∈?若由?是满射21a a 及?的逆象分别是 22111121)(,)(,a a a a a a ==--??即及,又?是单射21a a ≠?,

近世代数课后习题参考答案(张禾瑞)-1(新)

近世代数课后习题参考答案 第一章 基本概念 1 集合 1.A B ?,但B 不是A 的真子集,这个情况什么时候才能出现? 解 ?只有在B A =时, 才能出现题中说述情况.证明 如下 当B A =,但B 不是A 的真子集,可知凡是属于A 而B a ?,显然矛盾; 若A B ?,但B 不是A 的真子集,可知凡属于A 的元不可能属于B ,故B A = 2.假定B A ?,?=B A ,A ∩B=? 解? 此时, A ∩B=A, 这是因为A ∩B=A 及由B A ?得A ?A ∩B=A,故A B A = ,B B A ? , 及由B A ?得B B A ? ,故B B A = , 2 映射 1.A =}{ 100,3,2,1,??,找一个A A ?到A 的映射. 解? 此时1),(211=a a φ A a a ∈21, 1212),(a a a =φ 易证21,φφ都是A A ?到A 的映射. 2.在你为习题1所找到的映射之下,是不是A 的每一个元都是A A ?到A 的一个元的的象? 解?容易说明在1φ之下,有A 的元不是A A ?的任何元的象;容易验证在2φ之下,A 的每个元都是A A ?的象. 3 代数运算 1.A ={所有不等于零的偶数}.找到一个集合D ,使得普通除法 是A A ?到D 的代数运算;是不是找的到这样的D ? 解?取D 为全体有理数集,易见普通除法是A A ?到D 的代数运算;同时说明这样的D 不 只一个. 2.=A }{c b a ,,.规定A 的两个不同的代数运算. 解? a b c a a b c a b c

b b c a a a a a c c a b b d a a c a a a 4 结合律 1.A ={所有不等于零的实数}. 是普通除法:b a b a = .这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律: 2 1 2)11(= , 2)21(1= ,从而 )21(12)11( ≠. 2.A ={所有实数}. : b a b a b a =+→2),(这个代数运算适合不适合结合律? 解? 这个代数运算不适合结合律 c b a c b a 22)(++= ,c b a c b a 42)(++= )()(c b a c b a ≠ 除非0=c . 3.A ={c b a ,,},由表 所给的代数运算适合不适合结合律? 解? 经过27个结合等式后可以得出所给的代数运算适合结合律. 5 交换律 1.A ={所有实数}. 是普通减法:b a b a -= .这个代数运算适合不适合交换律? 解? 一般地a b b a -≠- 除非b a =. 2.},,,{d c b a A =,由表 a b c d a a b c d b b d a c c c a b d d d c a b 所给出代数运算适合不适合交换律? a b c a a b c b b c a c c a b

《近世代数》模拟试题1及答案

近世代数模拟试题 一. 单项选择题(每题5分,共25分) 1、在整数加群(Z,+)中,下列那个是单位元(). A. 0 B. 1 C. -1 D. 1/n,n是整数 2、下列说法不正确的是(). A . G只包含一个元g,乘法是gg=g。G对这个乘法来说作成一个群; B . G是全体整数的集合,G对普通加法来说作成一个群; C . G是全体有理数的集合,G对普通加法来说作成一个群; D. G是全体自然数的集合,G对普通加法来说作成一个群. 3. 如果集合M的一个关系是等价关系,则不一定具备的是( ). A . 反身性 B. 对称性 C. 传递性 D. 封闭性 4. 对整数加群Z来说,下列不正确的是(). A. Z没有生成元. B. 1是其生成元. C. -1是其生成元. D. Z是无限循环群. 5. 下列叙述正确的是()。 A. 群G是指一个集合. B. 环R是指一个集合. C. 群G是指一个非空集合和一个代数运算,满足结合律,并且单位元, 逆元存在. D. 环R是指一个非空集合和一个代数运算,满足结合律,并且单位元,

逆元存在. 二. 计算题(每题10分,共30分) 1. 设G 是由有理数域上全体2阶满秩方阵对方阵普通乘法作成 的群,试求中G 中下列各个元素1213,,0101c d cd ???? == ? ?-????, 的阶. 2. 试求出三次对称群 {}3(1),(12),(13),(23),(123),(132)S = 的所有子群.

3. 若e是环R的惟一左单位元,那么e是R的单位元吗?若是,请给予证明. 三. 证明题(第1小题10分,第2小题15分,第3小题20分,共45分). 1. 证明: 在群中只有单位元满足方程

近世代数 读书报告

题目1:设群G 中每个非幺元的阶都是2,证明G 为Abel 群. 题目1出处:南开大学资源共享课《抽象代数》 题目1的解答:?a≠e 且a∈G,a 2=e,所以1a -=a,b=1b -,a 2b 2=e 4=b 2a 2=e,另一方面,由于ab 1b -1a -=ba 1a -1b -,,所以abba=baab=e,即ab=(ab)1-=ba=b 1-a 1-,所以ba=ab,由a、b 的任意性,群G 满足交换律,为Abel 群. 选题目1的理由:老师上课提到此题,是群论部分Abel 群的经典例题. 题目2:(1)(群的单边定义)设G 为一个半群,如果: (a)G 中含左(右)幺元e,即?a∈G,ea=a; (b)G 中每个元有左(右)逆元1a -,使1a -a(a 1a -)=e. (2)(群的除法定义)设G 为半群,若?a、b∈G,方程xa=b 及ay=b 在G 内有解,则G 为群. (3)(有限群的另一定义)设G 为有限半群,如果在G 内左、右消去律均成立,则G 为群.题目2出处:冯克勤章璞《近世代数三百题》 题目2的解答:(1)?a∈G,设(a 1-)1-为a 1-的左逆元,则aa 1-=e (aa 1-)=(a 1-)1-a 1-aa 1-=(a 1-)1-ea 1-=(a 1-)1-a 1-=e,说明a 的左逆元也满足aa 1-=e,故a 1-为a 的逆元.而ae=a (a 1-a)=ea=a,故左幺元e 也是G 的右幺元,即为G 的单位元,所以G 为群. (2)由于G 非空,所以a∈G,则xa=a 有解e,?b∈G,存在y∈G 使得ay=b.于是eb=eay=ay=b,所以e 为G 左单位元,而xb=e 有解则意味着b 有左逆元,所以由b 的任意性及(1)可知G 为群. (3)设G={1a ,…n a },由消去律可知,{1a i a ,…,n a i a }={i a 1a ,…,i a n a },?i a ∈G,故存在e∈G 使得i a =e i a .于是?j a ∈G,存在k a ∈G 使得j a =i a k a .从而e j a =e i a k a =i a k a =j a .这说明e 为左单位元,又因为e ∈G=G j a ,以j a 有左逆元,因此由j a 的任意性知,G 为群. 选题目2的理由:此处将群的几种定义方式进行总结,在不同条件下可以利用群的不同定义.题目3:令b a ,?:x ax+b(a、b ∈R 且a ≠0)为实直线上的一个仿射变换,将它们的集合记为1A (R ),在1A (R )中定义乘法b a ,?d c ,?=b ad ac +,?,证明1A (R )为一个群.又设1H (R )={b 1,?:x x+b,b ∈R },证明它是1A (R )的一个子群,并证明1A (R )/1H (R )~{*R ;·}.题目3出处:柯斯特利金《代数学引论(第1卷)》第4章习题 题目3的解答:显然,任一伸缩和平移仿射变换都在1A (R )中,即对于上面定义的乘法,1A (R )是封闭的,可以验证01,?为1A (R )的幺元.?b a ,?∈1A (R ),当a≠0时,其上述定义下的逆元为a b a 1 -,?,综上所述,1A (R )为群. 显然01,?∈1H (R ),故1H (R )中有幺元,?b 1,?∈1H (R ),其上述定义下的逆元为b 1-,?,所以1H (R )<1A (R ). 1A (R )/1H (R )={0a ,?:x ax,a ∈R 且a ≠0},设双射f:1A (R )/1H (R )→*R , 由于a ∈*R 且遍历*R 内所有元素,所以1A (R )/1H (R )与* R 之间的f 可定义为1A (R )/1H

近世代数学习系列十 中英对照

近世代数中英对照学习 一、字母表 atom:原子 automorphism:自同构 binary operation:二元运算 Boolean algebra:布尔代数 bounded lattice:有界格 center of a group:群的中心 closure:封闭 commutative(Abelian) group:可交换群,阿贝尔群commutative(Abelian) semigroup:可交换半群comparable:可比的 complement:补 concatenation:拼接 congruence relation:同余关系 cycle:周期 cyclic group:循环群 cyclic semigroup:循环半群 determinant:行列式 disjoint:不相交 distributive lattice:分配格 entry:元素 epimorphism:满同态

factor group:商群 free semigroup:自由半群 greatest element:最大元 greatest lower bound:最大下界,下确界group:群 homomorphism:同态 idempotent element:等幂元identity:单位元,么元 identity:单位元,么元 inverse:逆元 isomorphism:同构 join:并 kernel:同态核 lattice:格 least element:最小元 least upper bound:最小上界,上确界left coset:左陪集 lower bound:下界 lower semilattice:下半格 main diagonal:主对角线 maximal element:极大元 meet:交

近世代数第9讲

置换群(pormutation group) 本讲的教学目的和要求:置换群是一种特殊的变换群。换句话说,置换群就是有限集上的变换群。由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。这一讲主要要求: 1、弄清置换与双射的等同关系。 2、掌握置换—轮换—对换之间的联系和置换的奇偶性。 3、置换的分解以及将轮换表成对换之积的基本方法要把握。 4、对称群与交错群的结构以及有限群的cayley定理需要理解。 本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。 注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。所以,一般研究抽象群用的还是直接的方法。并且也不能一下子把所有群都不得找出来。因为问题太复杂了。人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非变换群等等。对每个群类进行研究以设法回答上述三个问题。可惜,人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解

决。 变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。 一. 置换群的基本概念 定义1.任一集合A 到自身的映射都叫做A 的一个变换,如果A 是有限集且变换是一一变换(双射),那么这个变换为A 的一个置换。 有限集合A 的若干个置换若作成群,就叫做置换群。 含有n 个元素的有限群A 的全体置换作成的群,叫做n 次对称群。通常记为n S . 明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)而n 次对称群n S 也就是有限集合A 的完全变换群。 现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。 即π: 1a α2a ,2a α3a , 3a α1a ,利用本教材中特定的表示方法有:21a a =π ,32a a =π,13a a =π . 由于映射中只关心元素之间的对称关系.而不在乎元素 的具体内容.故可证{}3 , 2 , 1  =A .故此. π:1α2,2α3,3α1.稍做修改: π:2 1↓ 32↓ 1 3 ↓ ? π=??? ? ??132321 .用π=??? ? ??132321 来描述A

相关主题